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1. Introduction. For general multiple-decision testing problems, and even two-
decision problems involving more than two states of nature, how to construct
sequential procedures which are optimal (e.g. minimax, Bayes, or even ad-
missible) is an open question. In the absence of optimality results, many pro-
cedures have been proposed for problems in this category. Among these are the
procedures studied in Wald and Sobel (1949), Donnelly (1957), Anderson (1960),
and Schwarz (1962), all of which are discussed in the introduction of the paper
by Kiefer and Sacks (1963) along with investigations in sequential design of
experiments (notably those of Chernoff (1959) and Albert (1961)) which can be
regarded as considering, inter alia, the (non-design) sequential testing problem.

The present investigation concerns certain procedures which are asymptotically
Bayes as the cost per observation, ¢, approaches zero and are definable by a
simple rule: continue sampling until the a posterior: risk of stopping is less than
Qc (where @ is a fixed positive number), and choose a terminal decision having
minimum a posterior: risk. This rule, with @ = 1, was first considered by Schwarz
and was shown to be asymptotically Bayes, under mild assumptions, by Kiefer
and Sacks (whose results easily extend to the case of arbitrary @ > 0). Given
an a priort: distribution, F, and cost per observation, ¢, we shall use §-(Qc) to
denote the procedure defined by this rule and 8,*(c) to denote a Bayes solution
with respect to F and c. The result of Kiefer and Sacks, for @ = 1, states that
ro(F, 8p(c)) ~ r(F, 87(c)) as ¢ — 0, where r.(F, 8) is the integrated risk of &
when F is the a priori distribution and ¢ is the cost per observation. The principal
aim of the present work is to construct upper bounds (valid for all ¢ > 0) on
the difference r(F, 87(Qc)) — r«(F, 8" (¢c)), so that one can determine values
of ¢ (or the probabilities of error) small enough to insure that simple asymp-
totically optimum procedures are reasonably efficient.

The main result is Theorem 2.1, which states that, when Assumptions I-V are
satisfied, there exists a bound on this difference which is of the form M ¢, where M
depends upon Q. (Assumptions I-V are identical with the assumptions of Kiefer
and Sacks except for a greater limitation of the structure of indifference and semi-
indifference regions, as indicated in the remark following Assumption I1.) Since
7o(F, 857(¢)) = O(cllog c|) as ¢ — 0, as shown in (K-8), it follows from the
main result that the “efficiency’ of 6(Qc), r.(F, 357 (¢))/r(F, 8:(Qc) ), is
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1 — O(|log c|™) as ¢ — 0, for every @ > 0. Also, the proof of Theorem 2.1 shows
how to construct M from certain basic estimates associated with suitable parti-
tions of the parameter space (Lemma 2.1). Bounds on 7.(F, §¢(Qc)) can also be
constructed, as indicated in the remark following the proof of Theorem 2.1.

In Section 3, construction of M is studied in detail for general multiple-deci-
sion problems in which the set of possible states of nature is finite. The numerical
examples given in Section 4 include the following problem, which Kiefer and Sacks
discuss in their introduction, comparing asymptotically the procedures of
Donnelly, Anderson, and Schwarz. Given independent normally distributed
random variables with unknown mean 6 and variance one, test the hypothesis

= 1 against the alternative § = —1, with indifference point 6 = 0 (the loss
structure being 0 -1”). It is shown in the proof of Theorem 2.1 that (in general)
8r(c) has smaller integrated risk due to error than 8:*(¢), and a calculation in
Section 4 shows that, for arbitrary F, the a prior: expected sample size using
dr(c) is at most 7.7 larger than that of 8,*(¢c) in this example; hence, M = 7.7
suffices for the conclusion of Theorem 2.1. (For many common problems with
infinite but compact parameter spaces, M can be constructed in a manner in-
dicated below the proof of Theorem 3.3.)

The numerical bounds on r.(F, Bp(Qc)) — r(F, 8:*(¢c)) lead to lower bounds
on the “efficiency” of 8¢(Qc), r(F, 8*(c))/r«(F, 82(Qc)), upon computation of
suitable lower bounds on r(F, 8,*(c)), or on the expected sample sizes of pro-
cedures attaining prescribed probabilities of error. For example, consider the
problem just mentioned, testing the mean, 6, of a normal distribution, and sup-
pose the a priori distribution F assigns equal probabilities to 6 = 1, 0, —
Inequality (1.4) of Hoeffding (1960) gives a lower bound on the expected sample
size EsN at 8 = 0 for any procedure with probabilities of error under 6 = 1, —1
at most «, 8. For § = 1, —1 lower bounds on E;N can be given in terms of a, 8
by using Wald’s formulas for the expected sample sizes of a sequential prob-
ability ratio test and the optimality property of SPRT’s. To simplify and im-
prove the results, we consider the analogous testing problem for a Wiener précess,
in which case Wald’s formulas are exact. From the lower bounds mentioned one
obtains a lower bound, n(»), on the a prior: expected sample size of a procedure
with integrated probability of error less than v. One can derive a lower bound on
r(F, 8¢*(c)) by using n(») or, more simply, use n(») in connection with the
following formulation.

Let N (&) denote the a prior: expected sample size of §, and without reference
to the cost ¢ define the efficiency of §z(v) to be inf N(8)/N(8#(v)), taking the
infimum over all §’s whose integrated probability of error is no greater than that
of 6r(v). As shown in the proof of Lemma 2.2, §¢(») has integrated risk of error
less than », the difference between the two coming from “‘excess over the bound-
aries.” For 0-1 loss the integrated risk of error is simply the integrated probability
of error; hence, the ‘“competitors’ of §z(v) are subject to the lower bound n(»),
which is therefore a lower bound on the numerator in the above definition of
efficiency. In the Wiener process problem, the calculation in Example 2 of Sec-
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tion 4 shows that r,(F, 8,(2¢c)) — r.(F, 8z*(c)) = (6.1)c. By setting ¢ = v/2,
we obtain N(8¢(v)) — inf N(§) < 6.1, since the infimum is taken over the class
of procedures having smaller integrated risk of error than 8¢(v). For » = 107,
107°, 107", we obtain n(») = 6.1, 14.6, 31.3, respectively, and thus have lower
bounds 50%, 70 %, 84% on the efficiency of §(»). If § = 1,0, —1 is replaced by
6 = 6y, 0, —8o, both n(») and the bound 6.1 are multiplied by 6,’, so that the
estimates of efficiency are the same for every ».

These lower bounds are far from sharp, as is clear from the kinds of estimates
used in proving Lemma 2.2 and Theorem 2.1. Improvements can be made in the
estimates of 7.(F, 8¢(Qc)) — r«(F, 8*(c)) by taking into account the specific
distribution F (which is not done in Theorem 2.1) and modifying the proof of
Theorem 2.1 to take advantage of this. For simple special problems, like the
Wiener process two-decision problem discussed above, one can make a much
more direct investigation of the error probabilities and expected sample sizes of
5r(Qc)’s, using, for example, the extension of Anderson’s method described in
his paper (1960). Anderson makes an exact computation of the operating charac-
teristics of similar but slightly simpler tests, obtaining results very close to
Hoeffding’s lower bound.

1t is easy to extend our main results, Theorem 2.1 and Corollary 2.2, to a wider
class of procedures. Suppose a family of tests {§(c)} satisfies these requirements:
for some @ > 0, 8(c) stops no later than §-(Qc) and chooses a terminal decision
whose a postertor: risk is at most Kc. Then the integrated risk (under F) of §(c)
exceeds that of 6r(Qc) by at most K¢ and, hence, is at most (K + M )c larger
than the Bayes risk. In case the number of possible states of nature is finite, it is
straightforward to show that for F having full support the above conditions are
equivalent to the following: for some B > 0, &(¢) stops if for some decision there
is a state of nature 8 under which the decision is correct such that the likelihood
ratio of 8 to 6" exceeds B/c for all §" where the decision is incorrect; also, 8(¢)
chooses a terminal decision satisfying the same requirement with B/c replaced
by A/¢, B 2 A > 0. Since the conditions just stated do not depend on F, a
family {8(c)} satisfying them has O(c) excess integrated risk for every a prior:
distribution F with full support. Clearly one can meet these requirements using
several SPRT’s simultaneously on the same observations. Kiefer and Sacks give
a discussion of the use of such simultaneous tests.

The key to the present results is Lemma 2.2, which establishes that a Bayes
procedure continues sampling whenever the a posterior: risk of stopping exceeds
M*c. The argument used to prove this lemma is the heart of the present paper;
the proof of Theorem 2.1 is based upon it, and so is the construction of M satisfy-
ing Theorem 2.1. This argument proceeds straightforwardly from Lemma 2.1,
which establishes the existence of certain finite partitions of the parameter
space, permitting it to be treated as if it were a finite point set. For similar rea-
sons, Kiefer and Sacks required a slightly weaker result than Lemma 2.1 (Lemma
3 of their paper); we indicate amendments to their method of proof which yield
Lemma 2.1.
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Lemma 2.2 is a strengthening of a central result of Schwarz, whose work con-
cerns the problem of testing sequentially between two composite hypotheses
6 = 61 and § = 6, concerning the real parameter 9 of a distribution of exponential
(Koopman-Darmois) type, with indifference region (6, , 6;). Schwarz investigated
the Bayes continuation region, B(c), for a fixed a prior: distribution and cost
per observation c, in the space (n, S,), where S, is the usual sufficient statistic
after n observations. In order to find the “asymptotic shape” of B(c), Schwarz
proved that C(¢) D B(c) D C(const c|log c|) for sufficiently small ¢, where
C(c) is the set on which the a posteriors risk of stopping exceeds ¢. (Kiefer and
Sacks generalized this result in Lemma 4 of their paper.) Lemma 2.1 yields the
improvement B(c¢) D C(M *¢) whenever Assumptions I-V are satisfied ; Assump-
tion IV requires, however, that the parameter space be compact (i.e. that the
a priori distribution in Schwarz’s setting have compact support). Unfortunately,
this compactness assumption does not seem to be removable by the kind of device
used in (K-S) to extend their results to problems of Schwarz’s type. (Remark 5
of their paper is insufficient because the compact subset @ would, in our context,
have to vary with the a posterior: distribution G in the proof of Lemma 2.2.)

Recently, M. Fushimi (1965) has extended part of Schwarz’s results on asymp-
totic shapes, in the binomial and normal cases, for certain loss functions and a
priori distributions. Schwarz showed that C(c) = Bylog ¢ + o(log ¢*) (where
B, is a computable region), whereas Fushimi obtains C(¢) = Byflog ¢ —
(2) log log ¢ '] to within o(log log ¢ ). However, Schwarz’s main result, B(c) =
By log ¢ + o(log ¢™), is not thereby improved to within o(log log ¢™) be-
cause C(const ¢ log ¢™) = Boflog ¢* — (£) log log ¢ plus o(log log ¢™). For
compactly supported a priori distributions, Lemma 2.2 implies B(¢) D C(M*c),
which leads to B(¢) = Boflog ¢* — () log log ¢™] to within o(log log ¢™).
Fushimi proposes the use of the stopping region Boflog ¢ — (§) log log ¢,
on somewhat vague grounds. For reasons discussed in (K-S), ‘“asymptotic
shapes” (even when specified up to o(log log ¢™)) seem to yield insufficient
information about procedures to obtain useful estimates of error probabilities
and sample sizes.

2. Risk of asymptotically Bayes procedures. The sequential decision prob-
lem is formulated as in the paper of Kiefer and Sacks (1963), with a few changes
in notation. Independent and identically distributed random variables X;, X,
- - - are observed sequentially, taking values in a space (%, @) on which a ¢-finite
measure p is defined. The parameter space, @, is a compact subset of Euclidean
space (in the usual topology) and {f, ; w £ @} is a set of probability densities for
X, , with respect to u. There are d terminal decisions (d = 2) and corresponding
non-negative loss functions, Li(w) (i = 1, - - -, d), representing the loss incurred
in making the 7th decision when f, is the true density. The cost per observation
isc (¢ > 0). It is assumed throughout that min; L;(w) is identically zero; that is,
fof each w there is at least one ‘““correct” decision.

Assumptions I, IT, ITI, and V below are taken from Assumptions 1, 2, 3, and
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5, respectively, of (K-S). (Assumption IV appears as a hypothesis in each of
their theorems.) Let @; = {w e Q:Ly(w) = 0},7 = 1, -+, d. (R is the subset of
Q where the 7th decision is correct.)

AssumprioN I. Put L; = sup..oLiw) and b; = inf,0, Li(w). Assume that
each L; is finite and each b; is positive, and let L = max; L; and b = min;b;.

AssumprioN II. Let w, 0 & Q, with we @, and 0 Q — ;.

(a) Eullog fo(X) — log fo(X)] exists and is continuous in w & Q; for every
e — Q;.

(b) A(w) = infpag, Bullog f,(X) — log fo(X)] is continuous in w & Q; and
is bounded below by N\; > 0.

Note. Assumption IT insures that 2; and its complement in @ are “‘separated.”
For their results, Kiefer and Sacks require only that the complement of Q;
is separated from a suitable subset of Q; (which may be a proper subset if Q;
contains an indifference region or semi-indifference region).

Assumprion ITI. For every weQ;and 0 Q — Q;,

(a) Euflog fu(X) — log f( X)I < w.

(b) lim, o Eflog supje— <,fo(X) — log fo(X)I" = 0.

() limyr-s Bullog fur(X) — log fu(X) = 0.

AssumprioN IV. Fors =1, .-+, d, Q; and @ — Q; are compact.

AssumprioN V.

(a) Eullog fu(X) — log fo(X)]* and E.[log supje—ss,for(X) — log fo(X)I*
are continuous in w & Q; for every 0 e Q2 — Q; and p > 0.

(b) Elog fo(X) — log fu(X )’ is jointly continuous in » and ' for w,
W eQ, i =1, ---,d.

Lemma 2.1. Under Assumptions 1-V, there is a finite covering, {V;, j = 1,

-, k}, of Qu, with corresponding numbers A;, such that the expectation, under
every we V;, of the first n for which X, -+, X, satisfy

(2.1) Jv; IInaa fo( Xm)Pr(dw) > ¢ fo-g, TTm-1fo(Xm)Pa(dB)

s bounded above, for ¢ = 2, by A; log ¢, provided Py(V;) = Po(Q — @) > 0.
Remark 1. The stopping variable defined by (2.1) is clearly increasing in
¢, so that, for ¢ € [1, 2), 4; log 2 bounds from above its expectation under every
we V;. Thus, for { = 1, we have an upper bound of the form 4; log ¢ + B;.
In (K-S), the proof of the statement containing (2.31) proves a weaker version
of Lemma 2.1 in which the Vs and the 4 s are not required to be independent of
P; and P,. (In that paper, the measures corresponding to our P; and P,, £
and 5, are determined by the a prior¢ distribution and are therefore fixed through-
out.) However, in the proof of (2.31) (which relies upon the major part of the
proofs of Lemmas 2 and 3) the covering { V(w1 ), -+, V(wi)} (corresponding to
our {Vi, - -+, Vi}) clearly is chosen independently of £ and 5, and the loss fune-
tions, Li(60) and Lo(w), of that paper. Let the loss functions be constant, in 6
and w, respectively, with the two constant values chosen for each V(w;) so that
A7((2.14) of K-S) is not greater than [log ¢| (corresponding to our requirement
Py(V;) = Po(Q — @)). Then the M’s (corresponding to our 4;’s) depend only
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upon estimates of the first two moments of random variables (namely, the S,’s
and B,"”s) whose distributions are independent of 5, while the estimates them-
selves are independent of £, and these observations suffice for the present Lemma
2.1.

LemmA 2.2. If Assumptions 1-V dre satisfied, there exists an M™ such that, for
every a priori distribution and cost per observation, ¢, a Bayes procedure (with
probability one) continues sampling whenever the a posteriori risk of stopping ts at
least M*c.

Proor. For cost per observation ¢, let r.(@, &) denote the integral with re-
spect to @ of the risk funection of 4. Also, for¢ = 1, --- | d let §; denote the pro-
cedure which chooses the 7th decision without sampling, let (@, §;) denote its
integrated risk (which is independent of ¢), and set 7(@) = min 7(@, §;) (i = 1,
.-+, d). It is sufficient to prove, for some M* and Q, 1‘3hat

(2.2) (G, 8a(Qc)) < (@) if (@) = M.

We fix Q > 0 in the remainder of the proof and find an M™* satisfying (2.2).
The part of 7.( G, 8¢(Qc)) that comes from wrong decisions can be estimated as

follows. It is well-known that the integrated risk of error is equal to the a priore

expectation of the stopping risk upon stopping, which is less than Qc for d¢(Qc).
Therefore, (2.2) follows from )

(2.3) [oEN(56(Qe))G(dw) < (@) — Q if r(G) = M¥,

where N (8¢(Qc)) is the first n for which X, - - -, X, satisfy
JoITna1fu(Xn)G(dw) > (Qc) ™ min,ey,... d oo, Lo(8) JImetfo(Xn)G(db).
Using Lemma 2.1 we will show that, forz = 1, - - - , d, there is a finite covering

{Vi;7eZ(1)} of Q; (the Z(7)’s are disjoint sets of integers) with corresponding
non-negative functions, g;, concave and strictly increasing on [0, % ), such that
(24) SUPwe v EwN( BG(QC)) = gi (log (T(G7 61)/QCG( VJ))))
if (@, 6:;) = Qc and G(V,;) > 0.
Taking 7 = 1 (for convenience) and {V;;j = 1, ---, k} and corresponding
Ajs satisfying Lemma 2.1, note first that N(8¢(Qc)) is less than or equal to
the first n for which

Jv; I fu( Xn)G(dw) > (Qo)™ fao, La(0) [Tt fo( Xn) G(d0)
or, equivalently,
(2.5)  [v;(1Ima1fo(Xn))G(dw)/G(V)
> [1(G, 8)/QcG( V)] foa, (IIm-1fo( X)) Lr(6)G(d6)/7(G, &1).

Now (2.5) is just (2.1) with 7(G, 81)/QcG(V;) in place of ¢, Py = [G( Vor'e
a}ld dPQ(O) = [T(G, 51)]_1L1(0) dG(O) (SO that Pl(V]) = Pg(Q - Ql) = 1),
therefore Lemma 2.1 and the remark following it imply that {V;;7 =1, --- , k}
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with g;(z) = A;x + A;log 2 satisfies (2.4). (We could restrict ourselves to linear
gi’s in (2.4); however, other concave g;’s are used in some of the computational
results, and the present development has been written so as to apply there
as well as to prove Lemma 2.1.) .

We now use the estimate in (2.4) to obtain an upper bound, (2.12) below, on
the left hand side of (2.3), assuming 7(G) = Qc. For each 7 = 1, -- - d, choose a
subset, J(2), of uZ(k) (k = 1, ---, d) containing Z(Z) such that {V; ;j e J(z)}
covers Q; of course, J(z) = uZ(k) suffices, for all Z; but selecting each J(7) as
a proper subset of uZ(k) (if possible) yields a smaller bound in (2.11) below.
Assume, for convenience, that r(G) = r(G, &), and observe that (2.4) implies
that

Supwer EwN( 50(QC) ) .
(2.6) < g; (log (((G)/QcG(V;))) if jeZ(1) and G(V;) >0,
< g; (log (L/QeG(V;))) if jed(1) — Z(1) and G(V;) >0,

since max; (@, §;) = L, while the g,’s are increasing on [0, « ). Evidently, each
of the functions g;*(z) = g;(z) — ¢;(0),7 € uZ(%), is non-negative, concave, and
strictly increasing, and therefore satisfies g;*(z + y) < ¢;%(x) + g;*(y) for all
z,y Z 0, or, equivalently, g;(z 4+ y) < gi(z) + ¢;"(y). Letting g* = max;escs g5,
we obtain

(2.7) g; (log (r(@)/QeG(V;))) = gi([log K(V;)|) + ¢" (log (r(G)/Qc))
forj e Z(1) and G(V;) > 0; while, forj ¢ J(1) — Z(1) and G(V;) > 0,
gi (log (L/QcG(V;)))
(28) < gi(Jlog G(V))|) + ¢;* (log (L/Qc))
= gi(] log G(V)]) + ¢ (log (r(@)/Qc)) + ¢ (log (L/r(®))).

Since {V;;jeJ(1)} covers @ and {V;;je Z(1)} covers &, from (2.6)—(2.8)
we obtain the following.
If r(@) = (G, &) = Qc, then

(29)  [aBuN(8a(Q0))G(dw) = 2 jera G(V;)gi([log G(V,)])
+ ¢' (log (7(@)/Qe)) + (2 — Q)g" (log (L/r(®))),

where J(1) = {jeJ(1): G(V;) > 0}.
Since (@) = (G, &) = bG(Q — ),

(2 — 2)g" (log (L/r(@))) = (r(@)/b)g* (log (L/r(®)))
(2.10) = (L/b)(r(@)/L)g" (log (L/r(G)))].
< (L/b) supocasi zg'(Jlog x]).

The supremum is finite because it is equal to the maximum (over j & J(7)) of
the supremum (over z & (0, 1]) of the strictly concave function zg;*(|log x|).
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(The strict concavity follows from the fact that g;* is concave and strictly in-
creasing. )

To obtain an upper bound on the first term on the right hand side of (2.9),
we first show that there is no loss of generality in assuming that the Vs (for
jeJ (1)) are disjoint. If they are not, it suffices to replace each V; by its subset
Ti =V; —u{Vi:k < j;keJ(1)} (assuming the integers in Z(1) are smaller
than those in the other Z(7)’s). Since G(T;) £ G(V;) for all j, the T’s clearly
satisfy (2.6); also, the T/s are disjoint and cover @, while {T;; jeZ(1)}
covers £ .

Assuming, then, that the Vs, for j ¢ J(1), are disjoint, their measures, G( V),
add up to one. Therefore,

(211)  Xiesw K(Vi)gi(llog G(V)]) S sup D jesw aigi(|log ay]),
where the supremum is taken over all sets of a/’s =0 summing to one, and
a;9;( [log a;]) is defined to be zero for o; = 0.

The supremum in (2.11) is bounded above by the sum over jeJ(1) of
SUpo<z <1 £9;( [log |), which is finite by the same argument used in connection
with (2.10). Forz =1, .-, d, let

Di = (L/b) supocs<1 2g°([logz|) + sup X jercy ajgi( [log e)),

where the supremum in the last term is taken as in (2.11). This supremum can be
calculated by applying Lemma 2.3. We conclude from (2.9)—(2.11) and similar
results for the cases r(@) = (@, §:;)(¢+ = 2, --- , d) that

(2.12)  Jo BN (86(Qc))(dw) < maxiy,...q[D: + ¢° (log (r(@)/Qc))],
if (@) =Qe.

We show first that, for all jeuZ(z)(z = 1,---, d), the function
z — g;*(log (2/Q)) is convex on [Q, ) and approaches + « as & approaches
+ . Since both g;* and log (2/Q) are concave and strictly increasing, so is
g;¥(log (/Q)), and therefore z — g;*(log (¢/Q)) is convex. Since g;* is concave
and non-negative on [0, » ), g;*(x)/z is monotone decreasing and non-negative,
and, hence, as =z approaches +o, g;*(log(z/Q)) is O(logz) and

¢ — g;"(log (x/Q)) approaches + . It follows that (for s = 1, ---, d and
j euZ(z)) the equation
(2.13) & — g;* (log (2/Q)) = D: + @Q

has a unique solution in [@, » ), since the left hand side equals @ at x = @ while
the right hand side is larger than Q.

Let M* be the largest of the solutions of (2.13) for all ¢ and j such that
j e J(7). For z = M*, each of the convex functions z — ;" (log (£/Q)),7 e u Z(4)
(4 =1,---,d), is increasing; therefore, if ¢ (@) = M* (@)
— g, (log ((@)/Qc)) = D + Q, for all 4, j with j £ J(¢), and, hence,

(2.14) if #(@) = M*, (@) — Q= Di+ g (log (r(G)/Qe)),

fors=1,---,d.
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Since M™* > Q, (2.12) and (2.14) imply that (2.3) holds for any @ > 0 and M *
(depending on Q) as defined above, and the proof of the lemma, is complete.

THEOREM 2.1. If Assumptions I-V are satisfied, then for any Q > 0 there is an
M such that “

(2.15) ro(F, 85(Qc)) — 1o(F, 8¢*(¢)) < M,
for every a priori distribution, F, cost per observation, ¢ > 0, and Bayes procedure,
51?*(0).

Proor. For any a priors distribution, F, and procedure, 8, let e(F, §) be the
integrated risk due to error. We shall first prove

(2.16) e(F, 6:(Qc)) — e(F, 65"(¢)) < Qc, if Q > 1,
<0 if Q=1

For Q > 1, (2.16) follows from the estimate e(F, §7(Qc)) < Qc, which was
used in proving Lemma, 2.2. For @ = 1, we apply the well-known fact that (with
probability 1) 8-"(¢) does not continue when the stopping risk is less than c. It
follows that the stopping risk when 87(c) stops (whose a priori expectation is
e(F, 8x(c))) is (with probability 1) not larger than the stopping risk when 6-*(c)
stops (whose a priori expectation is e(F, 8¢ (c))). Therefore, e(F, ds(¢c)) <
e(F, 6:*(Qc)), and the same argument can be applied to 8(Qc) for @ < 1.

Let M* > 1 be any number satisfying Lemma 2.2 (for instance, the largest of
the solutions of (2.13) obtained for @ = 1). Since 3#"(c) does not stop until the
stopping risk is less than M™c, it takes at least as many observations as 8,(M *c)
(with probability 1). Letting n«(F, §) = r«(F, §) — e(F, 8), we have, therefore,

(2.17) nd(F, 8:7(¢)) 2 n(F, 82(M¥c)) Z nu(F, 82(Qc)), if @ = M™.

If Q < M* define F as the (chance) a posteriors distribution when 8z(M *c)
stops. The identity

(2.18) n(F, 6:(Qc)) — n(F, 6x(M*c)) = [a Esn(F, 83(Qc))F(dw)

is proved by the standard type of argument used in connection with stopping

variables. B
By the definition of F, r(F) < M™¥c, and therefore

(2.19) ne(F, 85(Qc)) < cmaxiy,... . [D: + ¢g°(log [M*/Q))]

follows from (2.12) in case r(F) = Qc and holds trivially in case r(F) < Qc since
the left hand member is zero.
Combining (2.17)—(2.19), we have, for Q < M,

(2.20) no(F, 8:(Qc)) — no(F,8:*(¢)) < ¢ maxiy,...a [Di + g°(log [M*/Q])].

Putting together (2.16), (2.17), and (2.20), we obtain
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ro(F, 85(Qc)) — ro(F, 85" (c))

(2.21) <cQ if Q=M*
< ¢Q+ cmaxi,...q[Di + ¢g*(log [M*/QD] if 1< Q< M*
< c-c-maxiy,... s [Ds + g*(log [M*/Q1)] if Q=1,

which proves the theorem.

Remark. Assuming r(F) = Qc, r(F, 8,(Qc)) itself is bounded above by Qc
+ cmax;....q [D: + ¢g'(log (r(F)/Qc))].

CoroLLARY 2.2. Under Assumptions I-V, for every @ > 0 and a priori déstribu-
tion, F, with full support

ro(F, 8:"(c))/rF, 8:(Qc)) = 1 — O(|loge[™), as ¢—0.

The corollary follows immediately from Theoremr 2.1 and the corollary to
Theorem 1 in (K-8), which implies that r.(F, 6-(Qc)) = (constant)-c [log ¢| for
small c.

Remark 2. Possible choices of Q are lim,., g;"(z)/x (which equals A; if
gix) = Az + Bj), for j e u Z(7). The limits exist since each g;"(x)/x is mono-
tone decreasing and non-negative. (In fact, the limits can be shown to be posi-
tive.) If all the g;’s are of the form A;x 4+ B, it is easy to show that one of these
choices of Q yields the smallest M, as defined in the proof of Lemma 2.2. In
general, there exists a choice of @ for which the M * defined just below (2.13) is
smallest, and it is one of those values of @ which minimize the solution of (2.13)
for some 7 and j such that j ¢ J (7).

LemMA 2.3. Given Hi(-),j =1, --- ,v(v = 2), strictly concave and continuous on
[0, 1], let H, be the left-hand derivative of H; , which exists on (0, 1] and is strictly
decreasing.

Forj = 1,---, v, there is a function x;(-) on (— o, ) with the following
properties:

(1) Hi (xi()) 2 y 2 H (u(y)+) o xi(y) > 0.

(2) xjis non-increasing.

(3) limy.. xi(y) = 0 and limy.— xi(y) = L.

There exists a number y* such that D1 x;(y*) = 1 and

(222) i Hia) £ 25 Hix(")
if Z;"=laj =1 and «;=20, 7=1,---,0.

RemARK 3. For application to (2.11) and to evaluate the DJs, we use
H;(z) = xg;(|logz|) for z & (0, 1] with H;(0) = 0. The required continuity at
zero follows from the fact that g;([logz|) = O(|logz|) as = approaches zero,
which is proved by the same argument used just above (2.13).

It should be pointed out that Lemma 2.3 follows at once from an argument
using Lagrange multipliers in case H ; is continuous. The additional generality of
Lemma, 2.3 is sometimes needed when one obtains a g; by taking the minimum of
‘two other concave functions (see the discussion following Theorem 3.1).
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Proor or LeEmma 2.3. Since H; is strictly decreasing on (0, 1], its inverse is
strictly decreasing on the set H;'((0, 1]) where it is defined, and has range (0, 1];
there is an obvious extension of this inverse function to ( — «, « ) which satisfies
properties (2) and (3). This extension, x;, obviously satisfies property (1) in
case x;(y) is a point of continuity of- H; ; in case H; has a jump at x;(y), it is
easy to verify that property (1) holds since H,' is left-continuous.

Each yx; is continuous, since it is monotone and has range (0, 1] or [0, 1]. Thus,
> % x;(y) is continuous, has limit zero as y approaches + o, and limit v (v = 2)
as y approaches — « . There is a number y* therefore, such that Dy x;j(y*) = 1.

To prove (2.22) we first show that, for each j, H;(z) — y*z (which is con-
tinuous on [0, 1]) attains its maximum when z = x;(y*). Clearly, the maximum is
attained at zero if H; () — y* is negative throughout (0, 1]; in this case, xi(y™)
is zero also, or else property (1) would be violated. If H /(z) — y* is non-negative
at some point in (0, 1], then the maximum of H;(z) — y™*z is attained at a point
z*1in (0, 1], and H; (z) — y™ obviously attains its smallest non-negative value at
& (uniquely); in this case, x;(¥*) = z*, by property (1) and the monotonicity
of Hj .

Now,if > % ya;=1lande; = 0,5 =1, ---, v, we have

2 Hi(ay) = y* 4+ 25a (Hi(ay) — y*ey)

<yt + 2ja maxeg (Hi(z) — y'v)
v* 4+ 25 Hi(a(y™) — v™xi(y™)]
2o Hi(xi(y™)),

I

and the proof is complete.

In applying Lemma 2.3 to compute the D/’s, the fact that > 71 x;(y) is non-
increasing helps considerably in finding 3™

REMARK 4. Because they always exist under our assumptions, bounds g;(x)
of the form A;x + Bj; are of particular interest. We have g;"(x) = Ajx, so that
g'(x) = A%, where A* = max;.;; A;,fori = 1, -+, d. A simple upper bound
on D; can be obtained as follows: Let B* = max;.;; B; and let s(7) be the number
of elements in J(3), for¢ = 1, - -+ , d. The first term in the expression for D; (just
above (2.12)) is L/b times A°/e, since supsee 1  [log x| equals 1/e. The second
term can be bounded above by replacing each g; by g'; the supremum then be-
comes A’ log s(7) + B° by an obvious concavity argument (or by using Lemma
2.3). Thus

D; < (L/b)-(A/e) + A'logs(s) + B".

It is easy to show that D; = O(log s(7)) as s(¢) — o, under appropriate interpre-
tation and conditions (say, if g1, -+ -, gs» is an initial segment of an infinite
sequence g , gz, - - - satisfying gs £ gp < gofork = 1,2, --+).

3. Bounds in the finite parameter space case. If @ is a finite set and if, for
i=1,---,d, we choose the covering {V; ; j ¢ Z(%)} of Q; to consist of the single-
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point subsets of ., then the equivalent of (2.1), for arbitrary s, is

(ITm= fo( X)) Pr(@) >¢ D se—0; (TT2os fo( X)) Pa(6),

where {w} = V; (and j e Z(7)). .
Now, if Py(w) = P2(Q — i) > 0, the first n for which this relation is satisfied
is never larger than the first » for which

IIn fu(Xn) > ¢ maxoo g, [1o1fo(Xw),
or, equivalently,
(3.1) mingeo—g; 2 m-1 (10g fo(Xn) — log fo(Xna)) > logy.

Therefore, if the expectation under w ({w} = V;) of the first n satisfying (3.1)
is bounded above, for ¢ = 1, by g;(log¢) (where g; is a coneave function on
[0, = )), then g; satisfies (2.4). If, for every j eu Z(d)(¢ = 1, -+ , d), such a g,
can be constructed, then an M (depending on Q) satisfying Theorem 2.1 can be
computed by using (2.21). Of course, fors = 1, - - - , d, it suffices to choose J (%)
containing Z(¢) and such that {V; ;j & J(7)} is a covering of @ by its single-point
subsets. (In other words, for each ¢ = 1, - - , d, one need only assign each point
in @ — Q. to one of the Q4’s containing it; of course, these assignments can be
made so as to minimize the value of M obtained from (2.21).) Suppose

Q—Q;=1{6,, .-, 0,}; then we can write (3.1) in the equivalent form
(3.2) min,,...,, 8'(n) > v,
where vy = log¢ = 0, 87(0) = 0, and
8(n) = 2omer (log fu(Xm) — log fo,(Xnm)) for n =1,2 ...
The problem at hand is to construct a concave function, g, on [0, « ) satisfying
(3.3) ENy(v) = g(v),
where

Ny(v) = inf {n | min,,..., 8"(n) > v} for v = 0.

(It follows from (3.3) trivially, using Wald’s equation that g(y) =
v(min, ES'(1))™ for all v, so that g is necessarily non-negative, unbounded,
and, hence, strictly increasing on [0, ©).) Forr = 1, --- | p, S'(n) is the nth
partial sum of independent, identically distributed random variables. Letting
S" stand for 8"(1) and re-indexing S'(n), -+, 8?(n) if necessary, we assume
in the sequel that

0<ES'<ESf=<..- < ES,

and
Var§" < o« for r=1,---,p,

o

by virtue of Assumptions I-V.
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The special cases p = 1 and p = 2 are of particular importance in connection
with so-called Koopman-Darmois families, which we define as follows: suppose
that for w in an interval containing @ (on the real line) we have (u)-densities of
the form

fo(@) = T(w)h(z)e"",
where ¢(w) is strictly monotone. Then (3.1) is equivalent to

(34)  (¥(w) = ¥(8)) 2n-1 Xm + n(log T(w) — logT(6)) > logg,
for 0 = 01, ,0p.

We fix w, {, and X3, - -+ , X, , and consider the left hand member of (3.4) as a
function of 6 (over the interval where ¢ and I' are defined). In case ¢(8) = 4,
log T'(9) is concave (as is well-known) and, hence, the left-hand member of (3.4)
is convex in 6. Since § = w clearly fails to satisfy the inequality in (3.4), it follows
that if 0 = 6™ satisfies it and 8% > w, then every 6 = 6 satisfies it by virtue of the
convexity. (The same conclusion follows in the case of arbitrary strictly monotone
¥(8) by an obvious argument, using the re-parameterization ¢ = ¥(6).) A similar
conclusion applies for 6¥* < w,and thus if 6; < +++ <0, < w <Oy < -+ < 0
then (3.4) is equivalent to

(85)  (Y(w) — ¥(0)) 2oma1 Xm + n(log I'(w) — logT(0)) > logy,

for § = 60, , 0441, with the provision that if w < 6;, 0, = 0441 = 61, and if 8, > w,
then 0, = 0q+1 = 0p .
We have shown that, for Koopman-Darmois families, the problem to construct
g satisfying (3.3) arises only forp = lorp = 2.
We now state the principal theorem we shall use to solve the problem of (3.3).
TaroreM 3.1. Assume S', 8%, -+, 8”(p = 2) have finite variances and that
0 < ES' < ES® <.-- =< ES". Let 7(-) be a mapping of {2, ---, p} into
{1, -+, p — 1} satisfying v(r) < r forr = 2, ---, p. Let R and R be comple-
mentary subsets of {2, -+ , p} such that ES™” <ES for all r ¢ R and ES™ <
v ES (v, £ 1) for r & R. Then, for all v 2 0,
ES"EN,(v) £ Emin,,... , S (Ny(7))
(3.6) + 2B SUPnzo (87(n) — S'(n))
+ 3EN, (7)) 2rer [Var (87 — 5,80

Proor. The expected value of N,(v) is finite by Theorem 3 of Farrell (1964)
and, applying Wald’s equation, we obtain
(3.7) ES'-ENy(v) = ES(Ny(v)) = Emin,e,...., S(Np(v))
+ E[S'(Np(7)) — mint,....» S (Np(7))]

Starting with the fact that 7(2) is necessarily 1, it is straightforward to show
that, for all n,
(3.8) S'(n) — minyey,... , S (n) £ D2 2587 (n) — S"(n)]™.
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By (3.7) and (3.8), clearly
(3.9) ES“EN,(y) £ Emin,.... , S (Ny(v))
A + 2P EISO(Ny(v)) — S (NH(v)]I™.
Forre R, ES” < ES and, hence,
(3.10) EIS”(Ny(v)) — S (Npy(v)]" £ Esupazo [S”(n) — 8(n)] < .

Forr =2,--+,p,72R,welet A = »,ES  — ES (A = 0) and write N as a
shorthand for N,(v). By Wald’s equation,

EIS”(N) — »S(N) + AN]" — BIS”(N) — »8"(N) + AN]™ = 0,

and, hence, we have (since S'(N) = v = 0) .
EIS”(N) — S(N)I* = BIS”(N) — »S'(N) + ANT*

1E|S”(N) — »S8(N) + AN|
3[Var (S”(N) — »8'(N) + AN)].

By Theorem 2 of Chow, Robbins, and Teicher (1965),
(3.12) Var (S”(N) — »8(N) + AN) = EN-Var (8 — »,8 + A)

= EN-Var (8 — »8").

Theorem 3.1 follows from (3.9) by applying (3.10) for r ¢ B and applying
(3.11) and (3.12) for r 2 R.

Remark 5. Useful upper bounds on E sup,so (S (n) — 87(n)) are given in
the discussion following Theorem 3.3. These bounds hold under more restrictive
assumptions than those of Theorem 3.1. When these assumptions are not satis-
fied, R can be chosen to be {2, - - - , p}, so that R is empty.

Clearly, one should choose 7(r) and », for r ¢ B to minimize Var (8" — »,87)
and, for r ¢ R, should choose 7(r) so that the best available estimate for
E sup,s0 [S™(n) — 87(n)] is smaller than that for any other choice. Choosing R
advantageously is slightly more complicated. As is illustrated in the examples con-
sidered below, the most advantageous choice of R may well depend on v. (It is
easy to verify that the best B does not decrease as v increases.) In this case, if
one uses Theorem 3.1 (with different choices of B) to obtain concave bounds
satisfying (3.3), none of them is smallest for all v, and it pays to use their
minimum, which is also concave and, clearly, also solves the problem in (3.3).

The next theorem provides a means of constructing estimates of the term
E min, S"(N,(v)) which appears in the right hand side of (3.6). It is a generaliza-
tion of Theorem 2 of Farrell (1964 ), which deals with the case p = 1. In addition,
it contains slight improvements of Farrell’s result that require more than the
trivial modification of his argument necessary for a straightforward generaliza-
tign. The nature of the improvements can be seen as follows: forp = 1,if A is de-
fined to be EW(|S'|) (instead of the smaller value it is given in Theorem 3.2),
then (3.11) is equivalent to Farrell’s result upon setting w = 0 in (3.11).

(3.11)

IIA
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TaEOREM 3.2. Assume ES” > 0and E |S'| < o forr=1,--- ,p(p = 1). Let
W be a convex function strictly increasing on [0, « ) and satisfying Wo(0) = 0 and
limg Wo(z) /2 = . Assume that EWo((8)*) < 0,7 =1,---, p.

Let w be the right-hand derivative of W at zero and define

W(z) = Wo(z) if 220
= wr if z<0.

Set A = EW(max, S8"). Then A < « and
(311)  Eminey,.., S(Np(v)) = v + Wo (AEN,(7) — wy).

Proor. Since w = 0, W(z) < Wo(z") for all 2 and, hence,

A = EW(max, §") < EWo((max,8)")"
= EWy(max, (S)") = E D22 Wo((8)F) < .

Using N as a shorthand notation for N,(v), observe that

(3.12) max, [S(N) — S(N — 1)]
z [y — max, §'(N — )] + [min, S(N) — ~].

Since W(0) = 0 and W is convex and non-decreasing, W(z) = W(z) + W(y)
provided z = z 4 y and z, ¥y = 0. Thus, noting that the terms in (3.12) are non-
negative, we conclude that

(3.13) W(max, [S(N) — S (N — 1)]) 2 W(ly — max, S (N — 1)[¥)
+ W(min, S"(N) — v).
Now, W(z) = wz for all z. Using this fact and (3.13), we have
2= W(max, [S"(k) — S"(k — 1)])
(3.14) = W(min, S"(N) — v) + w D_i= max, [S (k) — §'(k — 1)]
+ wly — max, S"(N — 1)]*
Z W(min, S'(N) — v) + wr.

Theorem 3 of Farrell (1964) has already been cited to show that EN,(v) is
finite. Hence, Wald’s equation can be applied to the sum on the left hand side
of (3.14), and we obtain (using Jensen’s inequality)

AEN = EW(max, 8")-EN = E > 1= W(max, [S'(k) — §'(k — 1)])
(3.15) 2 EW(min, 8'(N) — v) + wy
= EW(min, S'(N) — v) + wy
= Wo(E min, S (N) — v) + wy.

The assumptions on W, imply that it is continuous and has range [0, ).
Since W, is strictly increasing, W, is defined and increasing on [0, «), and
(3.11) follows at once from (3.15).

L
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ReMARK 6. Under our assumption that S, ---, 8" have finite variances,
Wo(z) = «* satisfies the hypotheses of the theorem. If §', - -+ , 8" have moment
generating functions in a neighborhood of zero, then Wy(z) = ¢** — 1 (for suffi-
ciently small w > 0) may be used.

To show how Theorem 3.1 and Theorem 3.2 can be used to solve the problem
in (3.3), we put (3.6) and (3.11) together to obtain

ES'-EN,(v) v
(3.16) + W*(AEN,(v) — wY) + Dorer B sUDazo (87(n) — 8'(n))
+ LEN,(v)] Xrer [Var (S — ».8N)],

where W* is W (which is a concave strictly increasing extension of W'
to (—o, ©)) unless w = 0, in which case W* is Wy . By this device,
W*(AEN (v) — wy) is well-defined for every ordered pair of non-negative real
numbers, (v, EN,(v)), and it is easy to verify that the set of such pairs satisfy-
ing (3.16) is a convex subset of the first quadrant of (Euclidean) 2-space and
contains {(v, 0)| v = 0}. Thus, if this convex set is bounded above, it has an
upper boundary which can be represented by a concave function g(-) on [0, »),
and this g( - ) satisfies (3.3). (The boundedness follows easily from the assumption
in Theorem 3.2 that lim,., Wo(z)/x = =.) Of course, the same observations are
valid if in (3.16) A, E sup,z0 [S"”(n) — 87(n)], and Var (8™ — ».8") are re-
placed by upper bounds on these quantities.

Thus, concave bounds, g, satisfying (3.3) can be determined implicitly by
applying Theorems 3.1 and 3.2 to obtain an inequality of the form (3.16). When
it is feasible to solve such a relation for g(v) only ‘“one value of ¥ at a time,”
a variety of more or less obvious methods can be used to approximate the D’s
and (where necessary) the ¢’s themselves in order to obtain M™* (and bounds on
the integrated risk).

‘We now give an explicit solution, g( - ), of the problem in (3.3) which depends
only upon two parameters (besides p itself): a (positive) lower bound on the

first moments of §', - -, S?, and an upper bound on the second moments of
S, ., 8%

TueorREM 3.3. If ES' 2 p > 0and E(S")’ S n< w forr=1,--- ,p(p = 1),
then

EN,(v) £ v/p+ v(v/u + 7/4)} + /2,

where v = (p + p* — )n'/p.
Proor. Applying Theorem 3.1 with 7(r) = 1 for all » and R empty, we obtain

(3.17) pEN,(v) £ Emin, S (No(v)) + [EN()F(p — D,

using the obvious estimate Var (S8' — 87) < 4.
Applying Theorem 3.2 with Wo(z) = 2°, we obtain A = EW(max, S") <
E D 2, (87)® £ pn and, hence,

(3.18) E min, S (N,(7)) = v + (o) [EN,(7)I.
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By (3.17) and (3.18), hEN,(v) = Y + (p + p' — D#'[EN ()]}, or, equiva-
lently, EN,(v) < v/u + 7[EN,(v)]}. The proof is completed by the obvious
manipulation of this last relation.

Of course, the crude bounds on A.and Var (8" — 8") used in obtaining (3.17)
can be improved if more information on S, - - - | S? is available. (The choice of
7(r) = 1 and », = 1 might be improved upon, also.) The chief interest of Theorem
3.3 stems from its usefulness in the general setting of Assumptions I-V. Proving
the existence of an upper bound on EN,(v) which depends only on w and 5 (for
fixed p, v) is an important step in the proof of (2.31) in (K-S) and, hence, in the
proof of Lemma 2.1. Using Theorem 3.3 with the Kiefer-Sacks argument, it is
sometimes possible to carry out the proof of Lemma 2.1 constructively; that is, to
obtain the 4,’s and V’s of Lemma 2.1 explicitly, and thus to construet an M*
satisfying Lemma 2.2 and bounds satisfying Theorem 2:1. This possibility hinges
on whether one has precise enough information about the functions (like A(w))
which appear in Assumptions I-V so that the Kiefer-Sacks compactness argu-
ments can be carried out constructively. (For common Koopman-Darmois
families, such as normal and exponential distributions, it is easy to verify that
this can be done.)

We have so far discussed the application of Theorem 3.1 only with R empty.
To use non-empty R’s, we need to estimate E sup,zo [S"”(n) — §"(n)]. Theorem
4.1 in Spitzer, (1956) states that

(3.19) B supazo [S"7(n) — 8(n)] = 2254 (1/K)EIS (k) — 8'(k)]*

When good estimates of E[S™ (k) — §"(k)]* can be constructed and the result-
ing infinite series can be summed, (3.19) yields an estimate, as desired (for
instance, when 8™ and 8 are exponentially distributed). If S — S hasa
moment generating function, then one can use the estimate

(3.20) E supazo[S”(n) — S'(n)] < 1/sup {¢| Eexp [t(S” — 8] < 1};
(3.20) follows immediately from the well-known relation

Plsupazo (S (n) — §'(n)) 2 u > 0]
< exp [(—u) sup {t| E exp [{(S™” — 8] = 1}]

which is derived from the fundamental identity of Wald for sequential analysis.
Note that if the moment generating function that appears in the right hand
member of (3.20) exists for some positive ¢, then the supremum indicated is
positive, since E exp [t(S™” — 8] = 1 + tE(S” — 8") + o(t) as t — 0+
while E(§” — 8") < 0 by assumption. We point out that if the moment generat-
ing function exists for ¢ = ¢, > 0, it exists for all positive ¢ = { ; also, the value of
the moment generating function for ¢ equal to this supremum is not necessarily
one (see Bahadur and Rao (1960)), although it is indeed one if the function is con-
tinuous. When necessary, a sufficiently close upper bound on the moment generat-
mg function can be used to find a positive value of ¢, say # , for which
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E exp [to(S™™ — 87)] < 1, so that 1/ is an upper bound on the left hand member
of (3.20).

For problems involving normal distributions (with known variance) a very
good estimate of E supazo [S"(n) — 87(n)] is available because 8" (n) — S"(n)
in the nth partial sum of normal random variables. For a Weiner process, X(¢),
with negative mean drift per unit time, u, and variance per unit time, ¢°,

E sup;0 X(t) = o°/2(—p),
by a result of Doob (1949). It follows easily that
(3.21)  E sup,xo [S7(n) — 87(n)] < Var (8 — 87)/2B(S" — §'),

when 8™ — §" is normally distributed.

An upper bound due to Wald (1947) can often be used, as an alternative to
Theorem 3.2, to estimate E min, S'(N,(v)). We shall next see that, when the
right-hand side of (3.22) is finite, it is smaller for large v than any estimate ob-
tained by Theorem 3.2 for p = 1; and for all v it provides the best estimate known
to the author for use in the examples given below.

Wald’s bound for the case p = 1is given by

(3.22) E[S'(Ni(v)) — 7] < supeso E[S" — k| S" > K.

Note that the right hand side is independent of v. For p = 1, Theorem 3.2 yields
an estimate of the form

(3.23) E[S'(N:(v)) — vl £ Wo (AEN:(y) — wy).

Using the hypotheses of Theorem 3.2 and applying Jensen’s inequality, it is easy
to show that the right-hand side of (3.23) approaches « as v becomes large.
Hence, (3.22) gives a better estimate of ES'(Ny(v)) than (3.23) for sufficiently
large v, provided the supremum in (3.22) is finite. A sufficient condition for this
supremum to be finite is given below. However, even when it is finite, Wald’s
bound is often not computable and is sometimes a very poor bound; for instance,
in the case of distributions of 8' having large “gaps.”

In this connection, a very interesting result is Theorem 9 of Karlin’s paper on
the renewal equation (1955), which serves to evaluate the limit as y — o of the
quantity on the left-hand side of (3.22) in terms of the first two moments of the
non-negative “ladder variable” S8'(N1(0)) (both of which are finite if the third
moment of §" is finite). It follows easily from the existence of the limit as y — o
that E[S'(Ni(v)) — #] is bounded above uniformly in v. Unfortunately, an ex-
plicit bound does not seem to be obtainable from Karlin’s proof of Theorem 9.

A sufficient condition for Wald’s bound to be finite and a means of approximat-
ing it when direct computation is impossible can be given in terms of the so-called
“hazard rate,” h(z)(1 — ®(x)) ™", where & is the distribution function of S* and
h is its (Lebesgue) density function. By a straightforward computation,

(3.24) T Zha)1—32))'=2T">0 for 22 k=0,
then 1/T < E[S' — k|8 > k] < 1/T*
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From (3.24), it is easy to show that Wald’s bound is finite if
lim inf A(z)(1 — &(z))™" (as z — « ) is positive.

The above discussion of Wald’s bound applies to the case p = 1 only. For
Koopman-Darmois families, only the cases p = 1 and p = 2 need be considered,
as already shown; and we mow show how the problem of estlmatlng
E min, §'(Ns(v)) (r = 1,2) for such families can be approached by using Wald’s
bound for the case p = 1.

By an argument just like that required for (3.22),

(3.25) Elmin,—12 8"(Na(v)) — 4]
< €8S SUP((x,m) imax(x,myz0 Blmin (8" — K, 8 — R) [S' = K, §* = R]
where the essential sup is a restriction to pairs (K, R) for which
P{S' =z K, 8 = R} > 0.
Now, for K = 0, we have, for some R depending on R,
Emin (8' — K,$ —R) |8z K, 2R < ES'— K|S =2 K, S = R]
=ES -K|SzK S <R <ES -K|S§ = K],
where the equality holds because 8° = R and S§' £ R are identical events, for
some R depending on R (in the spec1al case p = 2 > for K-D families, it is clear
from (3.2) and (3.5) that 8" and S* are monotone in the observed variable X, one
increasing and the other decreasing). The restriction to pairs for which
P{S' = K, 8 = R} > 0 insures that R < K.
Using the above and a similar estimate for B = 0, we obtain
€8S SUP{(x,r) |max(K,R) =0} E[mln (S —_ K, S2 - R) I Sl é K, Sz g R]
< maX,—1,s SUpxzo E[S" — K| 8" = K],

and, by (3.25),
(3.26) E min,—128 (No(y)) < v + max,_izsupx0E[S" — K|S = K].
(3.26) is used in thé examples involving normal distributions discussed below.

4, Examples and further results. We now apply Theorem 3.1 to obtain an
M* satisfying Lemma 2.2 in several problems involving normal distributions. In a
testing problem concerning the mean of a normal distribution with known
variance, the densities (with respect to Lebesgue measure) form a Koopman-
Darmois family. Therefore, the argument leading to (3.5) shows that only the
casesp = 1 and p = 2 of the problem stated in (3.3) need be considered, provided
the parameter space, ©, is finite (no matter how many decisions, d, are allowed).

Suppose f1 and f2 are normal densities with means p; and us, respectively, and
common variance o”. If f; is the (true) density of the (observed) random variable
X, then log fi(X) — log fo(X) is normally distributed with mean « and variance
234, where & = () (1 — p2)*/o”. Thus, we are led to consider the following prob-

lems.
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ProsrLEM 1. Find g(v) satisfying (3.3) when p = 1 and §' is normal with
mean « and variance 2a (a > 0).

ProsLEM II. Find g(v) satisfying (3.3) when p = 2, 8" is normal with mean
o and variance 2o (a > 0), and 8* = 8 + (8/a)(a — §), where 8 = a.

The relationship between S" and $° stated in Problem II is a direct consequence
of the definition of S"(n) in (3.2).

Problem I can be solved by using Wald’s bound (relation (3.22)), which gives
(Wald (1947), p. 180),

(41) ag(y) = v + &a), where &(a) = a 4+ (22)'6((2/2)))/8((a/2)"),

and ¢ and ® are the standard normal density function and distribution function,
respectively. (No choice of Wy(-) in Theorem 3.2 known to the author yields a
solution to Problem I which is smaller than that given in (4.1) for any v = 0.)

From Theorem 3.1 and (3.26), we obtain the following two solutions of
Problem II:

(4.2) ag(y) =v+Ea) + (14+)/1 =), if v=0a/8<1,
and
(43) ag(y) = v + &a) + 31 + )’
+ (1 + N /2(y + &) + 31+ 5D}

where » = o/B and £(«) is as defined in (4.1). Relation (3.21) is used to obtain
the final term in (4.2), while (4.3) comes from the obvious manipulation of
(3.6) where B = {2} and R is empty, r(2) = 1, and »» = » = a/f. In applying
(3.26) to obtain the £(«) term in (4.2) and (4.3), it is necessary to observe that
£(a) < £(B);thatis, £( ) is increasing in « (in fact (20) ¥ () isincreasing in
by the calculation on pp. 168-169 of Wald (1947)).

The solution given in (4.2) applies to Problem IT only when o < 8. When it
applies, (4.2) is clearly smaller for large v than (4.3). (In fact, if « = %, then for
sufficiently small », depending on «, (4.2) is smaller than (4.3) for all v). How-
ever, for a wide range of values of « and », it turns out that no disadvantage is
incurred (i.e. the computed M * is no larger) if one uses the bound in (4.3) for
all v. An explanation of this phenomenon is given in the discussion following
Example 4.

To keep the number of numerical examples small, we will consider only prob-
lems where Q contains three points. (The numerical results do not change dra-
matically as the number of points in @ and the number of decisions, d, is in-
creased.) Specifically, we consider the following two problems.

Two-decision Problem. Given three normal distributions with unit variance and
means u, 0, —u (1 > 0), decision 1 is correct when u or 0 is the true mean and
decision 2 is correct when —gu or 0 is the true mean. The loss is zero for correct
decisions and one for incorrect decisions.

.+ Three-decision Problem. Given three normal distributions with unit variance
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and means 1,0, uz (u2 < 0 < w £ —us), decisions 1, 2, and 3 are correct for the
true values p1, 0, pe, respectively. The loss is ““zero-one,” as in the two-decision
problem.

Exampre 1. (Two-decision Problem; u = 1). It is easy to verify that for both
decisions (thatis, ¢ = 1,2) it is sufficient that {g;|j & J (%)} be taken as {g1, g2 , g2}
where g, is given by (4.1) for « = 3 and g. is given by (4.1) for « = 2. Hence,

suffice (the decimals having been rounded off upwards). We obtain Dy = D, =
3.435. The choice Q@ = 2 can easily be shown to yield the smallest M * satisfying
Lemma 2.2. For this choice of Q, it turns out to be sufficient that M ™ satisfy

M* = 2log (M*/2) + 5.435.

The solution of this equation is slightly smaller than 8.3 so that Lemma. 2.2 is
satisfied for M* = 8.3.

It is evident upon examination of (2.21) and (2.13) that if M™ is obtained
from (2.13) for @ = Q™ and then (2.21) is used to obtain M (depending on Q)
satisfying Theorem 2.1, then the question as to which @ gives the smallest M/
in Theorem 2.1 can be answered as follows. The choice Q = M* gives M = M*
(and so does the choice @ = Q*); the choice Q@ = 1 gives

(4.4:) M = max;-i,....d [Dq, + g’(log M*)].

The smallest M is the smaller of M* and the M given in (4.4).

For the problem in Example 1, the choice @ = 1 gives the smallest M ; for this
Q, M = 7.7 satisfies Theorem 2.1. (For the same problem with arbitrary u = 2/e,
Q = 1 gives the smallest M; for p < 2/e, Q = 2/u’ gives the smallest M/ and
Q = 1 does not.)

ExampLE 2. (Wiener process, two decisions). Suppose that in the two-decision
problem the three normal distributions are replaced by the corresponding (in the
obvious sense) Weiner processes and the experimenter observes X () contin-
uously from ¢ = 0, stopping whenever he chooses. Then the entire decision prob-
lem and all the results above can be formulated with only trivial changes, and all
the same results hold, with one exception. The bounds given in (2.16) and (2.21)
for @ = 1 need no longer apply and we must instead use the bounds given for
1 < Q < M™ This change is necessary because the argument used to prove
(2.16) for @ = 1 relies on the trivial observation that no Bayes procedure con-
tinues sampling when the a posteriors risk is smaller than c; but this breaks down
for the Wiener process problem.

The Wiener process version of the problem treated in Example 1 is of interest
because one can use in place of (3.27) the exact relation aEN1(y) = v, so that

gi(y) = 2v and go(v) = 3v

suffice for the case p = 1 considered in Example 1. Carrying out the same kind
of computations as were used above, we find D; = D, < 1.838, and for the (still
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preferable) choice @ = 2, M™* is the solution of
M* = 2log (M*/2) + 3.838.

The solution of this equation is slightly smaller than 6.1, which is not a very great
reduction of the value M* = 8.3 obtained in Example 1.

ExampLE 3. (Three-decision Problem; 3 = 1, uy» = —32). For all three de-
cisions (that is, ¢ = 1, 2, 3) it is sufficient that the set {g;|j ¢ J(4)} be taken as
{g1, 92, gs} where g1 and g; are given by (4.1) for « = % and « = §, respectively,
and g; is given by (4.3) fora = } and» = §. We use

gi(y) = 2y 4+ 2.019, g(v) = $v + 1.519,
gs(v) = 2v + 3.408 + (% + 7.536)%.
Calculation yields Ds = 7.118. (D1, D; need not be calculated, since they are

smaller than D; and cl;arly do not play any genuine role in determining M ™.)
The choice @ = 2.7 is close to the value of @ for which (2.13) yields the smallest

M*. For Q = 2.7, it is easily determined that /™ need only satisfy
M* = 21log (M*/2.7) + (52 log (M*/2.7) + 7.536)F + 7.072.

The solution of this equation is slightly smaller than 14.6.

ExampLE 4. (Three-decision Problem; py = 1, u» = —1). As above, proper
selection of the sets of indices required in the proof of Lemma 2.1 results in
{gi|7€J (%)} equal to {g1, g2, gs} (for ¢ = 1, 2, 3), where for this example g,
and g» are both given by (4.1) for @ = 4, and g¢s is given by (4.3) for o = % and
v = 1. We have

91(v) = ga(v) = 2y + 2.019,
gs(y) = 2v + 4.019 + (8y + 12.076)%.
Calculation yields D; < 9.027, and for @ = 2.8 we obtain
M* = 2log (M*/2.8) + (8 log (M*/2.8) + 12.076)* + 8.352.

The solution of this equation is slightly smaller than 17.2.

It is interesting to note that in Example 3 the bound g;(~) obtained from (4.3)
yields the same smallest M ™* (over all possible choices of Q) as the bound obtained
by taking the minimum of the right-hand members of (4.2) and (4.3). This
phenomenon can be made clearer as follows.

For the problem in Example 3, an easy computation shows that thesmallest
value, 7o, for which the bound in (4.2) is not larger than the one in (4.3) is at
least ten. On the other hand, one can easily show in this problem that only values
of v smaller than four “count” in comparing gs;(y) with an alternative bound, in
the following precise sense. Any alternative concave bound which is larger than

“gs(7y) for all v = 4 is larger for all v than the minimum of g;(v) and (y — 4)/a
"4 gs(4), by an argument using the concavity of the g’s and the lower bound on
ENy(v) from Wald’s equation, v/a. Now, with the other bounds ¢, and g.
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used in the example, it is easy to show that the M ™ (for the best choice of Q)
obtained using gs(v) is as small as the M ™ obtained (for any Q) by using the
minimum of g;(v) and (v — 4)/a + ¢g3(4). Hence, only a concave bound which is
smaller than gs(vv) for some v in the interval [0, 4] (where 4 is a convenient
choice, not the smallest possible) can “be better than gs(v),” as far as determining
a smaller M™* is concerned.

More generally, for “competing” concave bounds satisfying (3.3), it is the
size of the bounds for small 4 that determines their value in yielding small M in
Theorem 2.1. Indeed, the bounds obtainable from Theorem 3.1 are often poor for
large v, and there is a quite different approach to the construction of g(v)’s
which yields bounds that are substantially better for large v, but not as valuable
for Theorem 2.1. This approach is based upon the inequality

EN,(v) < ENi(v) + ENy(0) 2.1 PIS\(n) > v Z mins §'(n)),

which can be proved by an argument using so-called “ladder variables.” The
terms in the infinite series can be estimated by exponential bounds, assuming S'
has a moment generating function in a neighborhood of zero. When ES' < ES?,
this approach can be used to show that EN,(v) — ENi(v) approaches zero
exponentially as v becomes large.

The numerical results we have given imply in a simple way numerical results
for a very wide class of problems involving three normal distributions with equal
variances. It is clear from (2.13) and the argument following it that if (2.13)
is used (for some Q) to construct an M™ satisfying Lemma 2.2, then that M*
is determined by the concave g/’s (jeuZ(7)), assuming L and b are fixed.
Furthermore, multiplying all the g;’s by the same constant multiplies the smallest
M™ (over all possible @) by that constant. (The value of  yielding the smallest
M* gets multiplied by the same constant.)

Now, we can apply this observation by noting that the bounds in (4.1) and
(4.3) have the property that ag(vy) is monotone increasing in « for fixed v and ».
(It was shown above that £(«) is monotone increasing.) Considering the problem
of Example 1 for p = po < 1, we reason as follows. For p = po, we have a = o
= 1ug’ < % (which is the value of « for » = 1) and, hence, by the monotonicity
just observed, the bound in (4.1) for @ = « is smaller than 1/2a, times the
bound for & = %; therefore, 1/2ay times the bounds used for p = 1 can be used in
(2.13) to determine M ™. Doing this, one obtains M ™ (the smallest value, for all
Q) equal to (2ao) ™" times the (smallest) M * for the problem with y = 1; that is,
M* = 8.3/u¢ suffices.

Example 1 can be extended still further, to the case of means uy < ps < us of
normal distributions with common variance, o°, satisfying pus — pe < p2 — m
and pz — ps < o (or, similarly, ys — 1 < ps — pe and ps — p = o). For this prob-
lem, we have o = (s — p2)?/20° and B = (u2 — m1)?/2¢°, and, hence, « < %.
Besides the monotonicity of ag(y) in (4.1) and (4.3) discussed in the last para-
graph, we need to observe that g(v) of (4.1) is decreasing in & and that ag(y)
of (4.3) is increasing in » for fixed « and v, and is thus, decreasing in 8. Using
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these observations together with the remarks about (2.13) given above, it is
straightforward to derive the bound M™* = 8.3/2a = 8.3¢°/(us — ps2)? from the
fact that M™* = 8.3 suffices when o = 8 = 1.

For this same problem (with us — ps < p2 — w and p3 — w2 < o) one can, of
course, use (4.1) and (4.3) directly to compute a sufficient M ™, as was done in
Example 1. It is evident that the M ™ so obtained will be smaller than the value
8.30%/(us — p2)’, derived by the “short-cut” method. In case us — ps = ps — p1,
it is easy to see, however, that one cannot obtain in this manner an M™* smaller
than 6.1 ¢°/(us — pe)®; the reason for this is that the bounds in (4.1) and (4.3)
are larger than the corresponding bounds for the Wiener process problem in-
volving the same py, p2, ps, and o, and the latter yield M* = 6.1 ¢°/(us — m)®
by a straightforward extension of Example 2.

A simple short-cut derivation of a sufficient M * for Lemma 2.2 can be made, by
means of similar arguments, to extend Examples 3 and 4. Extending Example 3
to the Three-decision Problem with normal means u; < ps < pz and common
variance, o>, we find that M* = (17.2)¢°/(us — ps)’ is sufficient for Lemma 2.2
provided ps — gz < wz — w1 and pg — pp < 0. Similarly, for Example 4, M* =

(14.6) o*/(ps — pa)® suffices whenever ps — pz < (3)(p2 — 1) and ps — ps < 0.
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