FINDING THE SIZE OF A FINITE POPULATION

By D. A. Daruing! AND HERBERT ROBBINS?
University of California, Berkeley

1. Introduction. There are fixed sample size methods for estimating the
unknown size N of a finite population by tagging the elements of a first sample
and then counting the number of tagged elements of a second sample [1, p. 43].
Less well known are sequential methods [2], which have the advantage that the
total sample size automatically adjusts itself to the unknown N to assure a desired
accuracy of the estimate. All these methods only provide estimates for which the
relative error is likely to be small. Suppose, however, that we want Py
(estimate = N) =a = .99, say, no matter what the value N = 1,2, --- . How
can this be done?

If we take as our estimate of N the number of distinet elements actually ob-
served, the problem is one of finding a stopping rule such that the probability of
having observed all N elements by the time we stop is = aforall N = 1. A concept
of asymptotic efficiency may be introduced by comparing as N — « the expected
sample size for any such rule with the fixed sample size necessary to observe all N
elements with probability a. We give a procedure which is asymptotically efficient
in this sense. We do not discuss the problem of finding a procedure which mini-
mizes the Bayes expectation of the sample size for a given prior distribution of N.

Before going on, the reader is invited to consider the following problem.
Sample one element at a time with replacement, tagging each element observed
so that it can be recognized if it appears again. Choose some large integer M ,and
stop sampling when for the first time a run of M consecutive tagged elements
occurs; estimate N to be the total number of distinct elements observed. Can we
choose M so large that Py (estimate = N) =2.99 forall N = 1,2, --- ? (Answer
at end of paper.)

2. A procedure based on individual waiting times. An urn contains N white
balls (N = 1, 2, ---). We repeatedly draw a ball at random, observe its color,
and replace it by a black ball. Eventually all N white balls will have been drawn
and the urn will contain only black balls. The probability that this will occur at
or before the nth draw is [1, pp. 92-93]

(1) Pyn = 2i- (1)@ = i/N)",
and if N, n — o so that Ne ™" —\,0 < N\ < o, then
(2) Pyn—€

For any fixed 0 < a < 1 the smallest n = n(N, a) such that Py, = « can be
found from (1) by trial and error. For large N this is tedious, but it follows from
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(2) that n = NlogN + ¢N + o(N), where c is determined by the equation

¢ ° = a. Equivalently, if we denote by Yy the number of the draw on which the
last (Nth) white ball is drawn, then for any — o < ¢ < o,
(3) Py((Yy — N1logN)/N £¢) ¢ as N— .

Suppose now that N is unknown and that we wish to find a rule fordeciding
when to stop drawing such that fora given 0 < a < 1,

(4) Px(all N white balls drawn by the time we stop) =a (N = 1).

No fixed sample size will do this, so we must look for a sequential procedure.
Let Y, denote the number of the draw on which the nth white ball appears

(n=1,---,N);thus Y1 = 1, and we put Yo = 0, Yv;u = « by convention.
Define the waiting times
(5) Xn=Yn+1'_Yn (n=0y"'1N)7
so Xo = 1 and Xy = . The random variables X;, - - - , Xy_; are independent,
with the geometric distributions
(6) Py(X. >j) = (n/N)’ (7=0,1,---),
and
(7) Ex(X,) = N/(N — n), Vary (X,) = aN/(N — n)~

Let (b,) be any sequence of positive integers, and define B, to be the event
X.>b,(n=1,---,N).Since Xy = o, Byiscertain. Let J = first » = 1 such

that B, occurs; then 1 < J =< N. Suppose we agree to stop drawing as soon as
B, occurs. All N white balls will have been drawn by the time we stop if and only
if J = N. Hence the left hand side of (4) equals

(8) Px(J=N)=Px(Ni'B.))=]I[{"P(X.<b,) =[]0 {1 — (n/N)™}.

It is clear that we can satisfy (4) by choosing the b, properly. One way is the
following. Define b;* = smallest integer b, such that

1— 3 = o
Then (4) holds for N = 2 (and for N = 1 no matter what the sequence (b,)).
If b,*, - -+, b} have been defined, set b;* = smallest integer b, such that

IS0 = (/G + 1)1 = /G + 1)) 2 e

The sequence (b,*) gives a “step-wise minimal” solution of the inequalities

(9) Py(J =N)=I[05(1 — (w/N)"} 2 @ (N =2,3,-).
(It is not uniformly minimal, since if (b,) satisfies (9) then we can increase
by, ---, bj sufficiently so that a smaller b; will still satisfy (9).) Although the

b,y are not given by an explicit formula they can be computed numerically for

any given a.
Instead of doing this we shall find a lower bound for the left hand side of (9)



1394 D. A. DARLING AND H. ROBBINS

for the particular sequence
(10) b, = [cn] + 1 (n=1,2--),

where ¢ is a suitable positive constant. We shall show that if ¢ is chosen large
enough then (9) holds, and shall find the limit of Py(J = N) as N — .
For the sequence (10) let 8 be any constant 0 < 8 < 1. Then

(11) Py(J = N)
= Ilisnzev {1 — (0/N)"} - Tovcngwa {1 — (n/N)™ = Qu-Ru >
where
(12) Qv = Jlignzen(1 — 87) 2 II 52a(1 — ™),
and since log (1 — z) < —z,
Ry = [Licica-pn
2 [Licicapw

(1= (1 — i/N)ee-1
{1

(13) = Jlicicapn {1 —
{1
{1

— (1 = i/N)*™?)

ec (N—13) log(1—3/N) }

_ e—c'i(l—z'/N)}

2 JLicica-an
Ilicica-pn
Defining for 0 < 2 < 1 the function
(14) o) =JIF1-2"21-27a"=1-2/(1-2)>1 as z—0,

we have the uniform lower bound

_ e—ciﬂ} ; HZO=1 (1 _ e—ciﬂ).

1%

(15) Py(J = N) 2 o(8)-¢(e*) (N=23,--).
In particular, if we choose 8 to be the root 8o = 0.56 - - - of the equation

(16) g=c¢"

then

(17) Py(J = N) 2 ().

Choosing ¢ to satisfy ¢’(¢”*°) = a it follows that (9) holds.
We can improve (15) somewhat for large N. Write (13) in the form

(18) log By = Z'?;l aiN

where

(19) asy = log{l — (1 — ¢/N)CY™™ for 1 =4 < (1 — B)N,
=0 fort = (1 — B)N.

For any fixedz = 1,2, - -
(209 limy,e aixy = log (1 — €™%) = a;, say,
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and for 1 £ 7 < (1 — B)N we have as in (13),
(21) 0 = a;x = log{l — (1 — ¢/N)*®?}
2 log (1 — ¢ 7)) z log (1 — ¢°%),
so this holds for all 7, N, and
(22) Dialog (1 — ¢®) = logp(e™®) > — o,
By the dominated convergence theorem,
(23) liMyow Ry = liMyag exp [D i aon] = exp [Drm ad
= J[fa (1 = ) = o(e™).
Since by (12), ¢(8°)Ry £ Px(J = N) = Ry, it follows that
o(B)e(e’) = liminfy.o Py(J = N) £ lim supwew Py(J = N) £ (™),

and since 8 can be arbitrarily near 0, and ¢(8°) — 1 as § — 0,

(24) limy. Py(J = N) = o(e°).
Thus from (17),
(25) ¢(e®) S Py(J =N)—>¢(e°) as N— w.

For any ¢ > 0, if we increase the first j = j(¢) terms of (10) we can clearly
strengthen (25) to read

(26) p(6°) —e = Py(J =N)—>g(c’) as N— =,
To see how efficient this procedure is, let us look at its sample size
(27) S=Xo+  +Xoa+bb, =X+ -+ 4+ Xy1 + by.

From (7),
(28) Ex(8) =N(1+3+---+1/N) +cN +1,
which is somewhat greater than the fixed sample size n = [N log N 4 ¢N] for
which we have seen that Py, — ¢ . Now

0,<ee?)<l—e°"<e” <1,
80 (26) shows that for N — <« the probability of having drawn all the white balls
by the sequential procedure is somewhat less than the corresponding probability

for the fixed sample size n = [N log N + cN]. Of course, the latter procedure
requires a knowledge of N; moreover, the ratio of the two error probabilities is

small for large values of c;
(29) (1—=e")/(1 —p(e®)) =1 as ¢— .

“Nevertheless, the fact remains that the sequential procedure is somewhat in-
efficient for any fixed,c and large values of N. We therefore ask, is there any
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sequential procedure such that for fixed — < ¢ < oo,
(30) Sample size < N log N + cN,
Py (all N white balls drawn by the time we stop) — e “as N — o?
An affirmative answer is given'in. the next section.

3. An asymptotically efficient procedure based on cumulative waiting times.
We modify the sequential procedure of the previous section as follows. Let (a,)
be a sequence of positive constants, and define 4, to be the event that YV, >
an(n=1,-+-,N).Since Yyy1u = », Ayis certain. Let I = first n = 1 such that
A, occurs. Then 1 < I < N. We agree to stop as soon as A occurs. Then (cf.
(8))

Py (all N white balls drawn by the time we stop) = Px(I = N)
(31) = Py(N3=14.) = Po(Nr=t (Yo < an))
= Pa(Nn=i(Xo 4 -+ + Xa S aa)).

As before, we could define a “step-wise minimal” sequence (a,") such that the
expression (31) is 2« forevery N = 2, but since the events A, are not independ-
ent the explicit computation of the a,* is difficult. Instead, as before, we shall
choose an explicit sequence (a,) and estimate the value of (31) when N is large.
Our sequence is the following. Let ¢ be any finite constant, let n* = smallest n
such that n = ¢, and define

(32) an=n-+1 for n=1,---, 0" =1,

nlogn + cen for n = n*.

I

It is clear that for this procedure the sample size is always Say (= N log N
+ ¢N for N = n™). And we shall prove that Py(I = N) > ¢ * “as N — .
(It will be seen from the proof that as in (26) for any € > 0 we can increase the
first 7 = j(e) values of (a.) so as to make

€ —e<Py(I=N)—e®° as N— ».)
It is easy to check that

(33) n — Gp1 = 1 forall n 2 2,

logn 4+ ¢ for n = n¥

[\1\%

and that the random variab es

(34) wn = Xn-a/N — 1/n (n=1,---,N)
are independent with

(35) Ex(w,) =0, Vary (w,) = 1/0° — 1/Nn < 1/n’.

i3y Kolmogorov’s inequality, for any d > 0,
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(36) Py(wr+ -+ +w, £ —dforsomen =1, ---,N)
< (TN /d = »*/6d

We have i
37 A =(Xo+ -+ + Xné ) = (Wyn + -+ + wy £ by),
by = 0./N — (N —n)" + --- + 1/N).
And forn = 2,
(38) Ayan (Wi - 4w Z by — bua) C Agy.

Now for N = n + n*
byt — by—n = ((ay1 — av—)/N) + (L +:3+ -+ + 1/(n — 1))
(39) =(m—1)1lgN/N—-(1+3%+ - +1/(n —1))
+cn — 1)/N + f(1 — n/N) — f(1 — 1/N),
where
(40) 0<f(z) = —zlogz<e' for 0 <z <1.
Hence for N = n + n%,
(41) bya — by S nlogN/N —logn+8 (B=|c|+e?).
Put
(42) p=d+p8+1, k= é".
Then as N — «,
klogN/N —logk + 88— —d — 1,
(N(1 — p/log N)/N) log N — log (N(1 — p/log N)) + 8 — —d — 1,
and for N = Ng4,
(43) byr — byn £ —d for k£ £ n £ N(1 — p/log N).

Hence from (38) and (36),
Py(Ay_n forall 1 <n < N(1 — p/logN))
(44) = Py(Ayan - nAyy)
—Pyx(wr 4+ -+ + wp £ —d for somen =1, ---, N)
> Py(Ayan - nAyy) — 72/6d%

But from (3),as N — «
(45) Py(Ay-1n -+ nAyy) Z Po(Yy < ays)

” = Pa((Yy — N log N)/N < ((ax—e — N log N)/N) — ¢,
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since as N — o
(ay— — NlogN)/N = (N — k) log (N — k) —c¢(N — k) — NlogN)/N
= (1 — k/N) log (1 — k/N) + (1 — k/N) log N
— log N — ¢(1 — k/N) - —c.
Hence
(46) lim infy. Py(Ay_nforall 1 £n £ N(1 — p/logN)) = ¢ — =*/6d".
We shall show in a moment that
(47) limy.e Py(A, foralll £ n < pN/log N) = 1.
It will then follow from (44) and (45) that
(48)  liminfy., Py(A4, foralll =n =N — 1) = ¢° ° — °/6d
Since d can be arbitrarily large, (48) holds without the last term. But
(49) Py(A, foralll £n £ N — 1) £ Py(dja) > e °
by (45) for k = 1. Hence
(50) limy.., Pw(A, foralll £n < N — 1) = limy.o Px(I = N) = ¢ °.
It remains only to prove (47). Now setting @y = 1
Py(A, foralll S n < pN/logN) = Py(Niznzontoan (Xo+ -+ + Xn < an))
2 PN(nlgng(pN/logN) (Xn £ G0 — 1))
= Jlisnzonnom {1 — (n/N)* -1}
2 1 — Dignzontony (n/N)™ 7,
and by (33),as N — «
D iznzwiiosy (/N)™ 1 < 3% o cwijtogy (n/N) = 1/(log N)* — 0,
2 witogn<nzanytoy (1/N)™ 1 = 3 v jtogn<n spnjtogy (P/log N) o5+
(P/10g N)® D> witony '8P 08 08
(p/log N)*- [ (da/") — 0,

lIA

IIA

which completes the proof of (47).
The answer to the question in Section 1 is no; for any M,

limy.. Py(estimate = N') = 0.
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