LOWER BOUNDS FOR AVERAGE SAMPLE NUMBER OF SEQUENTIAL
MULTIHYPOTHESIS TESTS!

By Gorpon Simons’

Unaversity of Minnesola

0. Summary. Sections 1-5 are concerned with finding lower bounds for the
expected sample sizes of sequential multihypothesis tests in the presence of a
constraining error matrix. We consider K simple hypotheses corresponding to K
density functions f;,% = 1, - -+ , K, and fix all of the entries of the K X K error
matrix A = (as;), where a;; = P [accepting f; | fs true]. Lower bounds are found
for E(N |f), first, when f is one of the K densities, and then, for a K + 1st
density fo . In Section 6, lower bounds are found when the error constraints aris-
ing from the error matrix are relaxed and/or modified. Section 7 finds lower
bounds for average sample size when the test is not constrained by an error matrix
but rather by a lower bound for the probability of a “correct decision” as a func-
tion of the true state of nature.

The reader will find that many of the results of this paper extend immediately
to a decision theory context with a finite number (not necessarily K) of actions
or terminal decisions, with a;; denoting the probability of the jth action given
density f; .

1. Introduction. Let X;, Xz, -+ be a sequence of independent random
variables having a common density function f with respect to some o-finite
measure g. Consider a test of hypotheses where H, is the hypothesis that f = f, ,
y=1,---,K, with K = 2. Let a;; = P [accepting H; | H;]. When it is needed in
the discussion, we will let f, be a K 4+ 1st density with respect to u. Let N denote
the (random) number of observations taken by the test. We are concerned with
finding lower bounds for E,(N) subject to the constraining error matrix A = (a.;)
under density f, ,» = 1, --- , Korv = 0.

The history of this problem is as follows: Frequently f is a density depending
on some parameter 6, so that f, corresponds to some density with parameter
6,,»=0,1,---, K. When K = 2, Wald’s sequential probability ratio test
(SPRT) for testing 6; against 6, with error probabilities oz, = « and am = 8,
minimizes E;(N) and Ey(N) (A. Wald and J. Wolfowitz [19]). However, in
practice, the true parameter may be a third value 8, and Eo(N) might be quite
large. For instance, if f is the normal density with mean 6, choosing
6 = (6, + 6:)/2 and sufficiently small « and 8, we can make Eo(N) for the
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SPRT exceed the sample size in the usual fixed sample size test. This unpleasant
situation has encouraged the development of other sequential tests such as a
“modified SPRT” given by T. W. Anderson [1]. The goal for such a test is to keep
E(N | 6) near the ASN of the SPRT when = 6; or 6, and as small as possible for
other 6’s or at least for the most “objectionable’ 6’s.

Clearly, a useful criterion for evaluating the performance of a sequential test
is to compare the ASN with a good theoretical lower bound for ASN. A favorable
comparison enhances both the test and the lower bound while an unfavorable
one is not conclusive. Anderson showed that his modified SPRT could produce a
favorable comparison.

The problem of developing theoretical lower bounds for ASN has been treated
rather satisfactorily for K = 2 by A. Wald [16] and W. Hoeffding ([7], [8]).
Wald showed that

(L1) E(N)z[(1 —a)In((1 —a)/B) + aln (a/(1 — OIS fiIn (fi/fe) dul™
and
(12) Exy(N)z [BIn(8/(1 —a)) + (1 —8)In((1 — B)/a)]lf foln (fo/f1) du] .

Wald’s proof is given for nonrandomized tests, but it extends to randomized
tests as well (see Lemmas 1 and 3 in Section 2).
When neither hypothesis is true, Hoeffding has given three different lower
bounds for ASN under f, . In his 1953 paper [7], he gave the lower bound
—ln[(l _ a)dﬂ(l-—d) + Dtd(]. _ B)(l_d)]
d [ foln (fo/fy) du + (1 = d) [foln (fo/fz) du

In his 1960 paper [8], he gave two lower bounds

(1.3) Eo(N) = supscaa

(14) E(N) 2z (1 —a— @)l — [min(fo,fi, ) dul”,

and

(1.5) Ey(N) z {[(+/4)" — ¢In(a + B)) — (7/4)}'/¢,

where

(1.6) ¢ = max ({1, §2), co = [ foln (fo/f:) du, 1=1,2,
and .

(1.7) 7 = [ (In(h/fi) — &1 + &) odu.

Sequential tests with three or more hypotheses may be evaluated by generaliz-
ing the previous results to K hypotheses. Wald’s lower bounds, (1.1) and (1.2),
extend for K hypotheses to the important bound

(1.8) E(N) = maxi<j<k.j= {2 0=t oty In (oin/0t)
A S (fi/f) dl ™, i=1,--- K.
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This bound leads to a disguised generalization of Hoeffding’s bound (1.3),
namely,

(1.9) Eo(N) = infy,; max;<j<x { D st by In (by/ein) [ foln (fo/f;) dul™},

where

(1.10) SEb,=1; b, >0, for »v=1,---,K.
Hoeffding’s bound (1.5) extends to
(1.11) EoN) = [(T* — RIn 8)} — TT"/R?

where R, S, and T are defined for subsets (size two or larger) of the first K posi-
tive integers. Let D be such a subset with » members; let C = {C;|i & D} be a
set, of » real numbers for which R

(1.12) 2upCi=0, 2uplCi=1;

and let ®(D) be the permutations of D with typical member ¢ (a »-dimensional
vector). Then

(1.13) R(D) = maxip [ foln (fo/f:) du,
(1.14) S(D) = D> % mingp ayj,

and

(1.15) T(D) = infe7(C)/2v(v — 2)),
where

7(C) = thei‘(D) 74(C),
with
75(C) = [ fo( Xiep Cpilln (fo/fs) — Boln (fo/f)])" dp.

Bound (1.11) is really several bounds when K > 2, one for each subset D.
To derive the bound we must make a regularity assumption. This will be given in
Section 5 when the bound is verified. Substantial improvement on Hoeffding’s
conditions may be noted. When the densities f; come from one of many families of
distributions (e.g. normal with common variance), a property, which we will call
pairwise minimizability, holds. Then we can avoid permutations and can re-
define R(D) and T(D) in an appropriate manner. These altered definitions fre-
quently lead to improved bounds from (1.11).

Presumably, there is a generalization of bound (1.4), but it is doubtful that
any generalization would be of much value in typical applications. For instance,
if f; is the density coming from a normal distribution N (6;, )i =0,1,2) and
6, < 6y, then bound (1.4) is a constant for all 6, in the interval [6; , 62] while the
graphs of bounds (1.3) and (1.5) bulge upward substantially over the same
interval. Another serious objection to bound (1.4) arises as follows. Let fo, f1, f2
be normal densities with means 0, —8, and & respectively and common variance.
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Then bound (1.4) is of order 6 while the other bounds ((1.3) and (1.5)) are
proportional to 8> and hence, are better for small 8. (The ASN at 6 = 0 for the
SPR;I‘ when testing 6 = — ¢ against § = § with fixed « and 8 is also proportional
to 8 °.)

Section 2 presents lemmas which-are used in subsequent sections. Sections 3, 4
and 5 verify and discuss bounds (1.8), (1.9), and (1.11) respectively.

Bounds (1.8), (1.9), and (1.11) are predicated on complete control of an error
matrix. For given error matrix, a sequential test usually can be found by intro-
ducing extensive randomization. (See Theorem 4.2 of Section 4.) This being
objectionable, typical applications are based on error matrices which are only
partially controlled. Section 6 discusses this problem and finds some additional
lower bounds for ASN. A table compares one of these lower bounds with the actual
ASN of a three hypothesis test which the author [12], [13] has investigated.

Authors such as M. Sobel and A. Wald [14] as well as E. Paulson [10] have
adopted a ‘“correct decision” approach to multihypothesis testing rather than use
the error matrix approach. Briefly, the parameter space is initially partitioned
into K disjoint sets S;, - -+, Sk corresponding to K hypotheses Hy, ---, Hy .
Then “indifference regions” are introduced which have the effect of increasing the
sets to new overlapping ones 8y, - - - , Sx’. A test terminates in acceptance of one
of the hypotheses H; . One makes a “correct decision” if S; contain the true
state 6. Finally, one insists that the probability of a correct decision must be as
large as some value P* for all 0 in the parameter space. P* may depend on 6.
Section 7 finds lower bounds for ASN in this case and makes some numerical
comparisons with the three hypothesis test given by Sobel and Wald [14].

2. Lemmas for subsequent section. Lemmas 1, 2, and 3 are lemmas involv-
ing stopping variables. By the term stopping variable, with respect to a sequence
of random variables X1, X5, - - -, we will mean a random variable N defined on
the non-negative integers such that the occurrence of the event [N = n] depends
at most on X;,---, X, and on a randomization based on the values of
Xy, -, X,forn =1,2, ---, and on none of the X’s forn = 0.

Lemma 17 Let Xy, Xo, -+, be a sequence of independent random variables
identically distributed as Z and let N be a stopping variable (with respect to the X’s).
If E(N) < » and E(|Z|) < =, then

(2.1) E(Zy) = E(N)E(Z),
where
(2.2) Zn= 21 X;.

3 (2.1) has been proven under various conditions and in various ways, e.g. Wald ([15],
[16]), Blackwell [2], Blackwell and Girshick [3], and Doob [6], pp. 350-351. None of these
considered N as randomized. Kolmogorov and Prohorov [9] have a version of (2.1) which
contains the case of a randomized stopping variable.

-7
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Lemma 2. Let Xy, X,, -+, be a sequence of independent random variables
identically distributed as Z and let N be a stopping variable (with respect to the X’s).
Let B(Z) = 0. If E(N) < « and E(Z") < o, then

(2.3) E(Zy') = E(N)E(Z")
where o
(2.4) Zn= 21 Xi.

We can modify proofs by Doob [6] and Chow-Robbins-Teicher [5] to prove
Lemmas 1 and 2 respectively. Both proofs use martingales which can easily be
modified to include randomization.

Lemma 3. Let Xy, X2, .-+ be a sequence of random variables. Let H; be the
hypothesis that Xy , - -+ , X, have joint density fux with respect to some measure .
forn =1,2,--- ,and fori = 1,---, K. Let N be the total number of observations
(a stopping variable) in any sequential closed (under all hypotheses) sampling
scheme. Let E;'(-) denote expectation under H; conditional on terminal acceptance
of H,fori,v =1, ---, K. Assume as > 0. Then

(25) Ei(fin/fn) S ajp/aw for ¢,5,v =1, -+, K(o = Py laccepting Hj]):

Equality holds if fin = 0 whenever fin, = 0. When N = 0, fin/fi is defined as unity.
Proor. We can represent the above testing scheme by the pair (¥, ¢)
¥ = ($o,¢¥1,---) is an infinite dimensional vector with ¥, = ¢¥u(X) =
PIN = n|X]where X = (X;,X,, ---) and where the dependence on X is through
Xy, -, X,onlyforn =0,1, -+ . ¢ = () is an infinite by finite dimensional
matrix with
bni = ¢2i(X) = Placcepting H;|X and N = n]

where the dependence on X is again through X, --- , X, only forn =0, 1, - - -,
andi = 1, --- , K. Let A, be the event [fs 5 0] forn = 1. Then. :

E!(fin/fiw) = {¥odor- (1) + Donat fA,, Yn®us* (Fin/Tin) - fin Aun} { P;[accepting H,,]}_1
{¢0¢0v + Z::=l f'//an'm in dﬂn}a:vl 4

= ajy/aiy .

IIA

Lemmas 4, 5, and 6 are lemmas related to information theory. Specifically
Lemmas 4 and 5 are proved by C. R. Rao [11], pg. 47 and Lemma 6 is a corollary
of Lemma 5. ‘

LeMMA 4. Let f and g be two density functions with respect to the same measure p.

4+ (2.3) has been proven under various conditions and various ways. See, for example,
Wald ([17], [18]), Wolfowitz [20], and Chow-Robbins-Teicher [5]. None of these considered
N as randomized.
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If f = 0 whenever g = 0, then
(2.6) Jfin(f/g)du = 0

with equality holding if, and only if, f = g a.e. (u). (01n (0/g) s to be interpreted
as zero.)
LemMA 5. Let ay, -+« , @, and by 5 - - -, b, be two sequences of positive real numbers

for which

(2.7) Stai=>1bi=1
Then
(2.8) 21 ailn (a:/b;) = 0,
with equality holding if, and only if a; = b, for all 2.
LEmMA 6. Let a1, ---, a, and by, -+, b, be two sequences of positive real
numbers. Let :
(2.9) a=D.rta and b= D 1b;.
Then
(2.10) > taina/b; = alna/b
with equality holding if, and only if, a:/b; = a/b for all ©.
Proor. Normalizing, the two sequences become ai/a, -, a./a and
bi/b, - - -, be/b, respectively, Apply lemma 5 to complete the proof.
LEMMA 7. Letay, -+ ,anand ¢y, - -+ , ¢, be two sequences of n real numbers with
(2.11) Stei=0 and Drle] =1

for n = 2. Let ® be the set of permutations of the indices 1 through n with typical
member ¢ = (o1, -+, on). Then

(2.12) max (@, -+, ) = n! 2? ai + (n(n — 2)1)7 Zwﬁl’ IZ?=1 Cmatl'

Proor. If we replace each summand | i ¢,,ai by 2.7 cpa; when ¢, = 0
and by — D7 ¢,.a: otherwise, then, the right hand-side (R.H.S.) of (2.12)
simplifies to a; . This replacement process can do nothing more than reduce the
right hand side. Thus, a¢; £ R.H.S. The proof is completed by applying the same
argument for all indices 1 through n.

The next lemma has its roots in game theory.

LemmMa 8. Let M(x, y) be a continuous function over the domain X X YV, xe X
and y e Y, where X and Y are compact, convex regions in finite dimensional Eu-
clidean spaces. Suppose that M is a convex function in y for each x and a concave

function in x for each y. Then
(2.13) miner maXzex M(CE, y) = IMaXgex minl!EY M(x) y)‘

(This lemma immediately implies the fundamental theorem for rectangular
games. )
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Proor. The lemma may be easily verified using a theorem (Theorem 2) given
in a joint paper by Bohnenblust, Karlin, and Shapley [4].

3. Generalized Wald lower bound for ASN. This section uses Lemmas 1, 3,

4, and 5. '

In the next several sections we will find it convenient to interpret 0 In 0/c as 0
forc = 0and ¢In ¢/0 as « forc > 0.

TraeEorEM 3.1.° (Generalized Wald lower bound for ASN) Let X3, Xz, -+ bea
sequence of tindependent random wvariables tidentically distributed as X. Let
H,, -, Hg be K hypotheses where H ; is the hypothesis that X has density function
fi with respect to some measure u, fort = 1, --- | K, K = 2. Assume that f; and f;
are not identical a.e. (u) for © % j. Let N be the number of observations in a sequential
test (randomazed or not randomized) which chooses one of the K densities subject to a
K X K error matric A = (aij) where a;; = P; [accepting H;]. For given index <,
assume that o, = 0 whenever any oy = 0. Then a lower bound for E.(N) s given by

(3.1) maxicicr,ie D v o In (/)
[flen (f%/f]) dl*"]—1 fOT‘ 1= .., K.

Proor. Let ¢ and j be fixed distinct indices between 1 and K. S aInfi(Xn)/
fi(X,,) is the sum of n independent random variables identically distributed as
In f:(X)/f;(X). We may assume that £, (N) < . Otherwise (3.1) is trivially a
lower bound. Suppose for now that
(3.2) E(Inf(X)/f{X)) = [filn (f./f;) du < oo.
Then, by Lemma 4, E(Inf,(X)/f;(X)) is finite. Lemma 1 yields
(3.3) E 2 maaInf( Xn)/fi(Xn)) = EAN)EInf(X)/f;(X)).
LetD = {v]|aw # 0,y =1, --- |, K]. In accordance with the notation of Lemma 3
we can write
(3~4) Ez( Z'rzri:l ln fz(Xm)/f](Xm) ) = ZveD aiinv( ZN=1 lnf’b(XM)/fJ(Xm) ) )

by breaking up the sample space (possibly randomized) into the regions on which
the various hypotheses are accepted. Applying the conditional Jensen’s inequality
to the continuous convex function —In (z), yields

(35) E(2me1Infi(Xn)/fi(Xn)) 2 —In B (ITmaa fil( Xn) /f( X))
But, by Lemma 3,
(3.6) EX (T fi( Xn) [fi( X)) £ i/ tiv .

5 Although Theorem 3.1 is due to the author, a similar unpublished theorem due to W.
Hoeffding was found to exist some time after the author’s discovery. His theorem will
appear in print ‘“‘by permission” in Sequential Procedures for Ranking and Identification
Problems, University of Chicago Statistics Monograph Series, by R. E. Bechhofer, J. Kiefer,
and M. Sobel.
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Combining (3.3), (3.4), (3.5), and (3.6), we get
(3.7) E(N)YE{(Infi(X)/f{(X)) = D ep o In as/ctjy .

The convention which interprets o, In a4/ as zero when o, = 0 allows us to
rewrite (3.7) as

(3.8) BANE(nf{(X) /(X)) = S5y an In av/as
Thus
(39) EAN) 2 T e In o/ aplEi(in .00/ XD

= D e ap Inas/apf filn (fi/f;) dul ™

Now, even if the inequality of (3.2) does not hold, (3.9) still holds trivially.
Since index j is arbitrary except for j # ¢, the theorem follows.

Theorem 3.1 allows us to find a lower bound for ASN when one of the hypotheses
is true. For K = 2, the lower bound is identical to the lower bound given by Wald
[16]. The next section finds one lower bound for ASN when none of the hypotheses
are true.

4. A first lower bound for ASN when none of the K hypotheses is true. This
section uses Lemmas 5, 6 and 8, and Theorem 3.1.

TaEOREM 4.1. Let X1, X, -+ - be a sequence of independent random variables
identically distributed as X. Consider any test of hypotheses where we are to choose
among K densities f; (with respect to some measure p), ¢ = 1, --- , K; K = 2. Let
A = (ay) bethe K X K error matrixz with a;; = P; (accepting f;). Assume az; > 0
fori,j =1,---, K. Let fybe a K + 1st density (with respect to n). Let N be the
(random) number of observations in the test. Then a lower bound for Eo(N) is given
by
(41)  EyN) Z infe, maxicjsx Dvma b In (b/a)/ [ foln (fo/f;) du,

where
(4.2) b, >0 for »=1,---,K and 2 5b = 1.

Proor. Let T be a sequential test satisfying error matrix A. Let
b, = P, [aceepting f,], » = 1, - - - , K. (For the present, we allow b, to be zero.)
Interpreting fs as a K + 1st “hypothesis” we have a (K + 1) X (K 4+ 1) error
matrix

(4.3) ‘ A* =

Using Theorem 3.1, we may conclude that among all tests T = T({b,}) which
satisfy A* (and hence A4),
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(44:) EO(N) g maxlgjéx Z§=1 bv In (bv/ajv)/ffﬁ In (f()/fj) dl"-

Interpreting the b,’s as arbitrary, we remove the excessive constraints imposed
through A™ by taking an infimum over all possible sets {b,}. Equivalently, we
take an infimum subject to (4.2) (i.e., b, > 0) and get our bound (4.1).

In the proof above, it is reasonable to ask whether it is necessary to take the
infimum over so large a class of sets. Might there be certain sets {b,} for which no
test T exists such that b, = P, [accepting f,] forv = 1, --- , K? A reduction in the
size of the class of sets that we take the infimum over might make the lower
bound for ASN larger. The following theorem shows that we cannot reduce the
class size to advantage under most situations.

TuroreEM 4.2. Let A = (au;) be a K X K error matrix where each column of A s
composed of non-zero elements or composed of only zero elements. Assume there exists
a sequence of tests Ty , Tz, - - - with error matrices By , By 5 - - - respectively for which
limyse By = Ix (the K X K vdentity matrix). Equivalently, we assume the existence
of a consistent sequence of tests. Then there exists a randomized test with error
mairic A.

Proor. We will assume as obvious that, since lim,.. B, = Ik, there exists an
N such that, forn = N, B, " exists and limy <p»e B, * = Ix . Without loss of
generality, assume that B, exists for all n = 1. For any stochastic matrix P,
we can produce a test T, with error matrix B,P. One simply modifies test 7', by
accepting hypothesis H, with probability p;, when T, says to accept H; . It suffices
to find a positive index n and stochastic matrix P for which A = B,P. But
P, = B,'A — A asn — «. From the assumption that each column of A has no
zero elements or only zero elements, we conclude that the general element of
P, , namely pni; , is zero for all n or approaches a positive limit. It follows that for
sufficiently large n, we can define P = P, .

The lower bound given in Theorem 4.1 can be written in an alternative form
which, for K = 2, is identical to a lower bound given by Hoeffding [7].

Turorem 4.3. (Equality of two lower bounds for ASN) Let 0 < f foln (fo/f5) -

du < « forj =1, ---, K. The following two expressions are equal:
(4.5) infp,; max;<j<x {2 =bIn (by/aj»)/f Joln (fo/f;) du}
and

(4.6) supie; { —In { D_0= I15=1 @58} (225 ¢ [ foln (fo/f5) dul ™},
where

(4.7) 205ab = 2Jac=1; b >0,

for v=1,---,K; and ¢; =0 for 7=1,---,K,
and
(48) 2 imap=1 for j=1,---,K; a5>0 for 4,j=1,---,K.
" Proor. For abbreviation, let s; = [ foIn (fo/f;) du and, for b = (b, -+ , by),
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(4'9) hj(b) = Z£{=1 bv In (bv/ajv)'

The argument, which uses Lemmas 5, 6 and 8, proceeds through a series of
equalities:

(4.10a) infp,) maxigi<x hi(b)/s; = infu,) supe;) { 2 i=1 cihi(D)/2 5= ¢;85}

(4.10b) = infyp,) SUPe;e) 2 5mt €5 (D)

(4.10¢) = Sup(e;+ infpp,) D=1 ¢;*h;*(b)

(4.10d) = Sup(;) infp,) { 2 jm th'(b)/ 2= o8}
(4.10e) = supe; { —In 20 [T5 ofil/ 2 cisit
where

;' = o/ 2 i csi, and h*(b) = hy(b)/s;, for j=1,--- K.

The set {c;*} satisfies the same requirements as {c;} does in (4.7).
Equality (4.10a) follows immediately from the obvious equality:

max; <<k hi(b)/s; = supiej) { 2 iet Cihi(b)/ D i ;83

(Note: 0 < s; < o« by assumption, while h;(b) = 0 because of Lemma 5.)
Equalities (4.10b) and (4.10d) are a consequence of the equivalence between
taking supremums with respect to {c;} and taking them with respect to {c;*}.
Equality (4.10c¢) is verified by using Lemma 8. The application requires us to
extend the definition of ;*(b) to the boundary of its domain. This may be done
by insisting on continuity.
Letting 8, = []5 o5 , equality (4.10e) follows from

D imcihi(d) = 2 mbIn (b/8) = —In (259 B) = —In (20 [T o

The inequality is due to Lemma 6 with equality holding when b,/8, = constant.
This completes the proof.’

As a rule, expression (4.5) is easier to compute than expression (4.6) because
of the convexity of h;(b) for each j. W. Hoeffding has pointed out to the author
that bound (4.6) has the nice feature that any choice of c; yields a lower bound.’
The main advantage of form (4.5) appears to by the great ease it permits in find-
ing additional lower bounds for ASN when some of the error matrix constraints
are relaxed. (See section 6.)

5. A second lower bound for ASN when none of the K hypotheses is true. This
section uses Lemmas 1, 2, 4, and 7. Theorem 5.1 below gives Hoeffding’s bound
(1.5) for ASN when K = 2 and is a generalization for K > 2. Three of Hoeffding’s

¢ The author is indebted to H. Chernoff and W. Hoeffding for suggestions which sub-
stantially shortened the proof.

7 Although Hoeffding has not sought to claim it, the author has recently discovered and
wishes to acknowledge his priority to bound (4.6). The result has not appeared in print be-
fore to the author’s knowledge.
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regularity conditions are replaced by (5.1) below, thus avoiding a condition which
depends on the sequential test under study and a fourth assumption is un-
necessary.

TraeoreM 5.1. Let X1, Xs, - - - be a sequence of independent random variables
identically distributed as X. Consider any test of hypotheses where we are to choose
among K densities f; (with respect to some measure u), ¢ = 1, -+ | K; K = 2. Let
A = (aq) be the K X K error matriz with as; = P [accepting f;]. We assume
ai;j > 0ford,j =1,---, K. Let fo be @ (K + 1)st density (with respect to u).
Assume that

(5.1) [ o1 (fo/f:) du < o0, Jor i=1,---,K.
Let
(5.2) D= {i, 5}

be a subset of the first K postiive integers with v distinct members, v = 2. Let N be the
(random) number of observations in the test. Then

(5.3) EW(N) z [((T*D) — R(D) In 8(D))* — T(D)I"/R*(D),
where

(54) R(D) = max:» ffo In (fo/f:) du,

(5.5) 8(D) = D f<mingp i,

and where T(D) is defined in the following manner. Let C = {c;| 7 e D} be any set
of v real numbers for which

(5.6) ZieD ci =0 and Zisl) le:] = 1.

Let (D) be the permutations of D with typical member ¢ = (¢i;ieD), a v-di-
mensional vector. Then

(57) T(D) = infe +(C)/2v(» — 2)},
where

(5.8) 7(C) = 2peamy 7o(C),
and where

(5.9) 10(C) = [ Xien colln (fo/fi) — Eo(In (fo/f))1)’ du.

Equivalently, ,/(C) is the variance under fo of th co; In (fo/f:).

Remark. For each subset D, we have a different lower bound given by
(5.3). Obviously, one is interested in the largest lower bound one can obtain by
considering various sets D.

Proor. Adopting the same notation as that used in proving Lemma 3, we
represent the test notationally by (¢, ¢). Then

aij = Eidni) = odo; + Z:=1 f Vnbnifin A",
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where

(5.10) fin = [Inaafd( X)),

and p" is the n-fold product measure generated by u. Using D= ¢,; = 1, for
n =201 ---, we get

S8(D) = Y5 mingp o
(5.11) = Yo D1 b0 + D jet Millicn D et [ Yubnifin di”
= Yo+ DDt [ Vntpni Minep fin-dp”
=y + Z:=1f¢n'miniw fin-au™.
But
(5.12) [ ¥ mings fin+du® Z [ 4, ¥n milicp (fin/fon) -fon dus”,

where fo, is defined as in (5.10), and A, = [fo, > 0]. Defining fi/foo = 1 and
combining (5.11) and (5.12), we find that

(5.13) S(D) = o minio (fio/foo) + 2 net Jap ¥n-Milicn (fin/fon) *fon dpu”

= Eo(minsp (fm/fozv))-
Now define
(5.14) Zni = 2 omea {In fo(Xn) /f Xm) — Bo(In fo/f:)}.
Then
(5.15) Zni = In fon/fin — 0,

where ¢; = f fo In (fo/fs) du. &; is finite because of regularity condition (5.1)
which in turn implies the almost sure finiteness of Z,; with respect to density fo.
It follows (from (5.4), (5.13), (5.15), and Jensen’s inequality) that

8(D) = Eo(minp (fin/fox)) = Eo(exp { —maxn (Zys + N¢o)})
(5.16) 2 Eo(exp { —maxup Zy: — N maxip {i})
Eo(exp { —maxp Zy; — NR(D)})
exp { —Eo(maxp Zn:) —Eo(N)R(D)}.

it

v

Thus
(5.17) In 8(D) = —Eo(maxin Zy;) — Eo(N)R(D).
Lemma, 7 gives us
maxip Zwi S v Dien Zwi + (v(v — 2)D)7 X gy | 2oien Ci Zwi,
and hence,
. (5.18)  Eo(maXien Zyi) < v 2 iep Bo(Zwi)
+ (v — 2))7 X sy Bol 2 ien CoiZinls
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Now, if Eo(N) = «, the lower bound is trivial. So, let us assume that
(5.19) Ey(N) < o,

In (5.14), Zni is defined to be the sum of » independent and identically distrib-
uted random variables, each with mean zero. Thus, under assumption (5.19),
Lemma, 1 applies to show Eo(Zy:) = 0 for < e D, and (5.18) simplifies to

(520)  Eo(maxio Zwi) = (w(v — 2))7 D sy Bo; | 2ien CpiZnil-

Assumption (5.1) implies Eo(Z1;) <  which, coupled with Schwartz’ inequality
leads to

(5.21) Bo( X ien €oiZ15)" < D ien Cpi Dien Bo(Z1:) < 0.
Also,
(5.22) Eo(Xien ¢pi %) = 0.

D iep CpiZni is the sum of n independent random variables identically distrib-
uted as Y ip ¢p;Z1s and Lemma 2 applies. (Use (5.18), (5.21), and (5.22).)
Hence,

(523)  Eo] Yiep CoiZni = Bo( D ien coiZwi)’ = Bo(N)Eo( D iep ¢p:Z15)°
= Ey(N)7,'(C).
Combining (5.20) and (5.23),
By(maxip Zyi) < [Bt(N)/v(v — 2) 12 pamy 7(C) = [E(N)/v(» — 2)1I7(C).

Since the set C' was chosen arbitrarily, we may take the infimum of 7(C) over all
sets C. Then

Eo(maxep Zyi) < [EX(N)/v(v — 2)!] infe7(C) = 2EF(N)T(D).
Returning to (5.17), we can form the quadratic inequality in EX(N) as
(5.24) In S(D) = —2E(N)T(D) — Eo(N)R(D).

Its solution provides the lower bound (5.3) for Eo(N). (R(D) > 0, because of
Lemma 4.) This completes the proof.
Even though Theorem 5.1 appears rather complicated, it may be computa-
tionally easier to apply than Theorem 4.1. Consider the following example:
Exampre. Let fo, fi, - -+, fx be normal densities with means 6,, 6, - -, 0,
respectively, and with common variance ¢”. Then (5.4) becomes

(525) R(D) = maxep [ foln (fo/f:) du = (26°) ™ maxien (60 — 6:)°,
and (5.7) becomes
(5.26) T(D) = (2v(v — 2)D)7" infeo X geaww) | 2uen ¢oibi/0]-

ft is interesting to compare (5.26) with (2.12) of Lemma 7. The sum
(n(n — 2)D) 7D gt | D i1 €ois |, is quite similar to the sum in (5.26).
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The infimum of (5.26) is easily handled when » = 2 or 3 (and thus for K = 2
or 3). The infimum for » = 2 is achieved with ¢ = {}, —%}, and for v = 3 is
achieved with C = {1, 1, —1}. Then, for» = 2, T(D) = (40)"|0;, — 65,|, where
G, e D, 11 # % ; and, for v = 3,

(527)  T(D) = (40) " (Bnax — Onin) + (126) " max + Omin — 2B,

where Omin , Omia, and Onex is the ordering of 8, , 6;,, and 6;, and where 7,
iz, and 7; are the 3 distinet integers in D.

It is unknown to the author whether “universal minimizing” sets C exist for
v = 4, and if so, what they are.

Theorem 5.1 assumes very little concerning the nature of the set of densities
fo,fi, --+, fx. If either one of two frequently satisfied assumptions is valid, we
can improve upon the theorem. We will need a few definitions. A set of real
valued functions {g,(X); ¢ I} will be said to be pairwise minimizable if, for
every finite subset D C I with two or more indices, there is a subset D' < D
with two members such that min;pg:(X) = minpr g«(X) for all z. The two
functions ¢ X), 7 e D', will be referred to as the minimazing functions. A doubly
indexed set of real valued functions {g.;(x;): <&, jeJ} will be said to be
uniformly pairwise minimizable in ¢ if {g:j(x;): ¢ ¢ I} is pairwise minimizable for
all j ¢ J and if the sets D" do not depend on j.

Now, consider the following two conditions:

Ci:{fiw:i=1,---,K;n = 1,2, ---} is uniformly pairwise minimizable in 2.

Co:{lnf, — Ef(Infy):2=1,---,K;n = 1,2, ---} is uniformly pairwise
minimizable in 7.

It can be shown that C; holds whenever f;, -- -, fx are mmebers of the same
exponential family of the form c¢(8)h(z) exp (Q(6)¢(z)), and C. holds if, in addi-
tion, we have Eo|ln f;| < « fors = 1, - -+, K. Verification of C, is direct while C;
follows from the fact that In [c(8)h(x) exp (Q(8)t(x))] is a concave function in
Q(0). In both cases, the minimizing functions are associated with the densities
which have the smallest and largest value of @(6).

If C; holds, we can replace the expression min:p (fix/fox) in (5.16) by
mingp (fin/fox). If C: holds, we can replace the expression —maXip Zy; in
(5.16) by —maxps Z ;. Theorem 5.1 is modified to the extent that under C; we
must redefine

(5.28) R(D) = maxyp [ foln (fo/f:) du,
and
(5.29) T*(D) = (1/16) [ [In (fi/f;) — Eo(In (f./f))T du

fori,jeD’, i # j.

If just C, holds, we only redefine T(D) using (5.29).

In the example above with normal densities, R(D) is not really changed (see
(5.25)), but T(D) is improved for » = 3 whenever |fmax + Omin — 20mia] # 0

(see (5.27)).
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Remark. Note that at no point in the proof of Theorem 5.1 did we require
fo to differ from the set f, - -+, fx . Thus Theorem 5.1 applies when one of the
hypotheses is true, also.

6. Lower bounds for ASN subject to partial control of the error matrix. This
section uses Lemma 6 and Theorems 3.1, 4.1, and 5.1. We will use the notation.

(6.1) Q=1-q,

where @ is used in a generic sense.

To this point we have treated the error matrix as completely fixed. This is
not satisfactory in most applications. Nevertheless, there seems to be some merit
in introducing a set of techniques by applying them to a specific problem. More
importantly, the previous results, either directly or by analogy, provide us with
lower bounds for ASN under a rather wide variety of situations. In this section,
we will consider problems in which the control of the error matrix is relaxed or
modified.

Consider the following concrete example: The author [13] has investigated a
three hypothesis sequential test for the unknown mean of a normal distribution
in which one can readily control the 3 X 3 error matrix in one of these two ways:

(i) fix just the main diagonal;

(ii) fix the main diagonal and second row.

If f, is different from the other three densities f1, f2, and f;, we can start with
expression (4.1) of Theorem 4.1:

(6.2) infy,,) max;<j<s { 2ses by In (by/ein)/ [ fo In (fo/fi)}

where by + by + b; = 1;b, > 0,7 = 1,2, 3. In a manner completely analogous to
the methos used in proving Theorem 4.1, we find lower bounds for case (i)
and (ii) by taking infimums to get rid of “over-controls”. In case (i) we take an
infimum of (6.2) with respect to the elements a.; off the diagonal and in case (ii)
by taking an infimum of (6.2) with respect to the a; off the main diagonal and
out of the second row. In both cases the infimum with respect to the a;; can be
interchanged with the expression “infg,; maxi<;j<s.” The result is that we must
compute quantities such as

. 3
1nfa12,a13513 Zv:l bv ln bu/alv )

where R = {ap, ay3: 2 91 0a; = 1; am, ana, o3 > O}, .
Lemma 6 tells us that the infimum is equal to by In (by/au) + b1 In (b1/éu) .
Thus a lower bound for Eo(N) is given for situation (i) by

(6.3) infu, maxi<j<s {b;1n (by/ay;) + biln (bi/ai)f foln (fo/f) du] '}
and for situation (ii) by
inf;by, max {[bl In (b],/Oln) + 61 In (B1/dn)]/ff0 In (fO/fl) d.u"

(64) >3 _iby In (by/aw)/ [ foln (fo/f2) du,
[bs In (bs/as) + bsIn (bs/ )1/ [ fo In (fo/fs) du}
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where
(6.5) by +bs+b;=1 and b, >0 for j = 1,2, 3.

ReMARK. The method used in deriving (6.3) and (6.4) illustrates a general
method whereby lower bounds for ASN can be “made to order” based on the
constraint of any portion of the error matrix. It is clearly possible to consider
problems with more complicated constraints such as the constraint of the sum
or the maximum of the «;;’s which are off the main diagonal.

REeMARK 2. Let B(D) be the lower bound for ASN for the set D as given by
Theorem 5.1. Let D be the class of all such sets D. Then, of course,

Ey(N) = maxp.q B(D).

This bound, which was derived for tests constraining the entire error matrix,
can be used to find lower bounds for situations (i) and (ii) above. One need only
take the appropriate infimums.

When one of the hypotheses is true, cases (i) and (ii) are slightly more dif-
ficult but one can show (using (3.1) of Theorem 3.1) that in case (i) a lower
bound for E;(N) is given by

(6.6) infia;;: jesy MAX1 <j <350 { [ots; In (@ij/ ;) + @iy In (dus/d5)]

(S faIn (fi/fs) dw) ™}
where the infimum is subject to the restriction that
(6.7) D i iy = Gt is fixed.

The reader may like to consider case (ii) on his own.

Ezxamples. The following two examples compare the ASN of a three hypothesis.
test for the unknown mean of a normal distribution with two theoretical lower
bounds. The test is one investigated by the author [13] and constrains the error
matrix in accordance with case (ii). The lower bounds for ASN are based on (6.4)
and Remark 2, respectively. 6 is the true mean and o® = 1 is the variance. Hy-
pothesis H;is that § = 6;,7 = 1, 2, 3.

ExamrLE 1.

01 = '—.1, 02 = 0, 03 = .1
a1 = 0Oy = 0Og3 = 95, O = 1/60, O3 = 2/60

[/ ‘ —-.2 —-.1 —.05 0 .05 1 .2

ARSN for author’s test 269.5 741.2 1167 803.3 972.7 609.8 223.3
First lower bound for ASN 96.3 738.4 852.0 572.4 738.2 606.9 81.2
Second lower bound for ASN  109.3 353.8 940.0 353.6 867.5 318.5 99.3




LOWER BOUNDS FOR AVERAGE SAMPLE NUMBER 1359

ExAMPLE 2.
01='—1, 02=0, 0 = 2,
Q11 = Qe = 0g3 = .95, Oy = Olgg = .025
6 —-.2 —-.1 —.05 0 1 .2 .3
ASN for Author’s test 242.5 661.8 1072 574.4 287.9 168.5 90.9

First lower bound for ASN 87.6 661.4 787.3 561.0 196.8 165.4 48.2
Second lower bound for ASN  104.0 335.0 883.3 335.0 220.8 83.8 43.0

The first lower bound is extremely good when H; or Hj is true, differing from
the test’s ASN with errors ranging between .06% and 2% . The second lower
bound does better when the true value of 4 is far away from the hypothesis values.
It should be remembered that the first and second lower bounds are generaliza-
tions of Wald’s bound (1.1) and Hoeffding’s bound (1.5). These two bounds
llustrate similar behavior. When H; or H, is true, the first lower bound does
somewhat better in example 2 than in example 1. This is probably due to the
fact that in the second example the test is primarily a contest between H; and
H, except for relatively large 6. For smaller 6, the author’s test is approximately
an SPRT (between Hy and H,) and it is well known that Wald’s lower bound
for ASN is very close to the ASN of the SPRT when either hypothesis is true.
It does not seem likely that the true value of the second lower bound will be fully
assessed until more examples of three hypothesis tests are developed.

Computing the lower bounds for the examples. Except when one of the hypotheses
is true, the first lower bound is computed from formula (6.4). The computations
involve finding the infimum of a continuous convex function in two variables
Some care has to be taken because the convex function is not analytic everywhere.
When one of the hypotheses is true the computations are easier.

As noted, the second lower bound for ASN follows from Remark 2 above. Since
normal densities with common variance belong to the same exponential family,
the modified verison of Theorem 5.1 applies and it follows that B({1, 3}) =
B({1, 2, 3}) for any error matrix A. Then, it follows that the infimum of
maxp.p B(D), taken over the appropriate set of error matrices, is achieved when

o max (& — a,0) min (éu, a23)
A = a1 (27 23 .
min (dgs, ) max (s — o, 0) Qs

The lower bound is found using A4 with the modified version of Theorem 5.1.
The computations of R(D) and T(D) are based on (5.28) and (5.29), re-
spectively.

7. Lower bound for ASN under the correct decision approach. This section
is primarily based on Sections 3 and 5.
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As indicated in the introduction, the correct decision approach is an alternative
to the error matrix approach for choosing one among K densities. In the tradi-
tion of hypothesis testing, the parameter space Q is partitioned into K disjoint
sets Sy, -+, Sk corresponding to K hypotheses Hy, -, Hx where H; is the
hypothesis that S; contains 6. It is frequently impossible for a test to accept the
correct hypothesis with high probability for all values of 6.

One is usually willing to establish “indifference regions’ in the vacinity of the
boundaries which say in effect that for certain § more than one hypothesis is
acceptable. Let S/ D S; be the set of 6 ¢ Q for which a choice of H;is acceptable,
forz = 1, ---, K. The acceptance of H; is said to be a correct decision (CD)
for 9 if S, contains 6.

Finally, a function P*(6) is specified with the requirement that a correct
decision must be made with probability greater than or equal to P*(8) when the
true parameter is 6, for each 0 ¢ Q. It seems appropriate to refer to this require-
ment as the P*-condition and to the sets Sy, - - -, Sx"‘as the correct decision sets.

Analagous results to Theorem 3.1. Now, suppose that fy is the density function
under 6 and that all of the density functions are with respect to the same measure
. We will let Py and E,; denote the corresponding probability measure and
expectation operator under 6. Define

(7.1) Py, = Py, [making a CD for 6,
and .
(7.2) 1(6) = {indices 7|6 ¢ S.}.

If the"yalﬁe of Py, was fixed and known for all 6; and 6. we could use the
lower bound
(7.3) Eo(N) = supss,, 60 {[Poer In (Poyor/Poor) + Pooo' In (Pooo'/poo')]
1 foo In (foo/fo) du] ™)
for arbitrary 6o, 6 ¢ Q. (7.3) is analogous to the bound in Theorem 3.1 and can

be derived in a similar manner.
Nevertheless, we do know that

(74) P9102 = P.;lol = P*(Ol) for 1(01) C I(02),
and
(75) P0102 = Polol = P*(Ol) for 1(01) n 1(02) = @,,

where & denotes the null set. Setting ' = 6 in (7.3) and using (7.4) and (7.5),
we can derive the bound

(7.6)  Eo(N) = supeo {[P*(60) In (P*(60)/P*(6))
+ P*(0) In (P*(80)/P*(0))11f fo In (fao/fo) dul™}
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where
D = {6:1(6) n I(6) = &, P*(0) + P*(6)) = 1,0¢9}.
This may be derived by observing that
{0£Q:0 % 6) D{0e9:1(0)nI(6) = &, P*0) + P*8) = 1}

by taking the infimum of the right-hand side of (7.3) subject to the constraints
imposed by (7.4) and (7.5), then interchanging “inf” and “sup”, and finally,
by observing the monotonicity of the function « In (z/y) 4+ £ In (£/4) when
2z = y. A more careful analysis yields the slightly better lower bound

(7.7)  E4(N) = infy,;: pe.op=roy) Supsn {[B(b, 8) In (B(b, 6)/P*(6)) .
+ B(b, 0) In (B(b, 0)/P*O)IIf foy In (fao/fo) du]™}

where b; = Poo (accepting H;),j = 1, , K, where B(b,0') = > sy bs = Pogor
for arbitrary 6" ¢ Q, and where D is deﬁned in (7.6).

Analogous results to Theorem 5.1. Suppose that the density function fp is of
the exponential form c¢(8)h(x)e*®™® and that Q(6) is strictly monotone in real
valued 6. Then f; is pairwise minimizable and, in fact,

ming <o <p,00fo(%) = min (fo(x), fo(x)) for a, be Q.

It becomes appropriate to redefine R, S and T (used in Theorem 5.1) for inter-
vals [a, b] instead of index sets D.

(7.8) Rla, b] = supa<o<ssen | fo, In (fo,/fo) dpe

= max ([ fo, In (foo/fa) du, [ foo In (fao/Fs) i)
The latter equality holds because —In f; is convex in Q(6).
(7.9) T*a, b] = (1/16) [ fulln (fi/fa) — Eo(In (fo/fa))] du,
making
(7.10) Tla, b] = £|Q(b) — Q(a)|-Vary,(¢(X)).
(7.11) Sla, b = 2_i=1infaco<pe0 {s}-

where ag; = Py [accepting Hj] forj =1, ---, K.
If op; were fixed and known for6 e Qand < = 1, - - - , K, then we would have the
lower bound

(7.12)  Eo(N) = [(T"(a, b] — Rla, b] In S[a, b])} — Tla, b]"/R’a, b].

Since the fixing of ay; constitutes more control of the errors than is implied in the
P*-condition, we must take an infimum over the class of all sets {ag;} which
satisfy that condition. We shall not treat this problem any further than to note
that the values of R and T are independent of the errors and to note also that the
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problem is primarily one of finding the supremum of S[a, b] taken over the
same class of error sets. Calling this supremum S*[a, b], we get the correct lower
bound

(7.13) E4(N) = [(T*a, b] — Rla, b] In $*[a, b])* — Tla, b]*/R’[a, b)].

Actually, one might legitimately take a supremum of the right-hand side of
(7.12) over intervals [a, b] before taking an infimum over sets { a;}, but this makes
computations more difficult.

ExampLE. This example is based on an example used by Sobel and Wald
[14] in their paper concerning a three hypothesis sequential test for the unknown
mean of the normal distribution. They require a set of constants —« < §; <
@ < 6y £ 6; < ay < 6, < o to define the two sets Sy, Sz, Ss and 8y, 82, Ss'.

TABLE 1 .
range of 0 I1(9) B(b, 6)
—w <6 =6, {1} b
0 <0 <6 {1, 2} b1 + b
6 <0 = 6 {2} by
0 < 6 < 04 (2, 3} bs + bs
0s =0 < w {3} b3
TABLE 2
range of 6, lower bound (7.6) lower bound (7.7)
— o < 6 <6 | 2060 — 62)72h(¢, ) the same
0 < 6y < 02| 260 — 62)2h(¢, c) the same
02 < 0 < 6; | 2max [(fo — 61)72, ) 2 info<;<z max [A(b1, ¢)/(6 — 61)%,
(00 — 04)‘2]h(c, C) h(é - b1 ) 6)/(00 - 04)2]
03 < 0o < 04 | 2000 — 6:1)2h(¢, ¢) the same
0 <0 < o | 2000 — 63)"2h(¢, ¢) the same

Then S; = (— o, a1), 82 = [a1, @), S5 = (a2, ©),and S = (—, 6;), S =
(01, 04)7 S3/ = (03’ °°)

I1(6) and B(b, 6) are given in Table 1.

In their problem, P*(8) = c, a constant greater than .5, and f foo In (fo,/fo) dp
= (8 — 6)*/2¢°, where ¢* = 1 is the common variance. In terms of the function

Mz, y) = zIn (z/y) + £ In (£/5),

we can express lower bounds (7.6) and (7.7) as shown in Table 2.
Sobel and Wald considered the following case®:

8 For certain reasons of accuracy the author chose to use ¢ = .97101 instead of their value
of ¢ = .971. Since the values in the table are quite sensitive to the value of ¢, there is a small
but apparent discrepancy between their tables and table 3.
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TABLE 3

[/

0 1/16 | 2/16 | 3/16 | 4/16 | 5/16 | 6/16 | 8/16 | 10/16

Their upper bound | 146.2 | 163.6 | 229.6 | 425.3 | 790.9 | 425.1 | 224.7 | 112.4 | 74.9
Their lower bound | 112.4 | 149.8 | 224.3 | 423.4 | 789.2 | 423.4 | 224.3 | 112.4 | 74.9
lower bound (7.6) 67.7 | 105.9 | 188.2 | 423.4 | 20.9 | 423.4 | 188.2 | 67.7 | 34.6
lower bound (7.7) 69.9 | 105.9 | 188.2 | 423.4 | 20.9 | 423.4 | 188.2 | 67.7 | 34.6
lower bound (7.13) 49.3 | 73.9 | 122.6 | 225.9 | 645.2 | 240.5 | 122.6 | 49.3 | 26.4

9, = —6, = 5/16, 03 = —0, = 3/16 and c¢ = .9710L.

They did not derive an exact formula for their ASN but derived an upper and
lower bound for it. (See Table 3.) It should be emphasized that their upper and
lower bounds are not universal but apply to their test only.

Lower bound (7.13) was computed using the interval [6; , 64]. It may be checked
that S*[6s, 64 = $(1 — ¢).

REFERENCES

[1] AnpErson, T. W. (1960). A modification of the sequential probability ratio test to re-
duce the sample size. Ann. Math. Statist. 31 165-197.
[2] BLackWELL, D. (1946). On an equation of Wald. Ann. Math. Statist. 17 84-87.
[38] BrLackwELL, D. and GirsHIcK, M. A. (1946). On functions of sequences of independent
chance vectors with applications to the problem of random ‘walk’ in K dimen-
sions. Ann. Math. Statist. 17 310-317.
[4] BounensLusT, H. F., KaRLIN, S. and SHAPLEY, L. S. (1950). Games with continuous,
convex pay-off. Contributions to the Theory of Games 1 181-192. Princeton Univ.
Press.
[5] Cuow, Y. 8., RosBiNs, H., and TricHER, H. (1965). Moments of randomly stopped
sums. Ann. Math. Statist. 36 789-799.
[6] Doos, J. L. (1953). Stochastic Processes. Wiley, New York.
[71 Hoerrping, W. (1953). A lower bound for the average sample number of a sequential
test. Ann. Math. Statist. 24 127-130.
[8] HoErDING, W. (1960). Lower bounds for the expected sample size and the average risk
of a sequential procedure. Ann. Math. Statist. 31 352-368.
[9]1 KoLmogorov, A. and Prororov, Yu. (1949). Uspehi Mat. Nauk (N.S.) 4 No. 4 (32)
168-172.
[10] PauLson, E. (1963). A sequential decision procedure for choosing one of K hypotheses
concerning the unknown mean of a normal population. Ann. Math. Statist. 34
549-554.
[11] Rao, C. R. (1965). Linear Statistical Inference and Its Applications. Wiley, New York.
[12] Smmons, G. D. (1966). Multihypothesis testing. Ph.D. Thesis, Univ. of Minnesota.
[13] Simons, G. D. (1967). A sequential three hypothesis test for determining the mean of a
normal population with known variance. Ann. Math. Statist. 38 1365-1375.
[14] SoBEL, M. and WaLp, A. (1949). A sequential decision procedure for choosing one of
three hypotheses concerning the unknown mean of a normal distribution. Ann.
Maith. Statist. 20 502-522.
[15] WaLp, A. (1944). On cumulative sums of random variables. Ann. Math. Statist. 15
~ 283-296.



1364 GORDON SIMONS

[16] WaLD, A. (1945). Sequential tests of statistical hypotheses. Ann. Math. Statist. 16 117-
186.

[17] WaLp, A. (1946). Some improvements in setting limits for the expected number of ob-
servations required by a sequential probability ratio test. Ann. Math. Statist.
17 466-474.

[18] WaLD, A. (1946). Differentiating under the expectation sign in the fundamental identity
of sequential analysis. Ann. Math. Statist. 17 493-497.

[19] Wald, A. and WoLFowTiz, J. (1948). Optimum character of the sequential probability
ratio test. Ann. Math. Statist. 19 326-339.

[20] WoLrowritz, J. (1947). The efficiency of sequential estimates and Wald’s equation for
sequential processes. Ann. Math. Statist. 18 215-230.



