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1. Introduction. We consider an m-dimensional random vector X, distributed
normally with unknown mean vector 8, and known covariance matrix equal to
the identity matrix. The usual confidence sets for estimating 0, are spheres of
fixed volume centered at the sample mean. We consider the admissibility of
these confidence sets in the general class of confidence procedures. Let « denote
the set of observed values of X. Then a confidence procedure C is defined as a
procedure which assigns to each possible point z, a  Lebesgue measurable
subset C(z, -) of the parameter space within which 6 is estimated to lie. Let
vC(z, -) denote the Lebesgue measure of the set C(x, -). Then the confidence
procedure C consisting of spheres of fixed volume, centered at the observed
sample mean, has the property, that amongst the class of confidence procedures C,
with a given lower confidence level (1 — «), Co minimizes the maximum ex-
pected measure of the confidence set, viz.

Supg Eng( Z, * )

Stein (1962) raises the question whether the usual procedure is unique in
having this property and conjectures that it is probably unique for m = 1,
and probably not unique for m = 3, the case m = 2 being doubtful. In this paper
we investigate the case m = 3, and for this case Stein’s conjecture is proved to
be true, by showing that the usual procedure is not unique. It is in fact shown
that the usual procedure is inadmissible as there exists a uniformly superior
procedure.

2. Notation. X denotes an m-dimensional random vector distributed normally
with unknown mean vector 8 and covariance matrix equal to the m X m iden-
tity matrix; X;,7 = 1,2, - - - , m, denote the components of X; x,,r = 1,2, - - ,n,
denote the observed values of X, the observed values of the components X;
being 2 ;2 = {Tw}, 2 = 1,2 .-+, m;7 = 1,2, --- n, denotes a point in the mn
dimensional sample space B and 6 = (6:, 6z, ---, 6,) denotes a point in the
m-dimensional parameter sapce Q; % denotes the observed sample mean value of
X and &; the observed sample mean value of the component X, so that

= -1 n = — -1 = .
(1) F=n"2 ra%; To=m 2y, t=12 - m.

We denote by R the m-dimensional space of the points %.
Next following Wallace (1959), we define a confidence procedure C as a
Lebesgue measurable subset of the Cartesian product space @ X R; C(z, -) and
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C(-, 0) respectively denote the crossections of C for given z, and 8, C(zx, -)

being the confidence sets. Then we denote by C, the procedure in which the
confidence sets are m-dimensional spheres of fixed volume centered at the sample

mean, i.e.
2
I3 :I ;

@) oy )¢ 060 35 (0 — 22
Co(',0)2 I:.’IX:‘R; i:;l (a‘:z — 002 = g2:|.
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Let v, denote the volume of the m-dimensional spheres Co(z, -) and (1 — a)
the fixed confidence level of Cy, so that

(3) vCo(z, +) = vy for all z ¢ R;
PgCo(+,0)] =1 — o forallbeQ.

3. Main result. We define on the sample space R a vector y by

(4) y=Q+b/(a+ )" %
where & denotes the magnitude of %, i.e.
(5) : &= 2l

and o and b are positive constants. We suppose that b is small and @ is large;
how small and how large will be determined during the process of the following
computation. We now consider the confidence procedure C; in which the
confidence sets are m-dimensional spheres of the fixed radius & in (2), and centered
at the point y in (4), so that the confidence sets Ci(z, -) are given by

(6) Ci(w, -) =[0eQ; 10 —y| = Al

where |0 — y| denotes the magnitude of the vector (6 — y). Then the cross
section Ci(-, 0) is given by

(7) Ci(-,0) =[zeR; |y — 6| = Il

Clearly,
vCi(z, -) = vCy(z, ) forallzeR.

We shall prove that, if m = 3, then for sufficiently large a and sufficiently
small b,
P[Cy(-, 0)] > Po[Co(-,0)] foralldeQ,

so that the procedure C; is uniformly superior to Cp.

[Explanatory note: as the following argument involves a rather lengthy com-
putation, we shall indicate its main steps. The co-ordinate axes are transformed
taking one of the axes in the direction of 8. Next by using the transformed form

“of the inequality defining Ci(-, ), we determine a subset Cy'(-, 8) which is
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wholly contained within Ci(- , 6). The argument is then completed by showing
that the inclusion probability for the subsets Cy( - , 8) always exceeds (1 — a).]
Proor. Substituting (4) in (7), the defining equation of Ci(-, 8) reduces to

[ — 0 — (b/(a + @))0 = KL +b/(a + 2)I
ie.
(8) & — 6" —(20/(a+7"))0-(x —0) +00"/(a + )" = K[l +b/(a+ z)]
where in the 3rd term in the left hand side of (8), 6 denotes the absolute mag-
nitude of 6, i.e. 6 = D7 07 Now in the space R of the points %, we can by an
orthogonal transformation of co-ordinates take one axis in the direction of 0

and the remaining axes perpendicular to 6. In this transformed system of co-
ordinates, let

(9) 6=1{6,00,:--,0},
E={u-+0,2,2, 2,
with 22 = Y 75'2/. Then using (9), (8) reduces to
u' + 2 — 2bub/(a + 6° + 20u + uF + &)
(10) + b%6°/(a + 6° + 20u + u* + 2°)°

S KL+ b/(a+ 60 + 26w + o’ + 9]
Tt is seen from (10), that (u* 4 2°) is bounded above on Ci( -, 8). For by transpos-
ing terms in (10), we get,
wW+E <K+ b/(a+ (04 u) + )+ 2bule/(a + 2+ (u+ 6)°)
< K1 4+ b/a)® + 0.

Since a is to be large and b small, we may assume that ¢ = 1 and b < 1, so that
'+ 28 <4k 4+ 1 < (1 + 2h)% Let Iy be a fixed number independent of a, b and
0, and such that by = 1 4+ 2h. Then for all points z £ Cy( -, 0)

(11) W+ <h’, and |u| Sk

Then in the third term in the left hand side of (10), noting that 6/(a + 6°)
assumes its maximum value at 6 = o,

(12)  (|2u] + o + &) /(a + 6°) < 2m0/(a + 6°) + k*/(a + 6°)
< hl/a* + h12/a.

Hence by making a sufficiently large but independently of § we can make
|2uf + u* + °|
(a + 6
where e may be any arbitrarily small number > 0. For the present we assume only

only that 0 < ¢ < 1.

(13) <e
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Next in the third term in the left hand side of (10), put
(14) 6u/((a + 6°) + 2ub + u* + 2*) = 6u/(a + 0) — 26°%°/(a + 6°)" + B.
We shall show that for large a, 8 = o((a + 6*)™"). From
(14), we get, o
B =l(a+6) + 20u + u* + 2
A{46%%/(a + 6°)° + 2°*(W* + 2°)/(a + 0*)? — (v + 2)ub/(a + 6°)}.
Now using (13) and (11)
8] < (a4 6% (1 — &) '[4h6"/ (a + 6°)° + 2he*/a + hi'6/(a + 6%)]

and npting that 6°/(a + 6)° is maximized for 6 =, (3a)* and 6/(a + ¢°) for
0 = a', we get

(15) 18] = (a 4+ )71 — B2 a7 + 2h'/a + $h/d]
< (a+6)7

where § which is independent of 6 can be made arbitrarily small by increasing a
sufficiently. Now using (14), (15) and (13), we see that

(16) left hand side of (10)
< + 2 — 2ub/(a + 6°) + 4b6%*/(a + 6°)° + 2b-5/(a + 6°)
+ b%6*/(a + 6°)%(1 — ¢)”.
In the 4th and 6th terms in the right-hand side of (16),
6'/(a + 6°)* = (a + 6°)76°/(a + 6") < (a +6)7.
Hence we obtain from (16),
(17) left hand side of (10)
<+ 2 — 2bub/(a + 6°) + 4bu’/(a + 6°) + 2b8/(a + 67)
+6%/(a + 6)(1 — ¢
< (1+2b/(a + 6))(u — bi/(a + 6°))" + 2 + 2b8/(a + 6°)
+ v/(a + ) (1 — ¢)’

where
(18) b= b/(1 4+ 20/(a + 6%)).
Similarly by using (13), and noting that (1 + ¢)™ > 1 — efore > 0
(19) right hand side of (10)
2 KL+ b/(a + 6)(1 + oF
= K1+ b(1 —€)/(a+ )
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Next let Cy'( -, 8) be the subset of R defined by
(20) (1 + 2b/(a + 69))"(u — bif/(a + 6%))" + &
S K +b(1 —e)/(a+ ) — 2b5/(a + 6°) —b/(a+ 6°)(1 — ¢)°.

We shall show that for sufficiently large @ and sufficiently small b, (the limits for
a, and b being independent of ),

Ci(-,0) DCY(-,0),
so that,
(21) PlCy(+, 8] = Py[Cy'(-,0)], foralleeQ.
To show this, put
(22)  right hand side of (20) = Al + (b/(a + 6°))(1 — ¢)>

It is seen that given any arbitrarily small positive number 8’ we can determine
ao and by , independent of 6, such that ¢ < 8’ if @ = aoand b < b,.
By (22), the defining relation of the set Cy'( -, 8) becomes,

(23) (1 + 2b/(a + 6))%(u — b8/(a + 6%)) + &
S KL+ (b/(a+ 6))(1 — ).

It is again seen from (23), that u’ 4+ 2* is bounded above on Cy( -, ). For we
have from (23),

lu — b6/ (a + %) < W(1 + (b/(a + 6%))(1 — 9)I(1 + 2b/(a + 6°))™
< k(1 + b/a).
Hence,
lu| < (1 + b/a) + bib/(a + 6°).
Using the value of b; in (18), bi6/(a + 02) is maximized for 6 = (a + 2b)%, )
that
bo/(a + 6°) < b/2(a + 2b)* < b/2d".
Hence, [u| < (1 + b/a) + b/2d* < 2h + %, since by assumption in (11),
a=1,b =2 1.(23) similarly gives, |z| = A(1 4+ b/a) = 2h. We thus get, for all
points z £ Cy'( -, 0)
w2 < (2h 4+ 1)+ 4K
< (4h + 3)" < (40 + 1)%
We assume in (11) that &y = 1 + 2h. Consistently with this we take h; =
1 + 4h. Then for all points x ¢ C{'(-, 0), v’ + & < h’, so that (11) holds;

consequently (17) and (19) also hold and in the result (10) holds for every
point x of C;'(- , ). We have thus proved (21).
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Now the probability density on the sample space R can be expressed in the form
(24) f(|0) = k-exp [—4n 27 (£: — 6:)%]-L(z | %)

where, k = (n/2r)™". .
By an orthogonal transformation of co-ordinates in R, we can take &; ,t =1,

2, -+, m, as independent co-ordinates. Let = denote the group of the remaining
(mn — n) transformed co-ordinates. Then for each fixed %,
(25) [L(z|%)da’ = 1.

In the space R of the points %, let E denote the subset defined by (23). Then
because of (25), the probability Py[Ci(- , 6)] reduces to the integral over E of
the probability density &-exp [—3n > 1y (%; — 0)%], which using (9) becomes,

(26) F(%]0) = k-exp [—dn(u’ + 22)].
Hence
(27) E7'Po[Cy (-, 8)] = [mexp [— 3n(u® + 2°)] du de

where dz is written for short for J[75' dz;.
Now make a transformation of variables by putting

(28) w = u — bf/(a + 6°).
The Equation (23) defining the set E then reduces to
(29) (14 2b/(a+ ") + 2 < K1 + b(1 — g)/(a + O
Now, u = w + bi8/(a + 6°) by (28) and
(30) exp (1) = 14¢, —o << o,
Hence in (26), using (30),
(31) exp (—nu’) = exp [—3n(w’ + 2b0w/(a + 6°) + b/ (a + 6))]
= [l — nb’/2(a + 6)][1 — nbiw/(a + 6*)] exp (—inw?)
by using in the 2nd term in the first square bracket in the right hand side the
relation 6%/(a + 6% < 1.
Hence combining (31) and (27) we get,
E7PCY(+,0)] 2 [1 — nb/2(a + 6] [5(1 — nbow/(a + 6%)
(32) exp [—In(w® 4+ 2] dw dz
21 — nb’/2(a + 6°)] [rexp [—2n(uw® + 2°)]dwde

as, [zw exp [(—%n(w’ + *)]dwdz = 0 because of the symmetry of (29)
which defines E.
#Proceeding further from (32), denoting the volume vE of the set E by v,

we have from (32)
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(33)  EKT'PGCi(-,0)] = [sexp [—3n(w’ + &)]dwdz — [nb’/2(a + 6%)]n
> [pexp [—in(w’ + )] dwdz — [nb*/2(a + 6%)]n

since by (18),b > b;.

We next evaluate the first term -in the right hand side of (33). Since
(b/(a + 6%)) can be made arbitrarily small uniformly in 6, by making a sufficiently
large, we shall make the calculation up to the 1st power of (b/(a + 6°)) only.
Let D denote the subset of R defined by

(34) w4+ =K.

Then (3) implies that

(35) [pexp [—3(w’ + &)]dwdz = (1 — a)/k.
Define sets A and B by R

(36) A=D—-D-E and B=F — D-E.

Then in the right hand side of (33) using (35)
(37) fEexp [— tn(w’ 4+ )] dwdz = (1 — a)/k
+ fB exp [—in(w’ + &%) dwdz — fA exp [—in(w® + 2°)]dw dz’

Comparing (34) and (29), it is seen that the volumes vA and vB of the sets A
and B are of the order of b/(a + 6°). Also when integrating on the sets A and B,
the term (w® 4+ 2°) differs from 4* by a term of the order of b/(a + 6°). Hence
neglecting terms O(b/(a + 6°))°, we have

(38) right hand side of (37)
= (1 — a)/k 4 exp (—3nk")(vB — vA) 4 O (b/(a + 6°))’
= (1 — a)/k + exp (—§nh)*(0; — ) + O(b/(a + 6%))"
Now let the volume of an m-dimensional sphere of radius » be Ki™, so that
(39) v = Kh™

It is then easily seen that the volume v; of the set F defined by (29) which is an
ellipsoid is given by

o = KR"[L + (b/(a + 6))(1 — ¢)I"L + 2b/(a + 6")]”
so that using (39), and retaining terms of the 1st degree in b/(a + 6°),
(40) o1 = w[l + (m — 2)b/(a + 6°) — mgb/(a + 6)] + O(b/(a + 6°))"
Combining (40), (38), (37) and (33), we get

PilCy (-, 0)]
=1 — a+ koo exp (—3nh’)-[(m — 2)b/(a + 6°) — mgb/(a + 6°)]
(41) — [nb*/2(a + 6°)]-kvo + O(b/(a + 67))°

= (1 — a) + kob/la + 6°)][(m — 2 — mg) exp (—ink’) — inb]
+ 0(b/(a + 6%))"
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We now take b to be sufficiently small, so that in the 2nd term in the right hand
side of (41),

(42) inb + mg exp (—3nk®) < f-(m — 2) exp (—3nk®) where 0 < f < 1.

We note that b can be found so as to satisfy (42) only if (m — 2) > 0, i.e.
m = 3. The present proof thus does not hold for m = 1 or 2.

The comparison of (22) and (20) shows that g cannot be made arbitrarily
small merely by increasing @, as g contains a part which depends on b alone.
(42) thus provides an upper bound for b. We then take a suffifficiently large so
as to make the residual term in the right hand side of (41) viz.,

(43) 0(b/(a + 6°))" = 3(1 — f)kved/(a + 6°).
Now combining (41), (42) and (43), and noting that C,'(-, 8) < Ci(-, 0)
by (21), we get
(44) PoCi(-,0)] 2 1 — o+ ¥(1 — fkved/(a + 6%)
>1—a forall®eQ.

The procedure C; is thus uniformly superior to Co, which was to be proved.
REMARK . By an argument similar to that in this paper it can be shown that
the usual rectangular confidence sets defined by

ljz_aziéh; t=12---,m,

are uniformly inferior to the confidence sets |y; — 0: < h, 72 = 1,2, -+, m,y,
being the vector defined in (4).

Acknowledgment. I am grateful to the referee for his many valuable sugges-
tions and for pointing out a serious flaw in the original version of the proof.
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