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NONPARAMETRIC DISCRIMINATION USING TOLERANCE REGIONS'

By C. P. QUESENBERRY AND M. P. GESSAMAN

North Carolina State University and Montana State University

0. Introduction and summary. A method is given which can be used to con-
struct procedures for discriminating among distributions on a Euclidean space
with continuous distribution functions..The decision space used includes “par-
tial” decisions and the probabilities of errors are random variables with beta
distributions. Emphasis is upon control of the distribution of the conditional
overall probabilities of errors. These procedures can be used in a wide class of
discrimination problems, such as, for example, discriminating among multi-
variate normal distributions with unknown, unequal dispersion matrices.

- A number of other writers have suggested nonparametric discrimination proce-
dures. The first work in this area, to the knowledge of these writers, was by Fix
and Hodges [2]. Since the work by those authors has remained unpublished, a
brief statement of its approach and results is given in Section 4 for comparison.
Procedures have been suggested also by Stoller [13], Anderson [1] and Kendall

[8].

1. The general model. An observation z is obtained on a random variable Z
with probability distribution P on a Euclidean measure space X(@). It is as-
sumed that P identifies with one of k distributions P , - - - , P; which are distinct
members of a class @ of distributions defined on X(@). The class ® will here be
taken to be a subclass of the class of distributions with continuous distribution
functions. The distribution function for P; will be denoted by F; .

The problem is to use an observation z and any information available on the
distributions P, - -+, Ps to make a decision as to which of these distributions
may have given rise to the observation. Information about the distributions
may be in the form of assumptions about their properties (definition of @), and
in samples from the individual distributions.

The class of decisions which will be used here is defined as follows:

Let A denote the class of decisions with elements given by

(1.1) 8;...; : means decide that Pe{P;,---,P;} for s=1,---,k—1
o . means reserve judgment

where (41, -+ , %,) is a subset of the set {1, --- , k}.

By reserve judgment it is meant that no decision whatever is to be made con-
cerning the distribution P of Z on X(@).

Let d denote a function which maps the sample space X to A. Such a function
will here be called a discrimination function or procedure. It will be observed that
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much of the literature on discrimination considers a subset of A containing only
8, -+, 0. A discrimination procedure d maps X to the finite set A with 2 -1
elements. It is essentially a partition of the sample space into subsets given by

(1.2) Si!:“':is = {x.d(x) = 6151"'1}} for s = ]., ey, k — ].,
So = {xd(x) = 50}.

If a discrimination procedure d is used, an error will be made when P = P;
and d(Z) = 81‘!...53 With]g{h, ey, ’is}. Put

Q,' = Ul;:} (U S'il""’:a)

where the first union is over all subsets of size s from the set {1, ---,j — 1,
j+ 1, ---, k}. Then .
(13) 9 = PJ'(QJ')’ .7 =1---, k)

is the probability of an error when Z has distribution P;, i.e. P = P;.
DeriNiTION 1.1. Let a; be a fixed number in the open interval (0, 1) for each
j =1, -,k A discrimination procedure is said to be of size-(a1, * -, az) if

(1.4) ¢ S a; forevery j=1,---,k.
A procedure is of exact size-(ay , - -+ , o) if equality holds for everyj = 1, - -« , k.

2. A nonparametric procedure. In this section @ will be the entire class of
distributions which have continuous distribution functions on X. It is assumed
that there is a sample (2, -+, ;) available from each distribution P;,
j=1,---,k Let (a1, -- -, &) be constants in the open interval (0, 1), and let
a; denote the largest integer in the quantity a;(n; 4+ 1), i.e., a; = [ej(n; + 1))
Using the theory of coverages (cf. [4], [5], [6], [7], [10], [12], [14], [16]) and the
jth sample, construct a nonparametric tolerance region A; containing a; blocks
on X for the distribution P; . Each set A; formed from the jth sample and its com-
plementary set A; = X — A; constitutes a two-set partition of the sample space
X. A product partition is formed from these partitions as follows.

DEeriNiTION 2.1. The sets S;,...;, and S, are defined by

(2.1) Sil"'ia = z‘iil s AiaAia+1 s A,:k for s = 1, ey k— 1,
“So= (A --- Ax) U (A --- Ay,
where {7y, - - - , %,} is any subset of s elements of {1, - - - , k}, except & (null set)

or the whole set.
Derintrion 2.2. The discrimination procedure d* is defined by

(2.2) d*(z) = 5,’1...1'8 if zeSil...is,
= 80 lf 2880,

where the S-sets are given by (2.1).
An error will be made whenever P = P;, i.e. P; is the correct distribution,
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but z falls in the set
(23) BJ’ = AJ( Ui:i (UA."il e A-is A-is+1 e A‘ik-l))i

where the first union is over all combinations (4, -+, %,) of size s that can be
taken from the set {1, ---,7 — 1,7 + 1, --- , k}, and {4spa, - - -, %41} is in each
case the remainder set. Observe that B; can be written

Bj=A;(Uin,ids) = A(X — Ay -+ Ajadjn o+ Au).
From either expression, B; C A;, and
(24) P;B;) < Pi(A;), forevery j=1,---, k.

The probability of the set A; as measured by P;, ie. P;(4;), is a beta random
variable with parameters (a;, n; — a; + 1). Its distribution has mean

(2.5) a;j/(n; + 1) = a; + 0(1/n;),  O(1/n;) = O,
and variance
(2.6) aj(n; — a; + 1)/(n; + 1)*(n; + 2).

If a;(n; + 1) is an integer, the mean is o; and the varianceis a;(1 — a;)/(n; + 2).
In any case, an application of Tchebycheff’s inequality establishes that

(2.7) P;j(A;) »pa; as nj— o forall j=1,---,k.

The procedure d* has the property that when Z has distribution P; the prob-
ability that a mistake will be made is bounded by the random variable P;(4;)
with a beta-distribution with parameters (a;, n; — a; + 1). Similar statements
hold for the other errors. This control is a consequence of having taken the num-
ber of blocks to go into 4; to be a;. The regions A; can be constructed in many
ways. This flexibility in the choice of the regions A; can be used to obtain pro-
cedures with other desired properties.

From (2.4), for large sample sizes the procedure is approximately size-
(a1, *+-, ag). For any size samples with a specific «; and n;, Pearson’s tables
[11] can be used to give a probability statement that the probability P;(4;)
is less than a particular value. Murphy [10] has given graphs which are con-
venient here. From these graphs, for example, with n; = 100, «; = .1, the prob-
ability is approximately .9 that the probability of error is less than .14.

3. Selection of tolerance regions. When considering procedures based on
samples from distributions, a natural limit is provided by procedures based on
completely known distributions. The next definition is a slight generalization of
one-given in [2].

DEeriNITION 3.1. Two sequences of diserimination procedures {d,’} and {d,"}
are said to be consistent as n, m — o if

Pid, = dn'} —p1 for =1,k

Interest here will be in comparing a sequence dy, ... », With a particular pro-
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cedure do, and it will be required to show that asny, -+, ng — o,
(3.1) Pi{du, yoyny = do} —p1 for 7 =1,k

The next theorem provides a discrimination procedure based on known dis-
tributions for ¥ = 2 against which nonparametric procedures of Section 2 can
be compared. It is a direct extension of a result of Welch [15]. Parts (i) and (ii)
follow from the Neyman-Pearson lemma as given in [9] and (iii) i is obvious from
geometry.

TueoreM 3.1. Let Py and P, be distinct absolutely continuous probability measures
defined on a Euclidean measure space with pdf’s fi and f, with respect to Lebesgue
measure N. Also assume W = fi(X)/fo(X) 7s an absolutely continuous rv defined
a.e. \.

(i) For 0 < a; < 1,j = 1, 2; there exist essentially unique constants c1 and ¢,
such that the sets

Ay = {z:fi(z) £ afi(x)}, A= {z:fi(z) > afi(z)},
have probabilities
Pi(41) = au, and P(4:) = ae.
Put Hy = A1Ay, Hy = AiA;, Hy = A1Asu A1 A, . Let
d(H,,H;) = 6; fzeH;, 1=0,1,2
(i) If e1 < ¢z, then d(Hy, Hs) is the unique (a.e.) size-(a1, o) procedure with

the property that the probability of reserving judgment is a minimum for both Py
and Py, i.e. Pi(Ho) and Py(H,) are simultaneously minimized. The procedure
d(Hy, H,) is exact size-(on, az).

(i) If e < a1, let c* be any number in the interval [cz, ci. Then, if both cyand
¢y are replaced by ¢ in the definitions of Ay and A, in (i), the resulting procedure
d(Hy, Hs) will be size-(ca, o2), but not exact size-(a1, az), and Pi(Ho) =
Px(Hy) = 0.

In the next two examples nonparametric procedures d* of Section 2 will be
constructed which are consistent with the procedures given by Theorem 3.1.

Exameire 3.1. Families with monotone density ratio. For 6 a real-valued param-
eter, let ® = {Py:6eRi} be a family of absolutely continuous probability
distributions with strictly monotone likelihood ratio in a real-valued statistic
T(z), i.e. if 6, < 6, , then fi(x)/f2(x) is strictly increasing in T'(z). The procedure
can be constructed on the space of T' (the real line) rather than the original space.
Let P,;” denote the distribution induced on the real line by T from Py; and let ¢
be the lower oy percentage point of P;” and ¢, be the upper az percentage point
of P,". Then a procedure of Theorem 3.1 is given by:

(l) If C1 é C2,

d=8 if T(z) > ¢,
= & if T(z) £ &,

= 50 if C1 < T(Z) = G
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(ii) If s > ¢, put ¢ = (¢1 + ¢2)/2, and
d = 31 if t > c,
= 52 if t é C.

We now set out a choice of tolerance regions which makes the procedure d*
of Section 2 consistent with the above parametric procedure. Let t;; = T(xs;)
for x;; the jth observation from population ¢ (= 1, 2). Let tia) , - - - , tin,) denote
the n; ordered values of the t; for each 7. Let Ay = (— o, fi@y) and

Az = (tang—apt1), + ). The procedure is then:
(1) If hay = trmg—ant) 5

a* = 4, if T(z) > bwy—artn,
= d, if - T(2) £ tiap
= do if tiap < T(2) = bang—astn)-
(i) If tiay > tang—antn) , PUb E* = (f1ap + trn—apn)/2 and
d*=d i T() =t
=dy if T(z) <t

The consistency of the procedure d* with d follows from the fact that ti@,) —» €1
and botn—ay+1) —p Ca .

Examrre 3.2. Univariate normal distributions. Let Py and P, be univariate
normal distributions with means wu and p, and variances o;” and o3” with o1* # 05"
Ifa = o® — o5’ > 0, the density ratio decreases from — o« to z = ( ooyt — mos)/
(o1> — 02'), and increases from 2o to + «. The sets 4, and A, of Theorem 3.1 are

(3.2) Air={ziry—bhh <z <z + b},
Ay = {zimg — by < z < x0 + ba},
with b; such that P;(4;) = ;,j = 1,2.If a < 0 the sets A; and A, are chosen in

similar fashion. Again, let d denote the procedure using A; and A; as in Theorem
3.1.

We now set out a choice of tolerance regions which will make the nonpara-
metric procedure d* of Section 2 consistent with the above procedure d based
on densities.

If o}, the sample means X, and sample variances s;i* can be used to con-
struct consistent estimators ¢ and £, for @ and x,, i.e. there are estimators d
and %, of @ and z, such that

(3.3) d —p a’
» and
(3-4) £0 —p Lo )
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as 1y — o and ne — o, When 4 > 0, take B; to be the interval (2yery) , Z1erp)),
i.e. the open.interval determined by the rist and r.nd order statistics subject to
the conditions:

(3.5) (a) Te— T = a1,
(b) the quantity |21 + Zi¢p — 2£0| is & minimum.

In words, B, is the union of those a; consecutive blocks for which |14, +
Tiryy — 28| is & minimum. If 2,4y < £0 < Ziay) , then (Ziry) , T1ery) is the interval
containing £ for which the difference of the distances of the end points from
%o is 2 minimum.

The complement of By, i.e. B,, is constructed in a similar fashion. Let B
be the open interval (s , Z2¢-9) With 75 and 4 determined by:

(3.6) (a) Ty — T3 = Ng — Q2 + 1,
(b) |Z2r) + T2y — 20| is & minimum.

When ¢ < 0, the sets B, and B are defined similarly, but with B; and B, the
intervals centered on &,.

With ¥ = 2 here, the procedure d* is determined completely by the sets
Sy and S; of (2.1), since So = X — Sy — S;. We give the procedure d* by specify-
ing these sets for all cases.

(1) If 21y 2 Tatryy A0 Tary) = Ta(ry) 5

S = A14; = {212 £ Tapy} U {212 = Doy},

Se = Ady = {21216 < T < Tagry).
(i) If 210y < Zary) AN Ziryy = Tatry »
81 = {212 = (T + T269)/2} U {217 Z Taerp},
8, = {2: (B + 2260)/2) S T = Taerp}-

(iii) If Z1¢r) = Taery AN Tigy) > Loy

8 = {212 = T2} U {7 2 (W09 + Tae)/2},
8y = {r:716) < T < (Tagry + T10w)/2}-
(iv) If 21y < gy AN Tagry) > Togrg) 5
Sy = {2:((T1ry + T269)/2) = T = (Taerp + Taen)/2},
S1 = Sz = X - Sz .
If & < 0, the procedure is constructed in similar fashion.
TuEOREM 3.2. The procedure d* above is consistent with the procedure d of this
example, as ny — «© and ny — ©. )
»ProoF. It is sufficient to show that the end points of B, and B, converge in

probability to the end-points of A; and A, given in (3.2). We show this for By
and B, is done similarly.
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If a > 0, A, is the interval (21, 22) where 1 and 2, are determined by the
properties

(3.7) (a) Fi(z:) — Fi(m) = au,
(b) o+ T2 = 220.

If 4 > 0, By is the interval (Zi¢) , T1r) Where iy and (-, are order sta-
tistics from the sample (2u, - - -, T1a,) selected to satisfy (a) and (b) of (3.5).

Since B is a tolerance region containing @ = [niau] blocks, Pi(B:) is a beta
random variable with parameters (a1, 1 — a1 + 1), and

(3.8) Py(B,) = Fl(xl(rz)) - Fl(xl(r,)) —pa; aS N3 —> ©.

Put e; = Fi(x;),j = 1,2, and u; = [mej], i.e. the greatest integer in nye; . Now
o1 = e — e, and moy = me; — mey. S0 Uy = a1 + wr + W, w = 0, 1. Also,

(3.9) Tiwp —p T, § = 1,2asn; — .
Combining (3.4) and (3.9)
Ty — o= % — T, J=1, 2= iy + Ty — 2B —p 11+ 22 — 200 = 0,

by (3.7) (b), as ny — o and nz — .
Now, from the manner in which i) and %1¢,) are chosen (8.5)(b), we know

that

[T10r + Zaery — 280] S [Brup) + Trupy — 280]-
Therefore, Ty + L1 — 28 —2 0 and
(3.10) Ly F Prery —p 220

The relations (3.3), (3.8), (3.10) and (3.7) and the functional properties of
F; (a normal distribution function) are sufficient to show that

Tigrj) P Xj j=12 as M, Ng—> ©,

as was to be shown. This completes Example 3.2.

In practice it may be required to construct a discrimination procedure in
situations where the information concerning the distributions is not sufficient to
suggest a likely parametric family on which to calibrate the procedure, as was
done in the last two examples. Also, in many cases we will not know optimal
parametric procedures, and even if we did it is likely that consistent non-
parametric procedures would be very complicated partitions of the sample space
which would be difficult to use in practice.

In selecting the tolerance regions 4;,j = 1, ---, k, which determine the
procedure d*, almost any information about the distvibutions can be utilized.
Tt appears reasonable to select A; in such a manner that the density of the
" distribution P; is expected to be relatively small on 4;. This will not lead to
procedures with optimal properties even for large samples but should in many
cases give reasonably good procedures.
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For example, suppose that the distributions are bivariate and all are thought
to be unimodal. Then a reasonable choice for each 4; would be to take it to be
the complement of a tolerance region A; which is chosen as a bounded convex
region containing (n; — a; + 1) blocks. This can be accomplished in many ways
and one which is easy to apply and appears to give good results is to use the
region whose boundary is made up of eight (or less) straight line segments sug-
gested by Tukey [12]. For higher dimensional distributions, similar regions
bounded by hyperplanes can be used.

Fraser [5] suggests an approach to forming a tolerance region for a bimodal
distribution. Writers on tolerance regions have given results useful in a variety of
situations.

We give an (artificial) numerical example to illustraté the construction of a
procedure. The data was generated by drawing samples of size n, = ny, = 81
from bivariate normal distributions P; and P, with mean vectors

(pu, pi2) = (0, 0), (par, p22) = (3,0),
and dispersion matrices

1 0 1 2
21= 5 22= .
0 4 29

Eight-sided regions of the type mentioned above were formed for &y = a; =0.1
(a1 = a2 = 8).The regions are shown in Figure 1. From Murphy’s [10] chart,
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the probability is approximately .90 that the conditional probability of either
error is less than 0.14. If an observed z falls in S; it is assigned to P;, if it falls in
S it is assigned to P, and if it falls in S, it is not assigned to either P; or P,.

4. Discussion. The procedures described in this paper are the first completely
distribution free discrimination procedures known to these writers. These pro-
cedures provide a control of the probabilities of errors for all distributions with
continuous distribution functions and for all sample sizes. They can be chosen so
as to have consistency properties for some families of distributions. Some words
of warning are in order. The size control is possible because of the use of the
decision space A which contains ‘“partial” decisions, including a reserve judgment
category. Whether this space is reasonable or not in a particular problem must
receive careful consideration. If the distributions are “close” together or if the
tolerance regions are unhappily chosen the probability of reserving judgment can
be large. In this situation if the procedure was used to screen a sequence of ob-
servations z;, « -, zm , then the expected number which would not be classified
can be large. None of these procedures are consistent for all possible distributions.

Fix and Hodges [2] suggested that an observation z be classified by considering
the h(ni, -+, nx) observations that are “closest”” to it and assigning it to the
distribution which contributes the largest number of these & observations. This
procedure is shown to be consistent for the class of distributions which have
continuous densities at the point z, if  is appropriately chosen. The same authors
studied small sample properties for some special cases in a subsequent paper [3].

In comparison with the procedures of this paper the Fix-Hodges procedures
will have the advantage of consistency against larger classes of distributions.
We believe the procedures proposed here are somewhat easier to use in practice,
particularly if they are to be used to screen a sequence 2, 2z, * -+ , 2m of observa-
tions. Once the calibration samples are available, the classification regions are
determined and we simply observe which region each z-observation falls into.
For one- or two-dimensional distributions this can be done by a simple graphing
method that could be carried out by unskilled personnel.
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