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1. Summary and introduction. In a recent paper [1], the authors presented a
procedure showing how the treatment design matrix for an irregular fractional
replicate of an N treatment factorial might be adjusted to furnish estimates
of the effect parameters as orthogonal linear functions of the observations. The
procedure may be summarized as follows: If the N X N design matrix X of the
complete factorial is partitioned into four submatrices X1, , X2, Xo1, Xo0 having
dimension (p + m1) X p, (p + m1) X m, my X p and me X m respectively, with
my + me = mand p + m = N, Xu would correspond to the design matrix of an
irregular fractional replicate consisting of p effect parameters. With the help of an
auxiliary design matrix A, the design matrix Xy; and the corresponding observa-
tion vector Ypim, of (p + mi) components were then augmented to become
X; = [X1u:X1uA] of dimensions (p + my 4 ms) X p, and Yy = [Y': Y'A] of di-
mensions (p + m1 + mz) X 1in such a way that [X;'X;] reduced to a diagonal
matrix. The success of the procedure depended on being able to find least squares
estimates for each of m. omitted observations, and this, in turn, was possible be-
cause it was possible to have least squares estimates for each of the effect param-
eters retained. In other words, this meant that both (X1:X1)™ and (XuXs) ™
existed. The structural relationship between the effect parameters retained and
the observations omitted was such that existence of one of the inverses implied
the existence of the other.

If the rank of (X {lXu) is not full, either as a result of defective or intentional
construction of the fractional replicate, the rank of (XXs.) will be less than full,
and, as a result, it will not be possible to have unique least squares estimates for
each of the omitted observations. When this is the case, the corresponding frac-
tional replicate would be what might be characterized as a singular fraetional
replicate. A question then arises as to how the results presented in [1] would be
affected by this singularity. The question has been resolved and analogous results
have been obtained through use of generalized inverses (referred to as g-inverses)
in the present paper. By way of an aid to the derivation of the analogues, a few
additional results on the ranks of the associated submatrices have also been
obtained.

2. Notation and the preliminaries. A set of » = p + m; observational equa-
tions is denoted by Y = XB, + e, where Y isa» X 1 random vector of observa-
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tions with elements y;, X is the » X p treatment design matrix with rank p = »,
B,isap X 1 vector of effect parameters, and ¢ is a » X 1 random vector of errors
with E(ee’) = o’I,. When the design matrix X is of full rank, (X'X) is non-
singular, and the least squares estimates of B, are given by B," = [X'X]"'X 'Y
with the covariance matrix as cov (B,7) = [X'X]™%". When, however, X is not
of full rank, that is, when [X’X] is singular, we have the solutions for B," as
given by B," = §°X'Y 4 (I, — H)Z, where 8 = X'X, S~ is a g-inverse of S,
H = 878 and has a special form; and Z is an arbitrary column vector. A particular
solution would be given by B,T = S~X'Y. Whatever form of a g-inverse we adopt,
either a unique one as defined and developed by Penrose in [3], or a non-unique
one as discussed by Rao in [5], or the one as referred to by Banerjee in [2], we
would have the following identity: [The interested reader may also refer to the
work of Price [4] and Zelen [6] in this context].

(2.1) S8 8 =248

In this context, we also note that when the full factorial is partitioned into
N orthogonal contrasts, X'X will be a diagonal matrix D. In case of a 2" experi-
ment, we shall have X’X = NIy = XX’, where 2* = N. This will not be true,
in general, for other factorial design matrices X, since they are only columnwise
orthogonal. However, we may introduce an analogous situation in the general case
by transforming the design matrix and the parameters as XB = (XD—*)-
(D'B) = WC, where W = XD}, C = D'B, D*is an N X N diagonal matrix
with diagonal elements dd di(i=1,2,---, N) being the ith diagonal element
of D. With this transformation, we shall have, in the general case,
W'W = Iy = WW’, restoring the required orthogonality. We also note that the
following relations will hold good for the transformed design matrix W, in

general:
Wi Wa| [Wa W
[W{2 W£2:| ' [Wn W22:|
[ WaWu+ WaWa WaWe+ WaWe| [I, 0
- [Wiz Wi + Waa Wa Wia Was + Wy WJ - [ 0 I,,.:l’
(2.2)

Wu Wi Wi Wa
|:W21 W ] ' [Wﬁ Wéz]

Wu Wiy + Wi Wi Wy Wiy + W Wéz:' [ Zosm 0
[Wn Wit + W Wia W Wir + Was Wia| [ 0 I,,.z:|

. where I,, I, Ipim, , Im, are identity matrices of dimensions p X p, m X m,
“(p + mi) X (p + mi1) and ms X m, respectively.
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It may also be noted here that the rank of the matrlx X is not altered by post-
multiplication with the non-singular matrix D

3. Structure and analys1s of a smgular fractional rephcate It was proved in
[1] that if, the rank of X2 is ma, or in other words, if Xs is of full rank, the
rank of Xy is also full, and vice versa. From this theorem, it can be inferred that,
if X2 is not of full rank, the rank of X; will also be less than the full. We would
therefore need to determine the rank of Xu with reference to the deficiency in
the rank of Xs, and for this purpose, we need the followmg lemmas.

Lemma 1. If Rank [X2Xos] ¢s me — s, then Rank [XuXa] = s and <

We shall prove this result and subsequently, some similar ones with reference
to the corresponding W—submatrlces, as the ranks will remain unaltered.

Proor. Rank [W21W21] cannot exceed ms, and we have

Im2 = [W21W21 + W22W22]-

Hence, m; < Rank [Wou W3] + Rank [WuWas or, ms < Rank [WaWa] + ma — s
or, Rank [Wszl] = s. Hence, the lemma.

We sha.ll show that the rows of WyuWa corresponding to the dependent rows
of Wy W3, are independent. That is to say, if the last s rows of WuWas are de-
pendent on its first me — s rows, the last s rows of WuWa will be independent.
In order to demonstrate this result, we need the help of the following lemma:

Lemma 2. Matrices [WuWai] and [WuWss] are commutative.

Proor. We have, by (2.2),

(WaWalWeWsl = —[WuWulWuWal
= —[WalW s WuWa] = [WaWaul[WaWal.
We have now obtained the aux1ha,ry results to prove the following theorem

TuEOREM 1. The rows of WyuWay corresponding to the s dependent rows of W2 Was

will be independent.
Proor. Smce W21W21 "l‘ W22W22 = Im2 y W21W21 and W22W22 Wlll be Of the

following form:
(WaWi] = mN L, + A,  [WuWu] = pN I, — A.

By Lemma 2, szWn and WuW,; commute; there exist orthogonal matrices,
say P’ and P, which will simultaneously dlagona,hze these matrices. Let it be
possible to arrange the rows of W or of szng in such a manner that the
(me — ) 1ndependent rows occupy the first (ms — s) positions, and let u;
(z=1,2, , ma — 8) be the diagonal elements of W Wy when reduced. Then,
we sha,ll have

P'WaWauP + P'WyuWyP = In,,
where P’ W WisP will be of the form:
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(w1 — m/N)
0
! , = —1 (ﬂmg—s - m/N)
PWoy Wee P =mN I,, + gy ’
0
- —m/N |
and P'WuW P will be of the form:
[ — (1 —m/N) A
0
P'Wu Wy P = pN I, + —7(7%-8 — m/N)
0
- m/N |

The preceding would show that the last s rows of WaWa are mdependent In-
cidentally, it may be pointed out here that if the rank of WaWoisr = s + t,
0=t =< my — s, then (me — s — &) of the diagonal elements of WasW 32 will be
unities.

We now prove a theorem on the rank of [X 1Xu] as compared to the rank of
(X0 X 52].

Tarorem 2. If Rank [X2Xss) = ms — s, then Rank [XuXu] =p — s

Proor. It has been proved in [1] that when Rank [X. W] is full, that is, when
Rank [W22W22] = mg, Rank [Wan] is also full that lS Rank [WuWn] = p.
The converse has also been proved in [1]. That is to say, that when Rank (W1uWa)
is full, Rank [WsWas] is also full. This result may be utilized to argue that when
[W22W;2] is singular, [W1,Wy)] will also be singular.

Arrange the rows of Wy, in such a manner that its independent rows, m. — s
in number, occupy the last positions, and its s dependent rows are pushed up.
A corresponding change of rows is also made in W3 . With such a change, and
. by virtue of Theorem 1, the uppermost s rows of W will be mutually independ-
ent. These s rows of Wy may now be added to the rows of Wy to form the new
Wy . By the theorem proved in [1], the new Wy, will now have full rank. We thus
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note that addition of s rows, which are mutually independent, raises the rank of
the old Wy to p. Hence, Rank [Wy] was equal to p — s, or Rank [W1, W]
=p—s

The following theorem was also proved in [1]: If X5, is of rank m., then the
least squares estimates Y‘,,,"z obtained from the observational equatlons X22YI
= — X 12Y,,+m1 (the error part not indicated) and expressed as A'Ypim, , are
such that X» = A'Xy . [The observational equations were obtained by equating
the omitted effect parameters to zero.] In the altered situation, however, that
is, when [X2X3] is singular, A’Xy; will not be equal to Xz . The problem starts
from this point. However, in this case, a “particular solution” for the estimates
of Y7, will be given by

Yh, = =87 XeX12V pim, »

where S, = [X X 22], and S;~ is a g-inverse of Sz A’ will have the form as given
by A’ = —8;, XnX12, and A'Xyy = — 8 XaoX1:Xu = 85 [XnnXso)Xn = Ho X
where S;™S; = H,.

If we change from X-submatrices to W-submatrices, there will be no structural
change in the above relations except that H, will then be equal to [WauWas -
[WxWss] with the corresponding change in S, , A, ete.

We make a special note of the fact that in the altered situation, premultiplica-
tion of Xy, by A’ gives us H.Xo instead of X . This ealls for a reexamination of
of the results proved in [1], where [X:2X3s] was considered to be of full rank.

We prove below two theorems to indicate that the previous results would,
formally, still hold in the altered context.

THEOREM 3. If Xu, Ypim, , and epim, are augmented respectively by A'Xy,
A'Y pim, and A'em.mJl to become X, Y1, and e, then the least squares estimates
B,”*, obtained from the observational equations Yy = XiB, + e, are algebraically
the same as the least squares estimates, B,*, obtained from the observational equations
YP+m1 = XllBP + €ptm, -

Proor. We have to show that B," as obtained from [X1,Xu|B," = X11¥ pym,
is the same as B,* obtained from

[X nXn + X {IA-A-,XII]Bp* = [X{1 + X {IAA']Y,H.,,,l .

We may transform the design matrix and the parameters such that XB = WC,
and after we have proved the corresponding results in terms of C,™ and C,*, we
may go back to B, and B,* by the inverse of the same non-singular transforma-
tions to prove the required theorem. The theorem will therefore be proved, if we
can show that C,* as obtained from

(3.1) WuWylCpt = WY pim,
is the same as C,*, obtained from
(3.2) WaWu + WA W]C,* = Wit + WALV i, ,

where A is the corresponding expression in terms of W-submatrices.
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We shall prove this theorem by substituting [W{qu]'W{le,,l [which is a
particular solution of C,* obtained from (3.1)] for C,” in the expression on the
left hand side of (3.2) and show that equations (3.1) and (3.2) are consistent.

Substituting the above expression for C,* in (3.2), we get, by repeated applica-
tion of the identities in (2.2),

(WuWu + W{IAA,WH][W;IWII]_W{IYMI
= WaWulWaWaul IWaWulCp™ + WiWauW ol W oW so] W 52]™
W WisWal Wi Wal (W WulCp*
= [WaWulCpt — W W s W sl WoaW s3] W s W go] War[ W1 W]
W W] W aWulCp*
= W;1Yp+m1 + W;1W12W;2[W22W;2]_[WnW;z]_WmW{zYp+mx
= Wi + WALV pim, -

We now need to show that cov (C,7) = cov (C,*). In order to demonstrate
this result, we need the help of the following identity.
Lemva 3. [WuWulT Wi + WuAA'] = Wi, where T™ = [WuWn +
WA W] ™
Proor. Since equations (3.1) and (3.2) are consistent, we shall have
WaWulT Wit + WA 1Y pim, = WitV pim,

for all values of Y pym, . Hence, (WuWuT W1 4+ WnAA'] = Wi

TurorEM 4. cov (B,T) = cov (B,¥).

Proor. The theorem will be proved, if we can show cov (C,") = cov (C,*).
We have cov (C,7) = [WuWu]o>. Now, cov (C,*) will be given (see [1]) by
cov (C,*) = T"Wull + ANTWuT "

By Lemma 3, we have Wi,WuT Wyl + AA'] = Wy . By postmultiplying
both sides of the above by the transpose of W1; and its equivalent, we shall have

WaWulT Wil + AN + AN WuT IWalull = WaWa.
Thus, by (2.1), we shall have
[W;1W11]_ = [T_W{I[I + AA’]2W11T_]-
This would follow from the following reasoning: Let
F = T"Wull 4+ AATWuT".
Then, we shall have, by (2.1),
(3.3) 88~8 = SFS,

where § = [W1;Wy]. From (3.3), we have S(F — S7)8S = 0. Hence, since S < 0,
“ we shall have either F — 8~ = 0,ie. F = 87, or, (F — 87)8 = 0, otherwise,
(i.e. by both (F — S7) and S being appropriately singular). In the latter case
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also, we must have FS = 878 = H (say). Now, any matrix, which would re-
duce S to the form of an H by premultiplication, will, by definition (see [2]
and [5]), be a g-inverse, although it may not be unique. Hence, the theorem.

It is thus noted that the main theorems proved in [1] hold good even when
the fractional replicates are “singular.”

The above results form the basis for analysis of a singular fractional replicate
and bring out the relationship between the effect parameters that are retained
as against the observations that are omitted.
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