The Annals of Mathematical Statistics
1968, Vol. 39, No. 2, 643-656

RELATIONSHIP OF GENERALIZED POLYKAYS TO UNRESTRICTED
SUMS FOR BALANCED COMPLETE FINITE POPULATIONS'
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1. Introduction and summary. The polykays of Tukey [8] and the bipolykays
of Hooke [7] were generalized by Dayhoff [4] for arbitrary balanced complete
finite population structures. The expected mean squares in the analysis of vari-
ance of such structures may be expressed as linear functions of variance com-
ponents corresponding to the factors classifying the population. Since the vari-
ance components serve to measure the relative influence of the factors it is often
desired to estimate these quantities. Unbiased estimates may be obtained by
substituting observed mean squares for population mean squares and solving the
resulting linear equations for the variance components. Alternative expressions
for the expected mean squares involve linear functions of quantities called cap
sigmas (Wilk [10], Zyskind [11], White [9]), and the variance component esti-
mates may be expressed as linear functions of sample cap sigmas. Dayhoff [3]
shows that cap sigmas are generalized polykays of degree two and that the
variances and covariances of variance components are linear functions of gen-
eralized polykays of degree four.

Since generalized polykays have the property of inheritance on the average
(i.e., averages of sample generalized polykays over all random samples are the
same generalized polykays of populations responses), the variances and co-
variances of the unbiased variance component estimates may be estimated un-
biasedly by linear functions of generalized polykays of degree four. The gen-
eralized polykays are in turn linear functions of generalized symmetric means
(Hooke [6], Dayhoff [4]) which may be computed directly from the observations.
However, such computations are very difficult to carry out by hand because the
formulas may involve thousands of distinct generalized polykays and gen-
eralized symmetric means. Furthermore, direct computation of generalized
symmetric means for moderately large numbers of levels of the factors is not only
impossible to carry out by hand but even far too costly using the most advanced
digital computers, because a single generalized symmetric mean may require
hundreds of billions of operations in its evaluation [2].

In order to make the computations of the variance-covariance matrix for
estimated variance components economically feasible several requirements must
be met. First the variance-covariance formulas in terms of the generalized sym-
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644 EDWARD J. CARNEY

metric functions must be generated by computer algorithms. Secondly, a way
of computing the generalized symmetric means must be developed which signifi-
cantly reduces the number of additions and multiplications. Thirdly, the above
algorithms must be made general enough for application to the many possible
balanced complete response structures which may be encountered as the rela-
tionship of nesting among the factors varies.

In meeting the above requirements it is necessary to determine a logical sys-
tem of relationships which allows the development of a few relatively simple
algorithms to perform the various tasks on the computer, and which may be
“applied generally to the many different structures possible. The present paper
results from an attempt to find such logical relationships among the various
quantities which may be used in programs for digital computation of the variance-
covariance matrix of estimated variance components. Study of the patterns of
subseript restrictions which specify the generalized symmetric means leads to the
development of algebraic relationships between the generalized polykays and the
generalized symmetric means, which may be formulated in terms of a lattice of
ordered partitions. Similar relationships exist between the numerators of the
generalized symmetric means and quantities called unrestricted sums. These
latter quantities may be computed much more efficiently than the generalized
symmetric means themselves. (Hooke [6] gives an example of such a computa-
tion for a two factor structure using quantities similar to the unrestricted sums.)
The various relationships, in addition to their intrinsic theoretical interest pro-
vide the necessary logical basis for the development of digital computer algo-
rithms for performance of the algebraic and numerical computations for estima-
tion of the variances and covariances of the variance component estimates.

2. Notation. Four types of quantities will be used in the following sections.
These will be denoted by various types of brackets enclosing the “ordered parti-
tions” or sets of ordered partitions as indicated below:

Quantity Simple Generalized
Symmetric mean (@) (@/a’/--/a)
Polykay () (a'fa’/--- /o)
Symmetric sum || lo'/o?/ - - - /o]
Unrestricted sum [a] ['/d’/ -+ /o]

The symbols «, o', within the various types of brackets are the “ordered
partitions” and may be considered as lists of symbols, & = aj * -+ am, while
the quantities o'/a’/- - -/’ will denote a set of f such lists, and may be con-
sidered as f X m matrices, each row representing the subscript restrictions for a
factor. The abbreviation gsm will frequently be used for “generalized symmetric
mean.”

3. The lattice of ordered partitions.

DerFiniTioN 3.1. An ordered partition of weight m is defined to be a set of
m(m — 1)/2 consistent statements of equality or inequality for m positions.
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Any list of m symbols, if it can be determined which are equal and which un-
equal, is a representation of an ordered partition, and will be called an ordered
partition. Ordinarily an ordered partition will be specified by a list of m symbols,
but the equality-inequality of the symbols determine the ordered partition, not
the particular symbols themselves.

DErINITION 3.2. Let @ = ooy «++ am and 8 = BiBz - - - Bm be ordered partitions
of weight m. Then « is said to be an ordered subpartition of 8 (@ < 8) if and only
if @; = o; implies 8; = B; for all pairs (¢,7) 1= 1,2, -+ ,m;j = 1,2, --- ,m.

It is clear that if two ordered partitions, « and 8, of equal weight, are such that
a < Band B8 < «, then they are the same ordered partition.

TureoreM 3.1. The set L., of ordered partitions of weight m, with the subpartition
partial ordering, is a lattice.

Proor. From the definition above it follows that the subpa,rtltlon relationship
is antisymmetric and transitive so that L,, is a partially ordered set. Let « and 8
be two ordered partitions of weight m and define vy = o A 8 to be the ordered
partition (au, 81), (a2, B2), -+ , (am , Bn) formed by the ordered pairs (a:, B:),
;= 1,2, .-+, m. a; # o; implies v; # v; and 8; 5 B; implies v; # v; so that
v £ a,v £ B and hence v is a lower bound of  and 8. Let § < « and 6§ £ 8.
Then §; = §; implies a; = «; and 8; = B;, so that v, = v; and hence v is a greatest
lower bound.

Now consider the ordered partition A = « v § constructed according to the
following rules:

1. )\1 = 0 Ifa, = o, orifBi = Bllet)\,- = 0.

2. Let R, be the set of all integers ¢ = 1,2, -- -, m such that \s = 0. If £ ¢ B
and a; = a;, or B; = B; let \; = 0. Continue until there exists no j such that
aj = a;orB; = B;withie Ry. If Ry = {1,2, - - - , m} then \ is the 1 part ordered
partition 00 - - - 0.

3. If Ry = {1,2, ---, m} let ¢ be the first integer not in R, and set \; = 1.
Construct successively sets Ry, B2, - - , setting X\; = k, if ¢ ¢ R, considering for
the set R; those positive integers less than or equal to m which are not in the set
Rou --- URi,untilall\;,72 = 1,2, - - - , m, are determined.

Let X be so constructed for ordered partitions & and 8 of weight m. If a; = «; or
B: = B;j then \; = \; by construction so that X is an upper bound for « and 3. Let
7 and j be integers such that \; = \;. Then there is some set R of integers ¢ = ky ,
ky - -- , k. = j such that there exists a set of pairs of equal elements of « or 8, say
€&, = €y, €k2 = 6y, 60 = e, where each pair €}, = €., , is the pair
Ok, = Ok,,, O the pair Bi,,, = Bk,,,. If 8 is any ordered partition such that
a = 6andB < 4 then 8, = Ok, Ok, = Okg, ***, Ok,_, = Ok, . Thus &; = 6; ; and
hence \; = \; implies §; = §; so that A < §, and X is the least upper bound of
« and 8.

It follows that L, is a lattice, since the set of ordered partitions is partially
ordered and each pair of elements has the greatest lower bound & A 3 and the
least upper bound « v 8.
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4. Symmetric means and polykays. An ordered partition & = ouaz -- - an
determines a partition of the integer m with the sets of identical symbols as parts.
For example, 001232 determines the four part partition 2, 2, 1, 1, of 6. Let ¢(«)
denote the number of parts of the partition determined by o. Thus ¢(a) may be
defined as the number of distinet symbols ; in any representation of «.

Consider a set of real numbers {y:; 7 = 1, 2, -+, n} and the set of all n™
m-tuples (with repetition) of these numbers. Let @ = 416; - - - 4, denote the list of
subscripts of an m-tuple y;, , Yi, , * * * » Yin , and let m, denote the product iy,
of the numbers having the subscripts a. There aren(n — 1) -+ (n — ¢(a) + 1)
= (n)s@ m-tuples such that the list of subscripts @ form the ordered parti-
tion c.

DerFINITION 4.1. Let « be an ordered partition of weight m. The mth degree
symmetric sum |«| is defined by

lal = Za==a Ta y

where the summation is over all sets of subscripts a such that @ (when viewed as
an ordered partition) is the ordered partition a.
DerInTTION 4.2. The mth degree symmetric mean (a) is the symmetric sum ||
divided by the number of terms in this sum: (@) = D i o/ (1) (@) -
DrrFiNITION 4.3. Let o be an ordered partition of weight m. The mth degree

0000

0123

Fig. 1. The lattice of ordered partitions of weight four
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polykay (a) is defined implicitly by the formula
(@) = Zﬂéa (8).

DeriNiTION 4.4. Let the elements of the lattice L. of ordered partitions of
weight m be o, 'a2, .-+, a" in some order which does not viola te the partial order-
ing, say «' < o’ implies 7 < j. The matrix A with elements

N =1, if o = o
Ai; = 0, otherwise,

will be called the incidence matrix of the lattice.

The definition of polykays may now be written as () = A(«) where (&) and
() denote the vector of all symmetric means and all polykays of degree m.

Because of the ordering of the elements o’ the matrix A is upper triangular with
ones on the diagonal. Let T = A — I. The strictly triangular matrix 7' may be
partitioned into m® blocks according to o(a’). If ¢(a’) = ¢(a’) we must have
o' = o’ or o' and o’ not comparable. Therefore T has diagonal blocks which are all
zero. From this it follows that 7T is nilpotent of index m, which leads to the follow-
ing expression for the inverse of A.

TuroreM 4.1. Let A be the matriz of Definition 4.4, Thenif T = A — I, T =1

AT = T (-1
Proor. A(D " (—=1)T%) = (I + T) 25 (—=1)T7 = 273 (—=1)’'T’
+ ;n;ol(_l)JT.H'l — TO + Tm = 7y0 — I.
As a result of the theorem we may write
(a) = AHa) = (2279 (—1)'T")(e),
where (), {e) denote vectors formed by the sets of polykays and symmetrie
means, respectively.

We note that the form of the inverse implies that if A;; = 0 then [A7"];; = 0,
which is useful later on. We further note that the definition of polykays here is
equivalent to that of Hooke [7], the difference in the present development being
the utilization of the algebraic properties of the ordered partitions.

5. Unrestricted sums.
DerFINITION 5.1. Let o € Ly, . The mth degree unrestricted sum [«] is defined by;

[a] = Zaéa Ta -

Because of Definition 4.1 and 5.1 we have the theorem:
TuaEOREM 5.1.

[o] = A .

This theorem allows the polykays to be computed in terms of the unrestricted
sums. To make this explicit let N denote the diagonal matrix nii = (7)4@) .
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Then we have
(¢) = Ae) = AN o] = AN (A7) [o] = (A'NA)[al.

For the fourth degree case the symmetric matrix AN "(A™)’ is shown in
Table 1. This gives formulas such as

(0012) = (n(n — 1)(n — 2)(n — 3))~{2n[0000] — (n — 1)([0001] + [0010])
— 2([0100] — [1000]) — (n — 2)[0011] — ([0101] + [0110])
+ (n — 2)[0012] + ([0102] + [0120] + [1002] + [1020]
+ [1200]) — [0123]}.

Regarding (0012) as the simple polykay (2, 1, 1) (i.e., considering only one sub-
seript), this is

(2,1,1) =(nn — 1(n —2)(n — 32 2y — 2(n + 1) 29’ 2y
+ (n+ 3Ny — (.

6. Crossed structures. Consider an f-factor crossed structure. A generalized
symmetric mean for such a structure will be denoted by (a'/a’/- - -/o’), where
o' is an ordered partition for the 4th factor subsecripts.

DeriNiTION 6.1. Let the symbolic multiplication ® satisfy- the following
conditions:

(a) a{a) ® b{B) = ab(a/B), where a and b are real numbers.

(b) (a/B) ® (v) = (&) ® (B/7) = (a/B/).

(e.1) (@) ® ({B) + (v)) = (a/B) + (a/¥).

(e.2) (o) + (8) ® (v) = (a/v) + B/7)

DerINTTION 6.2. The generalized polykay (o'/a’/- - - /a’) for an f-factor crossed
structure is given by the formula

(/a’/ - [d]) = () ® (') ® -+ ® ().

Consider the f-fold cartesian product L = L,, X Ln X -+ X L, . The elements
of L will be written as a’/a®/- - - /a*, where the a* are elements of L.

DerinNITION 6.3. Let a and 8 be elements of L. Then « will be said to be a sub-
partition of 8 if and only if a” < 87,7 = 1,2, -+ -, f. Using this definition the
elements of L are partially ordered, and the following theorem is immediate.

TurorREM 6.1. The elements of L form a lattice with the greatest lower bound and
least upper bound of any two elements «, B given by o A B8 = o™ A /0™ A
B2/ /a" A B anda v B = o™ v B1/a™ v B2/ /a" v BY, respectively.

The symbolic multiplication can be extended to apply to the numerators of the
generalized symmetric means and to the corresponding unrestricted sums. Con-
sider, for example, a crossed structure having n; levels, k = 1,2, - - - , f. We may
write the formula for the vector, P, of polykays in terms of the vector, Uz, of
unrestricted sums, for the kth factor (ignoring all the others) as

Py = A_lNk_l(A_l)’Uk = F,U,, say.
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The formulas for the generalized polykays may now be expressed as
P=P®P.®- - ®P;
= (FiUy) ® (FU,) ® -+ ® (FUy)
=F®F® - - @F)(Ui® U, ® -+ ® Uy)
= FU, say.

The operator should be interpreted to be the Kronecker product of matrices,
with multiplication of symbolic elements taken to be the symbolic multiplication
of Definition 6.1, while multiplication of numeric elements is taken to be ordinary
multiplication of real numbers. Thus F is the usual Kronecker product of the
matrices Fy, Fy, --- , Fy, while U is the Kronecker symbolic product of the
identical symbolic vectors Uy, U, , - -+ , Us. The situation is simply illustrated
by the second degree polykays for a two-factor crossed structure.

We have, for a single factor,

(1) - e ()

Here A is the matrix [; 1] and Ny is diag (ns , nx(nz — 1)), giving

mo= O = i - 0 [T

The two factor generalized polykays are then
(00/00)
(00/01) | _ ((00) (00)\ _ [00] [00]
oo | = (60) @ (69) = m e (§) ()
(01/01)
mng —m —M 1" [00/00]

w0 228
1 -1 -1 1] \[01/01]

ie.,
(00/00) ‘= (mama(my — 1)(ne — 1)) ™ {mama D25 205 % — ma 220 (225 9)°
—ma 205 () + (i 225y,
(00/01) = (mama(ma — 1)(ne — 1)) {—m 206 250k + ma 206 (2i9)°
+ 25 (iya) — (i 259’}
(01/00) = (nama(ma — 1)(ng — 1)) M —me Doi 295 + 206 (20594)°
+me 205 (i ya)t — (26 259,
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(01/01) = (nana(na — 1)(na — 1)) 206 2050k — 226 (259a)’
— 2 (Xaya)t + (22 i)

7. Nested structures. The levels of a nested factor in a balanced complete
structure are different within every different combination of the levels of nesting
factors. If the subscripts of a nested factor, say the sth, are numbered sequentially
1,2, .-+, n;, then the order of the subscripts of the nested factor within any
combination of levels of nested factors is arbitrary. Any particular assignment of
subscripts to nested factors results in an artificial crossed structure. The general-
ized symmetric means for the nested structure are defined in terms of the crossed
structure as follows [4].

DeriNtTION 7.1. Let (a'/a’/+ - - /o!)* denote a generalized symmetric mean for
the artificial crossed structure. Suppose that the sth factor is nested in the factors
numbered iy, j2, -+ , 7. Then the generalized symmetric mean formed by the
ordered partition 8/8%/---/8,8° = a™ A a” A --- A o’ is generalized sym-
metric mean for the nested structure.

DeriNiTION 7.2. For a given balanced complete structure an f-fold ordered
partition o'/a’/- -+ /o’ will be said to be admissible if and only if the ordered
partition for each nested factor is a subpartition of the greatest lower bound of
the ordered partitions for all nesting factors.

Consider, as an example, a structure with factors A and B crossed and C
nested in 4 and B. Then, letting the number of levels of the factors also be denoted
by A, B and C, the gsm

(0011/0012/0012) = >~ yuyiimysime/ A(A — 1)B(B — 1)C°,

where Y.~ denotes the sum of all terms such that the unequally primed sub-
seripts remain unequal, is an admissible one for this structure because
0012 < 0011 A 0012 = 0012. On the other hand the ordered partition 0001/0010/
0011 is not admissible because 0011 is not a subpartition of 0001 A 0010 = 0012.

One may consider forming all possible artificial crossed structures from a given
nested structure by permuting the subscripts of nested factors within each com-
bination of nesting factors in all possible ways. The operator notation E; will
denote the process of averaging a function defined on such a crossed structure
over all of these artificial crossed structures. A definition of the gms’s for nested
structures which is equivalent to 7.1 [4] is:

DEFINITION 7.3. (o) is a gsm for a balanced complete structure if and only if
there exists a gsm (8)* for an artificial crossed structure such that EB)* = (a).

Tt follows that if « is an admissible ordered partition for a balanced complete
structure then Eia)* = (a).

The generalized symmetric sums || for an arbitrary balanced complete strue-
ture are simply the numerators of the gsm’s (@). The expressions for the denomi-
nators of the gsm’s for nested structures are slightly more complex than for
crossed structures. Let a be a simple ordered partition of weight m. Then o deter-
mines a partition of the integer m. Let ¢(a) denote the number of parts of this
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partition. Then for a crossed structure the number of terms in the gsm

(al/otz/' . ~/o[f) is

(1) p@)(M2)o@d) * *+ (1) s(ay

= m(m — 1) -+ (m — ¢(a') + Dng(na — 1) ==+ (ma — (%) + 1)

coemp(ng — 1) - (ny — ¢(a)) + 1).

For a nested structure gsm let v° denote the glb of the ordered partitions for

factors which nest the ¢th factor. Each part, v(; , say, of the partition determined

by the ordered partition v* determines an ordered partition, a(; , say, formed by

the positions of o* which correspond to the jth set of equal positions of 4°. Then

the gsm (a'/a’/- - - /o) has the number of terms II:iz s:, where

$(ri) ;
s = Jlim1  (nd) sy -

The generalized polykays and unrestricted sums for nested structures are de-
fined in terms of the expectation, E;, over all artificial cross-labeled structures.
Let h, h* denote functions defined for the nested and artificial crossed structures
respectively. In particular let («), («)* and [a], [a]* denote generalized polykays
and unrestricted sums. Then we define, for an admissible ordered partition c.

DErFINITION 7.4.

(a) = Ea)™
DzrINITION 7.5.
o] = Eja]™.
The following theorems complement the above definitions.

TarorEM 7.1. Let o' /o’ be an ordered partition for a two factor structure in which
the first factor nests the second. Then

Efa’/a)* = (a'/d’), i o <o
= 0, otherwise.
Proor. Since the condition for a*/a’ to be admissible is &’ < o' the first asser-

tion of the theorem is merely a restatement of Definition 7.4. Suppose o’ £ o
Then

(711)  Eya'/a))* = Eif(a)) ® ()} = Bf( X A"@)) ® (o)},
where A is‘the element in the sth row and rth column of A™. A particular term of
this expression may be written
() ® (a)}* = Bife) ® (XN )}
= D NEa" /o)
= 2\ /a" A o)
= > N /a" A o)
= Eif(@) ® (2N A a))}F
= Bif(@) ® (2N DZatgarpar ()},
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Now o' < @ A o implies ¢’ < o"and &' < o’ and conversely so that this may be
written;
Eif(@) ® (o)} = Bif(e) @ 2N 2 M)} *

= Eif{a") ® (2o Nhla’) Do NN}

= Eif{a") ® 2ehi(a’)oi}*

= Eif(@") ® Mi(a))}*

= MEif(e) ® ()}

r

Since Mi=1 o =

0, otherwise,
we have
Ef@) ® (o))} =0, if o £a"
Substituting in (7.1.1) gives
Eya’/a®)* = B D2 NN ® (o))}

Now, examination of the form of the inverse given by Theorem 4.1 shows that
A" 7 0 implies \i» = 1. AlsoXi» = 1and A; = 1, imply &’ < &” < ' so that then
Mi; = 1. Thus either A*A,; = A"\;; or A"A,; = 0, and we may write

Eya'/a’)* = B 2o AN’y ® (a)}* = NyBuf 2o, N7 (o) ® ())}*

from which the second assertion of the theorem follows.

COROLLARY 7.1. If the ordered partition 6 = 6"/6°/- - - /6’ is not admissible for a
balanced complete response structure, then, for that structure E,(9) *=0.

The proof of the corollary is obtained by considering a single nested factor and
one of its nesters for which the conditions of the theorem apply.

The theorem and corollary show that the set of admissible ordered partitions
serve to specify a set of generalized polykays for an arbitrary balanced complete
structure. The computation of the generalized polykays for such structures is
aided by the theorems which follow:

TuEOREM 7.2. Let @ = o'/d’/- - /o’ denote an admissible ordered partition for
a given balanced complete structure. Then [a] = [a]*.

Proor. By definition [a] = Eia]*. Let Y, Y®, ... Y™ denote all the
different crossed structures which may be obtained from the given structure by
randomly cross labeling the nested factors within each combination of nesting
factors. Let []*® denote the unrestricted sum determined by « for the structure
Y®. Then

la] = Eifa]® = M7 D35 [a]®.

" Consider ar. y two of the crossed structures, say ¥® and Y%, Y% can be ob-
tained from Y*® by permuting the labels (subscripts) of some one or more of the
nested factors. Let m* denote the product of m elements of Y® with the sub-
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scripts torming the f X m matrix 8. We may write

® _ ®
I = >pzams,

[ = Dpsa m®”,

where the summation is over all sets of subseripts 8 which form an ordered
partition of which « is a subpartition (using the partial ordering of Theorem 6.1).

Consider any term of [a]®, say m® . Suppose that the permutation Y® — Y*"
changes % to 1r7(k'). Let o be the (simple) ordered partition for the ¢th factor
and let the m positions of &’ be ai®, as’, -+ , am'. If the sth factor is nested in no
other factor it follows that v* = 8, since the subscripts of nonnested factors will
not be changed by the permutation. On the other hand suppose the ¢th factor to
be nested in those factors numbered 11, G, ,%. Thena' = a™ A -+ A a®
since « is admissible. Suppose @;° = a; . Then ﬁJ = B!, since B = a. But since
B;' = ﬁJ is a subscnpt within a single combination of all nesting factors it follows
that v;" = v}, and therefore that v = «. Thus

[ = [? =[] = -+ = [ = [d],

[e

as claimed.

This theorem means that an unrestricted sum for an admissible ordered par-
tition of a balanced complete structure is the same function of the observations
whatever the structure. Which ordered partitions will be admissible depends, of
course, upon the given structure.

The computation of generalized polykays for nested structures is facilitated
by the following theorem which is essentially a rule for eliminating terms in the
expansion of generalized symmetric sums before performing the symbolic multi-
plication. The proof, which depends upon several lemmas, may be found in [2].

THEOREM 7.3. Let o /a?/- - - /o' be an admissible f-fold ordered partition for a
balanced complete response structure. Then

ai‘/ai“’/- . ./aif|
= Zrl Zrz e er >\ni1>\rziz N )\Ui!)\lhfl)\quz e )\qﬂ!. [a"/arz/' . ./arf]’

where a% is the glb among o™, &, - -+, a* which correspond to factors nesting the

kth factor. -
Application of the theorem may be illustrated by computation of the second

degree generalized symmetric sums for a two factor structure in which the first
factor nests the second. The admissible generalized symmetric sums are [00/00],
|00/01], |01/01] (01/00 is inadmissible because of Definition 7.2). For a crossed
structure we would have the formulas

|00/00] = [00] ® [00] = [00/00]
|00/01[ = [00] ® ([01] — [00]) = [00/01] — [00/00]
[01/01] = ([01] — [00]) ® ([01] — [00])

= [01/01] — [01/00] — [00/01] + [00/00].
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Applying the theorem the first two formulas remain the same but the third
formula becomes

[01/01] = ([01] — [00]) ® [01] = [01/01] — [00/01].

8. Unique generalized symmetric functions. The set of admissible ordered
partitions of a given weight for a given f-factor balanced complete structure
determines a set of generalized polykays, a set of generalized symmetric sums, a
set of generalized symmetric means, and a set of unrestricted sums. However,
because multiplication is commutative these sets of symmetric functions are
redundant. In order to obtain a unique set of symmetric functions, the set of
f-factor ordered partitions must be reduced to the set of f-dimensional partitions.
The number of such partitions of fourth degree, and hence the number of general-
ized polykays, symmetric sums, symmetric means and unrestricted sums is
(15" + 9.7 + 14.37) [5], [1]. While the formulas obtained from the ordered
partitions are valid, in actual computation it is extremely desirable to reduce the
set of formulas to those for the set of f-dimensional partitions, and to transform
the terms to representatives of this same set and collect coefficients.

9. Utility of results for computation. The computation of generalized polykays
of degree four using the generalized symmetric means directly is not in general
feasible for crossed structures having more than 2 factors. Using algorithms based
upon the relationships above it is possible to handle four-factor crossed structures
and five factor nested structures economically [2]. The gain in computing capa-
bility appears more significant when it is noted that the number of 4th degree
generalized polykays for a four-factor structure is

(15 + 9.7 + 14-3*) = 3057,

compared to 33 4th degree generalized polykays for two crossed factors. On the
other hand, computation of the 519,153 4th degree generalized polykays for a six
factor crossed structure does not seem feasible with the most advanced digital
computer. With respect to nested structures the situation is somewhat improved
not only because the number of generalized polykays is reduced, but also because
those which require the largest number of arithmetic operations (these are un-
restricted sums whose symbols contain disjoint 2-2 partitions) are often among
those which are inadmissible because of the nesting [2].
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