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LIKELIHOOD RATIO TESTS FOR RESTRICTED FAMILIES
OF PROBABILITY DISTRIBUTIONS!

By RicuArD E. Barrow
Unaversity of California, Berkeley

1. Introduction. Recently, a conditional likelihood ratio test has been pro-
posed for testing for trend in a stochastic process of Poisson type [Boswell
(1966)]. This is a departure from the standard literature in that the underlying
family of distributions considered is essentially nonparametric. His main result
is the asymptotic distribution of the likelihood ratio under the null hypothesis of
no trend. :

We consider likelihood ratio tests for certain geometrically restricted families
of distributions. For example, let

Fo = {F|F(0) = 0 and —log [1 — F(2)]z™" nondecreasing in = 0}.

Then F, is known as the IFRA (for increasing failure rate average) family of
distributions. These distributions play an important role in the mathematical
theory of reliability [Birnbaum, Esary, and Marshall (1966)]. However, not only
is the family nonparametric but there is no sigma-finite measure relative to which
all F ¢ &, are absolutely continuous. Hence, the usual concept of maximum like-
lihood estimate does not suffice. Kiefer and Wolfowitz (1956), p. 893, propose a
generalization of the maximum likelihood estimate concept which we adopt. Let
Fy, Foe% and let f(-; F1, F.) denote the Radon-Nikodym derivative of F;
with respect to the measure induced by Fy + F,.

Dermvrrion 1. F is called the mazimum likelihood estimate relative to & if £
satisfies

supreg [ [ (f(X o5 F, )1 — f(Xi;F, F)7'} = 1,

where X = (X, X;, - -+, X,) is a random sample.

This definition is easily seen to coincide with the usual definition when the
family § is dominated by a sigma-finite measure.

Now consider the problem of testing Ho:F ¢ o against the alternative H;: F ¢
F — 5, where F C F. Let Fo( F) denote the maximum likelihood estimate relative
to Fo(F) in the sense of Definition 1. We define the likelihood ratio statistic
A.(X) based on a random sample X as follows:

DeFINITION 2. A,(X) is called the likelthood ratio statistic where

An(X) = TR {f(Xs5 Bo, YL — (X5 Fo, )7
We will be concerned with the properties of A,(X) for various restricted families
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548 RICHARD E. BARLOW

of distributions §, © F. Two unbiased tests ¢™ and ¢™* for testing for constant
versus increasing (or decreasing) failure rate are proposed. Both tests are based
on statistics which are likelihood ratio statistics for related problems. Sampling
experiments indicate that ¢** has greater power against Weibull and gamma
distribution alternatives than both ¢* and a uniform conditional test based on
the total time on test statistic (see Section 6).

It will be convenient henceforth to let X3 < Xp < -+ = X, denote the order
statistics from a random sample based on a distribution F.

2. IFRA distributions. Let 5, = {F|F(0) = 0 and —log [1l — F(z)lz™ 7 in
z = 0}. The maximum likelihood estimate (MLE) F, relative to %, under Defini-
tion 1 puts probability at each of the sample observations as well as between
observations. Letting F{Xx} denote the F probability of observation X, the
likelihood becomes

L.(X|F) = n! [[1 F{X 3.
From the definition of IFRA distributions we see that
(2.1) Lu(X|F) = JTiulexp (—NiaXs) — exp (—A:X3)]

where 0 = A = M = - -+ = \.. We maximize likelihood subject to these restric-
tions by letting Ao = 0 and A\, = + «. Letting A\; = \; — Aj—1 where Ay = 0 and
M. = —+ o, we see that (2.1) becomes

(2.2) Lu(X|F) = JIi5 [exp (—AN: 22 X,)[1 — exp (—ANX )]l
Maximizing (2.2) subject to AN; = 0 (1 =< 7 < n) we see that
(2.3) A = X Mlog X7 X; — log i X 2 0
are the maximum likelihood estimates of AN(1 = ¢ =< n). Substituting (2.3)
in (2.2) we see that the maximum likelihood according to definition 1 becomes
(2.4) La(X|Fy) = I3 01 — Xy 20 X Pix/ 3o X ).
If we let & denote the class of all distributions on the positive axis, then # is the
usual empirical distribution function and the likelihood ratio statistic for testing
H,: F ¢ {IFRA} versus H;: F # {IFRA} becomes
(25)  £&(X) = o[[IF0 — X/ZFXPERX/ DXL
We consider the test, ¢, which rejects Ho when

A(X) = ¢a
where ¢, is determined by

Po{An(Y) = ca} = a

G(z) =1 — e¢“forxz = 0, and Y denotes an ordered sample from G.

Percentage points for —log A,(Y) are given in Table 1. This choice of a test
based on the likelihood ratio statistic is motivated by the following theorem.
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TABLE 1*
Percentage points for —log An(Y)
Percentiles
Sample Size »
.01 .05 .10 .90 95 .99
2 0.015 0.073 0.14 2.63 3.34 4.91
3 0.21 0.48 0.71 4.33 5.28 7.25
4 0.58 1.07 1.42 5.91 6.89 9.00
5 1.10 1.75 2.22 7.50 8.60 11.09
6 1.65 2.49 3.07 8.96 10.11 12.66
7 2.37 3.35 3.93 10.41 11.63 14.13
8 3.05 4.15 4.83 11.83 13.18 15.65
9 3.72 4.97 5.73 13.20, 14.66 17.54
10 4.50 5.84 6.66 14.62 16.12 19.16

* Note that we use lower percentiles for testing exponentiality versus IFRA and upper
percentiles for testing IFRA versus DFRA.

TueoreM 2.1. If Fy'Fi(x)/x is nondecreasing for x = 0, F1(0) = F3(0) = 0
and X(Y) denotes an ordered sample from F1(F3), then
(2.6) An(X) Z 5t Aa(Y)

where <, denotes stochastic ordering.
Proor. Let ¥(z) = Fy'Fi(z), Y* = ¥(X,) and note ¥(z)/z 1 inz = 0.
Also, Y;* is distributed as the sth order statistic from F, . Now

U(X;)/X: £ V(X;)/X; for j =1
implies
Xo/ 2 hi X 2 W(X2)/ 25-eW(X;) = Y/ 20 Y™
Since h(z) = x(1 — z)""™ is increasing in (0 < z < 1), it follows that
TS WXy 2 X5) za [T MY/ 220 Y5)

where (Y; £ Y, £ --- £ Y,) is an independent ordered sample from .

(2.6) follows immediately. []
We say that Fi <« Fs (i.e., Fy is starshaped with respect to F3) if Fy'Fy(x) /x
is nondecreasing for # = 0. From the proof of Theorem 2.1 it follows that F1 <« F,

implies

I

Pr{An(X) = ca} S Pr,{Aa(X) = cal.

Hence the power of the likelihood ratio test is greater at F, than at Fi when

Fi <« F,.
COROLLARY 2.2. The test, ¢, based on the likelihood ratio statistic An.(X) s

unbiased at all significance levels for the problem
Hy: F ¢F, = {IFRA} versus H;: F 5, = {DFRA]}.

The derivation of the maximum likelihood estimate for IFRA distributions is
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due to Marshall and Proschan (1967). It is interesting, that even though this
estimate is not consistent, it leads to a test, called ¢™* in Section 6, which seems
quite powerful.

3. IFR distributions. Let § = {F | F(0) = 0 and —log [1 — F(z)] is convex
for £ = 0}. This is the class of IFR (for increasing failure rate) distributions.
Proschan and Pyke (1965) have proposed a rank test for testing constant versus
increasing failure rate based on the normalized spacings. Bickel and Doksum
(1967) have shown that this test is asymptotically inadmissable among rank
tests based on normalized spacings. Bickel and Doksum (1967) and Nadler and
Eilbott show that a uniform conditional test (see Section 6) is asymptotically
superior to the Proschan-Pyke test. Sampling experiments performed by Nadler
and Eilbott and independently by the author indicate that the uniform con-
ditional test has significantly greater power than the Proschan-Pyke test for small
samples against Weibull and gamma distribution alternatives.

M. Boswell (1966) studied a similar problem concerning Poisson type processes.
His statistic based on a conditional maximum likelihood ratio test is essentially
the same as the likelihood ratio statistic studied in this section. The main result
in Boswell’s paper is a derivation of the asymptotic distribution of his test sta-
tistic under the null hypothesis. In contrast, we concentrate on small sample
results.

Since IFR distributions can have a jump at the right-hand end of their interval
of support it is clear from Definition 1 that we need only consider estimators
absolutely continuous with respect to Lebesgue measure on [0, X,,) with a jump
at X, (see Barlow and Proschan, (1965) p 26). Hence

where f is the density of F on [0, X,). Since
1 — F(z) = exp [—fﬁ r(u) du) where r(u) = f(u)/[1 — F(u)]

for0 = u < X, , we may write

flz) = r(z) exp [—f’ér(u) dul, 0=z2< X,
and F{X,} = exp [— ["r(u) du.
Hence ‘
(3.1) log Lu(X |F) = D225 log r(X:) — 2or [o¢ r(u) du.

The problem of maximizing (3.1) subject to r(z) nondecreasing was solved by
Grenander (1956) and independently by Marshall and Proschan (1965). They
show that the problem can be reduced to maximizing

2o log (X)) — 2005 (0 — 0) (X — Xor(Xy)
“subject to (X ;) £ r(X,) £ -+ = 7(X,-1). The maximum likelihood estimates
are :



LIKELIHOOD RATIO TESTS 551

(X)) = minyz i maxu <, [(v — w)((n — u)(Xup — Xu)

+o (= )X, = X)) 7]
fori = 1,2, ---,n — 1. The maximum likelihood is
(3.2) Lu(X | F) = [JTIi5 #(Xa))le ™.

The exponent on e can be easily verified using the definition of # and observing
that

2ot [T i(u) du = 2085 (n = 4) [EA(u) du.

Let §o = {F|F(0) = 0, F(z) =1 — ¢ forx < T and F(T) = 1, \ > 0,
T > 0}. Then %, denotes the class of exponential distributions with possible
truncation on the right. Consider now the problem of testing Hy: F ¢ &, versus
H;: F ¢F — Fo. The choice of Hy was determined by the fact that the MLE’s
Fy and F are both absolutely continuous with respect to Lebesgue measure on
[0, X,) and place mass at X, . The likelihood under H, will be

Ln(x I FO) — [H:r;-ll )\e—)\x;]e—xxn
and the maximum likelihood will be
(3.3) Lu(X|Fo) = ((n — 1)/ Xo)" e ™,

According to Definition 2, the likelihood ratio statistic for testing for truncated
exponentiality versus IFR and not truncated exponentiality will be

(34) AKX = (n = D/ X)) TS X,
<

Ifl/(n — DX — X1) £ 1/(n — 2)(Xs — X3) £ -+ 2 1/(X0 — Xu1)
so that
;'(Xz) = 1/(n_1)(Xl+1_X'b)7 1.:1727'”7"'—1,

then (3.4) becomes
AMX) = (0 = 1)/220 X" TS (0 — )(Xen — X0).
As in Section 2 we consider the test, ¢*, which rejects H, when
AK(X) = ca
where ¢, is determined by
Po{d*(Y) S o} = o

The asymptotic distribution of —log A,*(Y) can be found in Boswell (1966),
p. 1572. A table of percentage points obtained using Monte Carlo methods is
contained in Table 2.

4, Unbiasedness of the likelihood ratio test for IFR. The likelihood ratio test
has greater power under the alternative than under the null hypothesis. To show
this we need to introduee some auxiliary results.
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TABLE 2
Percentage points for —log A,*(Y)
Percentiles
Sample Size n

.01 .05 .10 90 95 .99
2 0.010 0.049 0.10 2.29 2.97 4.58
3 0.017 0.086 0.17 2.89 3.68 5.41
4 0.026 0.12 0.22 3.23 4.09 6.06
5 0.029 0.14 0.26 3.52 4.43 6.38
6 0.038 0.16 0.30 3.70 4.63 6.84
7 0.038 0.18 0.32 3.79 4.73 6.73
8 0.046 0.20 0.35 3.95 4.87 7.14
9 0.051 0.22 0.38 4.08 5.02 7.26
10 0.053 0.22 0.40 4.22 5.14 7.37

Given a sequence of nonnegative real numbers {271, plot > :2; versus ¢
and interpolate linearly between (0, 0), (1, z), ---, (n, 21 + -+ + 2.). Let
Z1 = % = -+ = %, denote the slopes of the least concave majorant to this graph
in successive intervals. This operation converts the original sequence into a
noninereasing sequence and will be useful later on. For convenience, call Z; the
monotone regression function? (a function of the index) of the original function z;
(see Brunk et. al. (1955)). Note that z; = 2, = --- = Z, can also be obtained by
successive averaging of the original sequence until it becomes nonincreasing.

We say that H(z,, 2, -« -, 2,) is a Schur function if

(2i — 2;)(0H /d2; — 0H /0z;) = 0

for all vectors z and 4, j = 1, 2, ---, n. This concept is needed in the following
useful lemma.
LemMA 4.1. Let (21,20, -+, 22) and (2, 20, -+, zx') denote two nonnegative

sequences such that
Dz = 2ial for r=1,2--,n—1

Z{' 2 = 21" Zi'-
Then the inequalities are preserved under monotone regression; i.e.,
ZLl?iZ >::=12¢’ (r=1,2---,n—1)
(1) Z?=1 Z; = ZLl z.
If H is a Schur function then
(i) H(z,%, %) 2 H&, 2, -, &).
~ Proor. (i) is obvious since the least concave majorant to the {z;} sequence
"lies above the least concave majorant to the {z;} sequence.

and

2 Personal communication with Professor Brunk.
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Since (i) holds, 2 = % = -+ = 2,;% = -+ = 2, and D 12, = D {2 we
have (ii) by the Schur, Ostrowski theorem (see Ostrowski (1952)). []

TueorEM 4.2. If Fy'Fy(x) is convex for x = 0, F1(0) = Fy(0) = 0 and
X(Y) denotes an ordered sample from Fi(Fs), then

An*(x) ést An*(Y)

where = denotes stochastic ordering.
Proor. Let ¥;* = F,'Fi(X:) and note ¥;* =,, Y. Let

= (n — ) (Xoa — X/ 287 (n — 0)(Xepn — X)
and &l = (n — (Y= Y5/ 20 (0 — ) (Vi — YVi5).
Since Y* = F,'Fy(X;) and Fy7'Fy is convex )

(n — ) (Yin — Y)/(n — )(Xin — X0)

is increasing in ¢ = 1, 2, - - -, n. It follows from Lemma 3.7 (i) of Barlow and
Proschan (1966) that

Z; 2/ Zi 2 2207 ’/Zl vl =

and hence D _j2; = iz forr = 1,2, ---,n — 1. Let {z} and {2} denote the

monotone regression estimates of {2 } and {2/} respectively. Let
_H(xl y Xay t 0y xn—l) = H:;_i.l Z;

and note that H is a Schur function. Since {z:} and {z;} satisfy the hypotheses
of Lemma, 4.1, it follows that

—H(%, %, -, 2na) < —H(#, %, -, 20y).
Hence
(4.1) {2 (n — ) (Xep — X" [ HX)}T
S (I (n — i)Y — YOI #/yH)y
Since
Si(n — i) (Y — Y*)/ X5 (0 — i)(Xen — X)) < XA V420X

for (1 <r <'n — 1) by Lemma 3.7 (i") of Barlow and Proschan (1966) it follows
that

(42) 207 (0 — (X — X9/ 200 X
S 2 —)(Yia— Y/ LY
(4.1) and (4.2) together imply
’ AK(X) S AK(Y).
The theorem follows from (Y3, Y2, -+, Y,) =« (Y15, Vo¥, -+, V,5). [
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COROLLARY 4.3. The test, ¢*, based on the likelihood ratio statistic A,*(X) is
unbiased at all significance levels for the problem

H,: F ¢ {DFR} versus  Hy: F ¢ {IFR}.

6. Distribution of the maximum likelihood ratio statistic under the exponen-
tial assumption. From the computations in Boswell (1966) it is clear that the
distribution of A,*, even under the null hypothesis, is exceedingly complicated.
For this reason we have had to use Monte Carlo methods to obtain the percentage
points tabulated in Table 2. However, the distribution of A,* under H, is quite
smooth as we show in

TurorEM 5.1. The likelihood ratio statistic A, has a nonincreasing density on
(0, 1) under the exponential assumption. :

Proor. Let 0 = Wy < Wy £ --- £ W, denote an ordered sample from the

uniform distribution on (0, 1). Let
Ui=W;— Wi, 1=12---,n— L
Then the random vector (Uy, Us, -+, U,—1) has joint density
h(ur, uz, « -+, Uny) = (n — 1) !foruié 0,7=1,2,---,n—1,0 = u + u
+ -t =L
=0 otherwise.

Let (Ui, U, -+, Unu) denote the modified vector (Ur, Uz, -+, Upa)
under monotone regression and subject to Uy = Uy = ++- = U,
The likelihood ratio statistic

AKY) = ([0 Yo/ (n — DI LT #(Y0))

is distributed as (n — 1)" 7 J]#™ U under the exponential assumption. No-
tationally it will be convenient to replace n — 1 by n. Hence we need only prove
that P{]]7. U: < 2} is concave in z £ (0, 1). Let I denote the usual indicator
set function and observe that

PII:mU: 2} = ! [ [uisoosutetuzi @ -+ @ < 2lduy -+ du,.
Integrating out on u, we have
P{II[1U. s 2} = n‘ff oo Sty <1 f(Us, ct Una 3 2) dun v Uy
where
Fur, + o Un132) = Joguygtougmer—uy_; Il =+ G < 2] dun
=min[l —w — -+ — Up_1, Ua(2)]

and u,(2) is the solution of z = 4 -+ - @,—11, for fixed us, Uz, +++ , Un .
We claim that z is a strictly increasing convex function of u, and, therefore,
that u, is a strictly increasing concave function of z. It follows that f(u:, -- -,
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Un—1 ; 2) 18 a concave function of z for fixed (u1, U2, - -+, un—1). Hence
P{H? U: = 2} = n! ff t fui§0,u1+'~~+un—1§1f(ula oy Upea ;20U U

is a concave function of z.
- — P . -k %
To show z = % -+ 1,1y, is a convex function of u, , define (@, -+, Gn-1)

to be the monotone regression modification of (ui, 42, *--, u.—1) subject to

- ¥ - % —% . . o . .
W = W = -+ = Un—. Clearly 2 is piecewise convex for u, in the intervals

[0, 7F_s), [3¥_s, dar_s), - -+, [1 — @ — -+ — @"]. Tt is therefore sufficient to show
that 2 has a continuous derivative in u, . We show that the right and left hand
derivatives at w, = @, are equal. For u, < ar_y

(de/dun) = @™ -+ & (Upra + + - + Una)/(n,— 1 —))"7
Foruk_y < u, < ur_s

(dz/dun) = @™ -+ & ((Upa + -+ + un)/(n — 7))
For @, = d:_l, obviously
(Ui + - FUna)/(n =1 —7) = (upn + -+ + Uaa +u)/(n — 7). [

For n = 2 and n = 3 it is a straightforward computation to obtain the dis-
tribution of A,*(Y). Clearly, for n = 2, A,*(Y) = U, and the likelihood ratio is
uniformly distributed on (0, 1). Forn = 3

Ag*(Y) = 4[71172 = 4U1U2 lf U1 Uz
= (Ui + U,)* if Uy £ Us.

v

Hence
Pa{As*(Y)
and
Po{As*(Y) < u} = 23u + buflog (1 + (1 — w)Hu™ + (3(1 — (1 —w)h)*~

The density is gs(u) = & + 2 log [(1 + (1 — w)H)u™).

It is easy to check that g is decreasing, gs(0) = + =, gs(1) = % and g5'(0) =
gs (1) = — . It is tempting to conjecture that this behavior is true in general,
ie., ga(0) = +,¢,/(0) = g, (1) = — forn = 3.

6. Tests for constant versus monotone failure rate. In Section 3 we obtained
the likelihood ratio test, ™, for testing truncated exponentiality versus IFR. By
Theorem 4.1 this test is clearly also unbiased for the problem of testing constant
versus increasing failure rate.

Marshall, Walkup and Wets (1966) have characterized the class of unbiased
tests for constant failure rate versus nondecreasing failure rate. These are based
on functions A(z;, 2, - -+, ¥,) satisfying the conditions

A

u} = ff(“luzéiu,ul Zug} 2 dwy dus + ff(1+u2 <ud,u; Suo) 2 duy du2

(6.1) (i) h is homogeneous;

(il) Z£=1 (2; — 2jp1)0h(21, - - - 1 %a)/02:20, j=1,2,---,n—1,
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forallzy > 22 > --- > z, > 0. The corresponding test consists of rejecting ex-
ponentiality if A(X;, Xz, ---, X,) = ¢ where ¢ is a suitable critical number
and X; = X, = --- = X, are the order statistics labelled in reverse order.

Whether or not a UMP unbiased test exists in this class of tests is unknown.
In Section 2 we proved that F < 4 G implies

A,,(X) gat An(Y) .

Hence we can define a test, ¢**, which rejects exponentiality in favor of the
IFRA hypothesis when A,(X) = ¢_. where

PofAn(Y) = c1a} = 1 — PofAn(Y) < 010} = a

For this test we would use the upper percentile points of —log A,(Y) given in
Table 1. By Theorem 2.1, this test is unbiased.

Note that although the test ¢** is not a likelihood ratio test it is based on a
statistic, A.(X), which is essentially the maximum likelihood under the IFRA
assumption. This may help to explain the fact that ¢™* performs better (see
Figure 1) than the test ¢* even though the latter test is (almost) the likelihood
ratio test for this problem.

Of course there are also many unbiased tests for constant failure rate versus
IFRA. Marshall, Walkup and Wets (1966) have characterized the class of all
such tests. These are just the tests based on functions f(21, #2, - -+ , 2.) having
the properties: Y

(6.2) (1) fis homogeneous;

(2) Z{:=1xﬂ9f(x1, X, ,%s)/0x; = 0forj=1,2,---,n — 1land all
2T =22, 2 0.

The test associated with f would reject exponentiality if f(X;, X, ---,X,) S ¢

where ¢ is some suitable critical numberand X; = X, = --- = X, are theusual

order statistics labelled in reverse order.

The class of tests based on statistics satisfying (6.2) is of course smaller than
the class of tests based on statistics satisfying (6.1) since IFR implies IFRA but
not conversely. Whether or not a UMP unbiased test exists in the class of tests
defined by (6.2) is unknown.

An important test because of its simplicity and good power is a uniform con-
ditional test (see Cox and Lewis (1966), p. 153) based on the mean of the rectangu-
lar distribution. This has been described by Bartholomew as the oldest known
statistical test [see discussion in Cox (1955)]. Epstein (1960) adapted this test
to the life testing problem and called it test 3. The test is based on the total time
on test up to the 7th order statistic (¢ = 1,2, ---,n), i.e.,

T(X:) = 2ja(n —j+ 1(X; — Xja).

If (1 < r < n) failures are observed from a sample of size n, then the total time
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26
'Likelihood Ratio' Statistic for IFRA
1.0 'Total Time on Test' Statistic
[ 'Likelihood Ratio' Statistic for IFR o &
c o
IF RA o
WEIBULL f) TME °
B _IFR
O
/

IFRA
Tll"lEm GAMMA

IFR ©)

n = 10

20,000 random
simulations for
each point

0 - T T s T T T T T
1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
WEIBULL AND GAMMA SHAPE PARAMETER
Fia. 1

on test statistic is 2 .ims T(X:)/T(X,). Under the exponential hypothesis

Z = X T(X) — 3 — DT(XAT(X)(12)Hr — D

is approximately N (0, 1) even for relatively small r. If F < @, then it follows
from Lemma 3.7 (i’) [Barlow and Proschan (1966)] that

(X)) /T(X,) Ze 21 T(Y)/T(Y).

1



558 RICHARD E. BARLOW

Hence a natural test, ¢™**, rejects exponentiality in favor of IFRA if
T T(X)/T(X)) Z ¢a
where
Pe{2i7 T(Y)/T(Y)) Z ¢af = e

Investigations by Cox (1955) show that the analogue of this test for random-
ness in a sequence of events is the most powerful test of the Poisson hypothesis
against the alternative of a time-dependent Poisson process with occurrence rate

AE) = &P
TABLE 3
Percentage points for the total time on lest statistic
Percentiles
No. of Failtures »

1 .05 .10 .90 .95 .99

2 0.01 0.05 0.10 0.90 0.95 0.99
3 0.14 0.32 0.45 1.55 1.68 1.85
4 0.39 0.68 0.84 2.15 2.33 2.61
5 0.69 1.04 1.25 2.75 2.95 3.30
6 1.02 1.43 1.65 3.34 3.57 4.00
7 1.41 1.83 2.08 3.90 4.15 4.60
8 1.77 2.24 2.52 4.49 4.75 5.24
9 2.12 2.65 2.94 5.06 5.35 5.88
10 2.52 3.06 3.38 5.62 5.92 6.47

See Bartholomew (1956), Bickel and Doksum (1967) and Nadler and Eilbott
for further results concerning this test.

It should be noted that the test described above and whose power is plotted
in Figure 1 against Weibull and gamma alternatives is not a conditional test as
such. Percentage points for this test are tabulated in Table 3.

From Figure 1 it can be seen that although ¢** has greater power than the
test based on the “total time on test” statistic, they are fairly close. ¢ is distinctly
inferior and the Proschan-Pyke test, if plotted, would be seen to be distinctly
inferior to ¢*. Unfortunately, asymptotic comparisons of the total time on test
statistic with ¢** are not available at present.

There are many additional unbiased tests of exponentiality versus IFRA or
IFR which should perhaps be considered. Recall that all of the associated sta-
tistics are necessarily homogeneous. A statistic related to the IFR likelihood ratio
statistic is

A = (/X X)) [T (n — 6+ 1) (Xi — Xisa).

If there are no reversals of the normalized differences (they should decrease under
IFR alternatives) then A,* and A,** agree except for the factor nX; and a con-
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stant. If G'F is convex, then
ALK (X)) Se AFH(Y).

The test which rejects exponentiality when A,**(X) is sufficiently large is related
to a test derived by Moran (1951) for a problem concerning renewal processes.
Under the assumption of exponentiality

W = —2log A.**(Y)/[1 + (n + 1)/6n]

is asymptotically distributed as a x° variable with n — 1 degrees of freedom.
Epstein’s (1960) test 8 uses this statistic. Monte Carlo experiments by Zelen
(1961) indicate that the power of this test is poor for small samples against
Weibull distribution alternatives.

7. Concluding remarks. All Monte Carlo calculations used to produce Tables
1, 2, 3 and Figure 1 were based on 20,000 simulations.

It is perhaps worth noting that the percentage points in Table 2 and the results
of Section 5 also apply to the Boswell test for trend in a stochastic process of
Poisson type. However, if the sample size is » and one is using the Boswell sta-
tistic then one should locate percentage points in Table 2 corresponding. to the
number n + 1. A proof for unbiasedness of the Boswell test can be made, pat-
terned after the techniques of Section 4.

The number of possible likelihood ratio tests which may be constructed using
the definitions in section 1 is fairly large. Recall that the DFR (for decreasing
failure rate) maximum likelihood estimate is absolutely continuous when
F(0) = 0 [Marshall and Proschan (1965)]. Hence one can construct a likelihood
ratio test for the following problems:

(1) versus Hy:F a truncated exponential

H,:F DFR and then IFR (F(0) = 0);

(2) wversus Ho:F IFR
H,:F DFR and then IFR (F(0) = 0).
Note that the maximum likelihood estimates under both the hypothesis and the
alternative in each case will be absolutely continuous except at the largest ob-
servation, X, , if we impose the additional restriction F(0) = 0.
Clearly we can also construct a maximum likelihood test for
(3) versus Hy:F truncated DFR
H,:F DFR and then IFR.
There is no difficulty in constructing maximum likelihood tests for the problems:
(4) versus Hy:F exponential
H,:F DFR (F(0) = 0)
and
H,:F DFR (F(0) = 0)
(5) wversus Hi:F has decreasing density (F(0) = 0)
) and F not DFR.
The maximum likelihood estimate assuming a decreasing density is given by
Grenander (1956). Recall that if F is DFR, then it has a decreasing density.
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