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NON-DISCOUNTED DENUMERABLE MARKOVIAN DECISION MODELS!

By SueLpon M. Ross

Stanford University

0. Introduction. We are concerned with a process which is observed at times
t=20,1,2, - to be in one of a possible number of states. We let I (assumed de-
numerable) denote the number of possible states. If at time ¢ the system is ob-
served in state ¢ then one of K; possible actions must be taken. Unless otherwise
noted we shall assume throughout that K; < < for all z.

If the system is in state ¢ at time ¢ and action K is chosen then two things
oceur: :

(i) We incur an expected cost C(¢, K) and

(i) P{X1 = j| Xo, Do, -, X: = i, A, = K} = P(5,j:K) where {X,} 155
denotes the sequence of states and {A,} X} the sequence of decisions up to time
t+ 1.

Thus both the costs and the transition probabilities are functions only of the
last state and the subsequently made decision. It is assumed that both the ex-
pected costs C(%, K) and the transition probabilities P(7, j:K) are known.
Furthermore it is assumed that the expected costs are bounded and we let M be
such that |C(¢, K)| < M for all ¢, K.

A rule or policy R for controlling the system is a set of functions
{Dx(Xo, Mo, -+ , X¢)} x4 satisfying

0= DK(XO’AO;”' 7Xt) = 17K= 071°"’th
and Yzt Dx(Xo, Ao, -, Xy) = 1

for every history Xo,A0, -+, X, ¢ =0,1,---.

The interpretation being: if at time ¢ we have observed the history
Xo,4, -+, X; then action K is chosen with probability Dx(Xo, - -, X4).

We say that a rule R is a stationary if Dx(Xo,4, -+, X; = %) = D; x inde-
pendent of Xo, Ao, +** , A and ¢t. We say that a rule R is stationary determin-
istic if it is stationary and also D; x = 0, or 1. Thus the stationary deterministic
rules are those non-randomized rules whose actions at ¢ just depend on the state
at time ¢. We denote by C” the class of stationary deterministic rules.

Following Derman [4] the process {(X:, A¢)t = 0, 1, 2, ---} will be called a
Markovian decision process.

Two possible measures of effectiveness of a rule governing a Markovian
decision process are the expected total discounted cost and secondly the expected
average cost per unit time. The first assumes a discount factor 8 ¢ (0, 1) and for
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a starting state Xy = < the objective is to minimize
¥(5, B, R) = En 170 C(X:,Ar)B"
The second eriteria tries to minimize for a given Xy = 7
o(4, R) = lim supnsw Br D10 C(Xe, As)(n + 1)7%

Since costs are bounded and adding a constant to all the costs C(z, K) will
affect all rules identically in both criteria we may without loss of generality
assume that costs are non-negative.

We shall be concerned in this paper with the average cost criterion. The first
results for the average cost criterion which did not assume a finite state space were
given by Taylor [9]. Taylor worked with a replacement, model (see Section 4)
and gave sufficient conditions for the existence of a stationary deterministic
optimal rule. His method was to treat the average cost problem via the known
results of the discounted cost problem.

Derman [4] has recently dealt with the countable state, finite action general
Markovian model and has given a sufficient condition for the existence of a
stationary deterministic optimal rule. Unfortunately, this condition—the exist-
ence of a bounded solution of the functional equation g 4+ f(¢) = ming {C(7, K)
+ > P(34, j:K)f(j)}—cannot be checked directly. Derman’s paper [4], how-
ever, in conjunction with a later joint paper [5] of Derman and Veinott shows
that a sufficient condition for the above is that: (i) for each rule R ¢ C” the re-
sulting Markov chain is positive recurrent, and (ii) there exists some state (say 0)
and a constant T < o such that Mx(R) < T for all 4, and all R ¢ C” where
M (R) denotes the mean recurrence time from state ¢ to state 0 when using
rule R.

In the first section of this paper, by following the approach of Taylor, weaker
sufficient conditions than those given by Derman are determined. We also show
the connection between the average cost optimal rule and the optimal discounted
cost rules—speaking loosely, the former is a limit point of the latter rules.

The second section shows how, in a special case, the average cost case can be
reduced to the discounted cost case.

The third section deals with e-optimal rules and a sufficient condition is given
for the optimal discounted rules to be e-optimal.

The fourth section deals with the replacement problem; and it is shown that an
optimal rule always exists, but it may not be of the stationary deterministic

type. ,
1. On the existence of a stationary deterministic optimal rule. We shall need
the following result given by Blackwell [1]: If K; < « and C(z, K) < M for all
7, K, then under the g-discounted criteria with 0 < 8 < 1 there exists a stationary
deterministic rule Bg such that (%, 8, Bg) = ming ¢(%, 8, R) for all ¢ ¢ I. Further-
mote, {¥(4, B, Rg), ¢ ¢ I} is the unique solution to

(1) ‘p(% ﬂ’Rﬂ) = ming {C(i; K) + 8 >:1P(7':.7:K)¢(.7’ B, Rﬁ)}’ ’L'SI,
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and any stationary deterministic rule which when in state ¢ selects an action
which minimizes the right side of (1) is optimal.
Following Taylor, for any B¢ (0, 1)¢,7 ¢ I, let

(2) fﬂ(zij) = 'l’(zy B, Rﬂ) - ‘p(], B, Rﬁ)’
One has by simple manipulations that

(3) 95(3) + f5(3, §) = ming {C(4, K) + B 2 P(4, s:K)fa(s, 1)}

where gs(j) = (1 — B)¥(J, B, Rs). Note that |gs(7)| < M for all 8, j. We need the
following assumption:

AssumprioN (*). For some sequence 8, — 17 there exists a constant N < o
such that

Ifs,(3,5)] < N forall r=1,2,---, all gjel.

TaeoreM 1.1. If Assumption () holds, then there exists a bounded solution to the
functional equation

(4) g + f(3) = ming {C(5, K) + 22; P(5, 5:K)f(7)},  del

Proor. Fix some state s. By Assumption (%) fs,(%, s) is uniformly bounded for

=1,2,---,and all 7¢I. Since I is denumerable wg can get a subsequence
{8} =1 such that fs_,(%, s) — f(2) for all 7. Since gs(s) is bounded for all 8 we can
also require that gs,,(s) — g as r — . Therefore, by (3) and the bounded con-
vergence theorem we have that

g + f(4) = ming {C(3, K) + 2, P(4, j:K)f(7)}- QED

Remark. If ¢(4, 8, Rp) is an increasing function of ¢ for each 8, then f(7) is an
increasing function of <.
TureorREM 1.2. If there exists a bounded set of numbers {g, f(4)}, © € I, such that

(5) g + f(3) = ming {C(3, K) + 225 P(5,:K)f(7)}, <el,
then there exists a stationary deterministic rule R* such that
g = ¢(i, R*) = ming o(, R)  forall i

and R* is any rule which, for each i, prescribes an action which minimizes the
right side of (5).

Proor. See Derman [4] or Derman and Lieberman [3].

ReMARK 1. It also follows from [3] that g = lim, Y 7 EsC(X:,A:)| Xo = @l/n
for all 4; and that ¢ < lim inf, D> ;o Ez[C(X:, As)| Xo = 4]/n for all rules R,
all .

ReMARK 2. For any subsequence of {8,} = there is a sub-subsequence {8,"} 71
such that lim,.. gs,~(8) exists. By Theorem 1.2 this limit must be g. Therefore,
‘g = lim, gg,(s) = lim, (1 — B:)¥(s, B-, Rg,), for all states s. For B ¢ C" let i((R)
be the action R chooses when in state 2.
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Derinrrion. For rules R, , R ¢ C”, we say that R, converges to R (R, — R, or
lim, R, = R) if for each ¢ there exists N, such that #(R,) = ¢(R) foralln = N;
Note that any countable sequence of rules R, ¢ C” has a convergent subsequence.

TuroreMm 1.3. If Assumption () holds, then:

(i) for some subsequence {B. }res of {B}res and some R*, R* = lim, R, ,

(ii) 4 R = lim, Rs,, where {8} s is a subsequence of {8,}r=1,
then R is optimal, i.e., (2, R) = g forall e I.

Proor oF (i). Let {8,'}i— be the subsequence for which fs (%, s) — f(4) and
gs,(8) —¢g as r— o. Now it is easily seen from the definition of fs(7,s)
that, when in state ¢, Rg, selects the action which minimizes C(7, K) +
B, > P(4,5:K)fs,(j, s). But R* selects the action which minimizes C(7, K) +
> P4, :K)f(5). The result follows since K; < .

Proor oF (ii): Fix s and let {8,"};= be a subsequence of {8, }r— for which
lim, gs,~(s) and lim, fs ~(%, s) exist for all . Denoting these limits by g and f(7)
it follows from Theorem 1.2 that any rule which, when in state 7, selects the action
which minimizes C(z, K) + Y_; P(3, 7:K)f(j) is optimal. But Rs,» minimizes
C(i, K) + 8" 2.j P(3, j:K)fs,»(j, s) and Rg,» — R. Therefore, R is optimal.

QED

Thus we see if K; < « forall¢ ¢ I, and Assumption (%) holds, then there exists
an optimal stationary deterministic rule which is a limit point of {Rs:0 < 8 < 1};
and any rule which is a limit point of {Rs,} - is optimal. The following theorem
gives a sufficient conditon for Assumption () to hold.

TuareoreM 1.4. If for some state j and sequence B, — 1 there is a constant N < oo
such that M;j(Rs,) < N for all seI,r = 1,2, --- , then Assumption (*) holds;
where M ;;(Rg,) ts the mean recurrence time to go from state % to state j when using the
Br-optimal discount rule Rp, .

Proor. Let

T = min {{: X, = j},
Y03, B, Rs,) = Bry, Lnd C(Xn, 8)8" + Erp, 2iier C(Xa, An)",
where all expectations are understood to be conditioned on X, = 7. Therefore,
¥(%, B, , Rs,) < MEgr, T + ¥(j, B:, Rs,)Ers(8:")

< MN + \b(.j’ B Rﬂ,)

(recall that all ‘costs are positive and bounded by M). Now by the above we
have that :

¥(, B:, Rs,) Z ¥(J, B+, Re,) Erg,(B:")
~¥(j, Bry Re,) = (3, B:, Rs,) + [1 — Ezp,(B.ING, Br, Rs,);
now ¥(j, B , Rs,) < M(1 — B,)" and E(B") = ¥ = 8", by Jensen’s inequality,
(1 — Eng (B )W, B: i Re,) S (1 — 8")(1 — B)7M < NM,
s (4, Br, Rs,) — ¥(4, B, Rg,)] = MN forall r,q. QED
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Lemma 1.5. If for some state j and « > 0, P(2,j:K) Z aforal Ke K;,7¢1,
then Assumption (%) holds.
Proor. For any R ¢ C”, M;;(R) £ 1/a, and so Theorem 1.4 applies. ~ QED

2. Determination of optimal policy by reduction of average-cost case to dis-
counted-cost case. We shall need the following assumption.

ASSUMPTION. supje; infr.x;, s P(%, j:K) > 0. Note this is so if and only if
there is a state j and o > 0 such that P(z, j:K) = aforallie I, K ¢ K;. For
the sake of definiteness denote the state j for which the above holds by state 0.
By Lemma 1.5 there exists a stationary deterministic optimal rule for this
process.

Consider now a new process (the prime process) with identical state and action
spaces and with the same cost structure but with transition probabilities now
given by

P,(’l:yj:K) = P(i,j:K)(l - Ol)—l, .7 # 0,
= (PG5, 0:K) —a)(1 =), j=0.

Denote by ¢'(¢, 8, R) the total expected B-discounted costs when using rule R
with respect to the new (prime) process. Note that any rule for the prime process
can also be considered as a rule for the original process and vice versa. The funda-
mental theorem in the reduction is the following:

THEOREM 2.1. For any stationary rule R,

¢(0,R) = a¢/(0,1 — &, R).

Proor. In the original problem we shall think of the transitions as taking place
in two stages. During stage 1 a coin with probability o of coming up heads is
flipped. If heads comes up, then the process goes to state 0; if not, then the process
moves to the next state according to the second stage transition probabilities,
which are the transition probabilities that are necessary in order to make the
total transition probability what it should be, i.e., if action K is chosen, then the
total probabilities must be P(%, j:K). Note that the desired second stage transi-
tion probabilities are exactly the transition probabilities of the prime problem.
Define a cycle as the time between successive occurrences of heads. Let T' = time
of cycle. Then it is well known (follows from the strong law of large numbers and
the bounded convergence theorem) that for any stationary R,

o(0; R) = Er D 15 C(X:,Ar)/EeT
= Ep{Br > " CO(X.,A) | T}/ERT
= el — &) LD ERlC(X,, A) | T = 4l/1/a

Now conditioning on 7 = 7 means that the transition probabilities used during
times 0, 1, -+ - , 2 — 2 were the second stage transition probabilities. Therefore,
Jort =7 -1,

ERlC(X.,A) | T = 1] = EZ'C(X:,Ar),
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where Ez’ denotes the expected cost with respect to the prime problem. Thus,
o(0, R) = a Xima(l — @) TiBB/C(X,,A)
= a) 0B C(Xe, A) (1l — @)™
= a) 0B C(X:,A)(1 — a)'
= ay/(0,1 — o, R). QED

Since P(%, 0:K) = « for all 2, K it follows that for R e ¢”, (4, R) = (0, R);
and since an optimal rule does exist in C” it follows that it is precisely the optimal
1 — a discount rule with respect to the prime problem.

Thus if our assumption holds then we have reduced the average-cost problem
to a discounted-cost problem, and any of the well-known methods of successive
approximations or policy improvements (see [1] for details) may be applied.

3. On e-optimal rules. It is known (see [4]) that even under the conditions
that K; < « for all ¢ and C(%, K) uniformly bounded that there need not exist an
optimal rule in the average cost sense. Also there may exist an optimal rule,
but there may be no stationary deterministic rule which is optimal.

This brings up the question whether there always exist e-optimal stationary
deterministic rules. We say that R e C” is e-optimal for state 1 if o(7, R) <

g(3) + ¢, where g(z) = infz o(4, R). We say that Re C” is e-optimal if it is
e-optimal for every state . One possible source of e-optimal stationary deter-
ministic rules is the optimal g-discount rules {Rs:0 < 8 < 1}. One might con-
jecture, that for any state 7, that these rules are e-optimal for state ¢ in the sense
that lim infs.;- (7, Rg) = g(%). The following counter-example shows that this
need not be the case.

ExAMPLE.
I= (7‘;.7)) 0 é] = 7:7 1= 1’ K(i,i) = 27 .7 = 0; K. = 1,
= o0, 1, j=0.

The costs depend only on the state
C(4,35),-) =1 =0, C(»,) =2
=0, j#0.
The transition i)robabilities are as follows:
P((3,0), (i + 1,0):1) = 1 = P((%,0), (%, 1):2),
P((3,7), (5,7 + 1):1) =1 for 0<j <y,
P((4,1), ©:1) = 1= P(ew, w:1).

In words, when in state (4, 0) we can choose to go to state (¢ + 1, 0) at the cost
of one unit for the next stage or we can elect to pay 0 dollars for the next 7 stages
and two units for every stage after that. Let Ro be the rule which takes action
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1 at all states, then it is easy to see that
o((1,0),R0) =1, ReC’, R Ri=¢((1,0),R) = 2.
Let R, be the rule which takes action 2 at state (n, 0) and action 1 elsewhere:
W((1,0), 8, R,) = 2056 + 27an 26" = (1 — "+ 26™)(1 — §)~
<. fornlarge¢((1,0), 8, Ra) < (1 —B)7 = ¢((1,0), 8, Ro),
-~ for each Be (0, 1), Rg # R,
~ o((1,0), Rg) = 2 for all 8 and infr ¢((1, 0), R) = 1.

Thus it is not necessarily true that the g-optimal discount rules are e-optimal, or
even e-optimal for a specific state. We shall now give sufficient conditions for
R to be:

(i) e-optimal for a particular state (for 8 near 1),

(ii) e-optimal for all 8 near 1.

Tueorem 3.1. If for some sequence B, — 1™ there exists an N < o« such that

‘l’(.?y 67" Rﬁr) - 1#(1,, 61" Rﬁr) <N fOT alljel, r o= 1, 2; Tty

then lim,.. (2, Rs,) = g(2) = infre(2, R) and so, for r large, Rg, is e-optimal
for state <.
Proor. Let

Ve(j) = ¥(, B, Rs),
then
Vs(j) = ming {C(j, K) + B 21 P(, LK) Va(D))
and Rjg takes the minimizing actions. Now
| By X [Va(X)) — Bel[Va(X0) | Sl = 0
and
ErglVs(Xe) | 8ecal = 22 P(X a1, j:0e1) Va(d)
B2 P(Xia, j:8n) Va(f) + C(Xia, Ary)
— C(Xea, Aa) + (1 — 8) 22 P(Xea,:800) Va(5)
= Ve(Xi1) — C(Xia, Ara)
+ (1 — B) 225 P(Xi1, 5:801) Vi(3)
20 = Eg,[Va(X,) — Va(Xo)] + Erp 227 C(Xea, Art)
— (L = B)Br, 2.1 Vs(X0).
Using our condition we have that Vs (X;) < Vp,(i‘} + N for all ¢
e By, 0 (X, i) S (1 — )V, ()
+ (1 — BN — 07 Eg, [Vs,(Xa) — Vi, (Xo)l.

Il
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Letting n — o we have, since |Vs (X.) — Vs, (Xo)| < M/(1 — B,), that
¢(Xo, Rg,) = (1 — B)Vs,(2) + (1 — B,)N for any X,. Now for any rule R,
(1 =B)Vs(2) = (1 — BW(, B, R)

- lim SUPr>w (1 et ﬁr)Vﬂ,(@) =< lim SUPr>w (1 - ﬁr)‘l’(z; B, R) = (o(i) R))
where the second inequality follows from the Tauberian result [see Titchmarsh,
p. 227] that lim sup,.i- (1 — ) D ne0@s2" < lim sup,n™’ > tai,

< lim sup,se o(Xo, Rs,) = ¢(2, B) for any R, any X,
< lim suprse o(Xo, Rg,) < g(%) for any X,
~limyw (2, Rg,) = g(%). R QED

CoroLLARY 3.2. If for some sequence B, — 17 there exists N; < o for each
1 & I such that ¥(j, 8-, Rs,) — ¥(4, Br, Rs,) < N;forallr,j, then:

(1) limew (2, Rs,) = g(¢) for all <, and the convergence is uniform in %, and
thus Rg, ts e-optimal for r large;

(i) g(2) = g(j) = g for all 4, .

Proor. We first prove (ii). From the proof of the previous theorem we have
that

lim sup,.. ¢(Xo, Rg,) < g(2) for any Xy, any ¢
and also that
9(Xo) = lim,ne o(Xo, Rs,)  for any X,
~.g(Xo) = g(2) for any 17, X,
~g(d) =90) =9 for all 4, 5.

Now we prove (i). The convergence is an immediate result of Théorem 3.1.
To show uniformity—fix some state 7). The previous theorem yields that

lim sup,se (1 — B,) Vs, (%) = g(%)
and
o(j, Rs,) < (1 — B,)Vs, (%) + Ni(l — B) for any state j.

For ¢ > 0, let r. be such that r > r. implies:
(1) (1 = B)Vp,(10) < g(40) + €/2,
(i) (1 — B N4 < €/2.

Therefore, r > r. = ¢(j, Rs,) < 9(%) + ¢/2 + ¢/2 = g(%) + ¢ for any j, but
g(%) = g and so convergence is uniform. QED
Note that the condition in the above corollary is weaker than Assumption
(*). Thus putting Corollary 3.2 together with Theorems 1.1, 1.2 and 1.3 we have
TuaeoreMm 3.3. If Assumption () holds, then there exists a stationary deter-
ministic optimal rule which is a limit point of the optimal B,-discount rules, and for
any e the B-discount rules are e-optimal for r large.
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4. Replacement process.

DrriniTioN. A Markovian replacement process is a Markovian decision
process with a distinguished state—call it state 0—and a distinguished action
—call it ap—such that:

(1) XO = 0’

(ii) P(4,j:a0) =1, j =0,

= 0, otherwise.

Let g = infro(0, R). Since Xo = 0 we shall write ¢(R) for ¢(0, R), and we
shall say that R is optimal (e-optimal) if it is optimal (e-optimal) for state 0.

Let Rs be the B-optimal discount rule. As an immediate consequence of
Theorem 3.1 we have

TuEOREM 4.1. In the replacement process

liln,s..r ¢(Rp) =4.
Proor.

(i, 8, Rs) = ming {C(4, K) + 822 P(4, j:K)¥(J, B, Bs)}

= C(%, @) + BY(0, B, Bs)
< M + (0, 3, Rg) for all <, all 8,

and so the result follows from Theorem 3.1. QED

The following corollary is immediate.

COROLLARY 4.2. (i) There exist e-optimal stationary deterministic rules for the
replacement problem.

(ii) If R is optimal among the stationary deterministic rules, then R ts optimal
(for the replacement problem).

DeriNITION. We say that rule R is a Markov rule if the action it chooses at
time ¢ only depends on the past history through the state at time ¢, and ¢, ie.,
DK(XTH Bo, =+, X, = 7’) = Di.K(t)°

We say that R is non-random Markov if it is Markov and non-random.

TaroREM 4.3. For the replacement model there exists a mon-random Markov
rule which s optimal.

Proor. For each n, let R, be a stationary deterministic rule such that o(R,) <
g + in. For each n, 3 N, such that

Er, 2 i ' C(X., A)i™ = o(Ra) + (20)7,
for all ¢ = N, . Let Ny be such that
(Be, S0 C(X0, A) + (N2 + DMIN: + (Vs + D7 S o(R) + 1,
where M is such that C(4, K) < M for all ¢, K. Define Niyi=2,38,--,re
cursively by letting N; be such that
B, 207 C(Xe, A) + M(EZIN; + 6+ Niw)
N4 (SN 4 i+ Nl < o(R:) + (20)7
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Let R be the non-random Markov rule which is defined as follows:
use Ry fort = 1, ---, Ny, then take action ao,

use R, for the next N, stages, then take ao,

use R; for the next N, stages, then take ao,
ete.

CrAM. o(R) = g. For any € > 0, let j be such that j~* < e. This claim is then
verified by showing that

n>N+ - +N+j=E 2710 Xea,Ar)n <g+e QED

Thus in the replacement problem there always exists an optimal non-ran-
domized rule. That this rule cannot always be taken to be stationary is shown
by the following example.

ExAMPLE.

Il

I1=10,12 ---1K; =3 for all 7,
C(3,0) =C(4,1) =1, C(4,2) =1/z+ 1 forallq,
P(7,0:0) = P(z,7 + 1:1) = P(4,4:2) = 1 for all <.

In words, when in state ¢ we can choose to: (1) remain in state 7 at the cost of
(¢ 4+ 1) units, or (2) go to state 7 + 1 at the cost of 1 unit, or (3) return to
state 0 at the cost of 1 unit. (Actually the replacement action is superfluous in
the sense that action 1 is always a better action).

For any stationary deterministic rule R let 2(R) be the action R chooses when
in state 7. Let

R = min {:2(R) = 1},

then it is easy to see that

Ri < © = ¢(R) = R],_l >0,
Ri= o =¢(R)=1>0.

Therefore, R stationary deterministic = ¢(R) > 0.

Now let the non-random Markov rule R* be as follows: when it first enters
state 3, ¢ = 0, R* chooses action 2 ¢ times and then it chooses action 1. It is
easy to see that o(R*) = 0.

It is also interesting to note that the stationary (but non-deterministic) rule
R™* which when in state 7 selects action 2 with probability 7(¢ 4+ 1)~ and action
1 with probability (4 + 1) is also optimal, i.e., o(R**) = 0.

We defined, for the, replacement problem, the average cost in terms of the
lim sup as opposed to the lim inf. The question arises whether or not this is a
meaningful difference. We show that it is not, and both criteria are in a sense alike.
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g = infzo(R) and § = infro(R)
where
o(R) = liminf, B > 07" C(X:,A)n,
#(R) = limsup, Er > ¢ C(X,, A)n ™.
THEOREM 4.4. For the replacement problem, g = § = g.
Proor. Choose € > 0 and let B be such that o(R) < g + ¢/2. Choose N
such that
[Er 207 C(X¢,A) + MI(N + 1)‘—1 < o(R) + ¢/2.

Define R’ as follows: R’ follows (takes the same actions as) R at times 0, 1,

.+, N — 1 and then R’ takes action a, at time N. Thus the process is now in
state 0, and we consider it as starting all over again, i.e., we forget that the
history up to this time has ever taken place. R’ now follows R for the next N
stages, then takes ao, then follows R (pretending the previous history never
took place) for the next N stages, then takes a¢, etc. Then it is easy to see that

?(R") = o(R") = [Er 28" C(X:,A)) + ExC(Xy, a)l(N + 1)7*
~3(R') <o(R) +€¢/2<g+e¢

j=g

I

§ = g since by definition § = g. QED

CoROLLARY 4.5. (i) For the replacement problem there exist e-optimal stationary
deterministic rules with respect to the lim inf criteria.

(ii) The lim sup optimal non-randomized Markov rule R of Theorem 4.3 has
o(R) = g.

Proor. (i) ¢(R) £ @(R) and so the result follows from Corollary 4.2 and
the above theorem.

(ii) g S o(R) = (R) =¢. QED

5. Acknowledgement. The author would like to express his deep appreciation
to Professor Gerald J. Lieberman whose guidance and inspiration helped make
this paper possible.

REFERENCES

[1] BrackweLL, Davip (1965). Discounted dynamic programming. Ann. Math. Statist. 36
226-235.

[2] DErMaN, Cyrus (1965). Markovian sequential control processes—denumerable state
space. J. Math. Anal. Appl. 10 295-302.

[3] DerMaN, CYrUs and LieBERMAN, GERALD J. (1966). A Markovian decision model for

) a joint replacement and stocking problem. Management Sci. 13 609-617.

[4] DerMaN, CYrUs (1966). Denumerable state Markovian decision processes—average

cost criterion. Ann. Math. Statist. 37 1545-1554.



NON-DISCOUNTED DENUMERABLE MARKOVIAN DECISION MODELS 423

[5] DermaN, CyrUs and VeINOTT, ARTHUR (1967). A solution to a countable system of
equations arising in Markovian decision processes. Ann. Math. Statist. 38 582
585.

[6] Ma1TRA, AsHOK (1965). Dynamic programming for countable state systems. Sankhyd
Ser. A 27 259-266.

(7] MarTRA, AsHOK (1966). A note on undiscounted dynamic programming. Ann. Math.
Statist. 37 1042-1044.

[8] STrRAUCH, RaLpH (1966). Negative dynamic programming. Ann. Math. Statist. 37 871-
890.

[9] TavLor, Howarp (1965). Markovian sequential replacement processes. Ann. Malh.
Statist. 36 1677-1694.

10] TircemarsH, E. C. (1932). The Theory of Funclions. Oxford Univ. Press.



