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THE Vyy TWO-SAMPLE TEST

By Urs R. Maag anNDpD M. A. STEPHENS!

Unaversité de Montréal and McGell University

1. Summary and introduction. The statistic Vs is a two-sample statistic
which may be used to test the null hypothesis H, , that two samples, sizes N and
M, come from identical populations. It is an adaptation of the Kolmogorov two-
sample statistic, and is defined by

Vwu = SUP_wcocw (Frx(z) — Gu(r)) — inf—w<x<w (Fy(z) — Gu(x))

where Fy(x), G »(x) are the sample cumulative distribution functions. A single-
sample analogue Vy is defined by replacing G »(z) in the formula above by a
hypothesised distribution function F(z). For large values of Vi or Vi, Ho will
be rejected. These statistics are particularly useful for observations recorded as
points on a circle; the value obtained for Vy or Va , in contrast to that of the
corresponding Kolmogorov statistic, does not depend on the choice of origin.
Kuiper (1960) proved this result and suggested the use of the V statistics for the
circle. He also gave series approximations to the distributions of N Wy and
N*V yy , for large N, on the null hypothesis H, . Reference to a distribution will
henceforth be assumed to refer to the distribution on the null hypothesis.

The Vyn statistic had earlier been investigated by Gnedenko and co-workers
(see Gnedenko (1954)), who used it for observations on a line; the V statistics
may be expected to be more powerful than the Kolmogorov statistics for cer-
tain alternatives. Gnedenko (1954) gives the exact distribution of Vawx . The
exact distribution of Vi, in the upper and lower tails, has recently been given
by Stephens (1965).

In this paper we make the two-sample goodness-of-fit test available for a wide
range of sample sizes by giving tables of the distribution of Vs . In the next
section a formula is given with which the V., statistic may be calculated from
the ranks of the two samples, and then the goodness-of-fit tests are set out. These
are called exact or approximate tests, depending on whether the probabilities
used are calculated from exact or approximate formulae. In Section 3 the con-
struction of the tables is described. To find percentage points for large N, we de-
velop in Section 3.3 a series expansion for the distribution of N ' ww which differs
from that given by Kuiper; the probabilities given by the two expansions are
compared in Table 4, and the new series clearly gives the better results.
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924 URS R. MAAG AND M. A. STEPHENS

2. Tests of the null hypothesis H,.

2.1 Introductory notation. The null hypothesis H, is that the two independent
random samples, respectively sizes N and M, come from the same continuous
distribution function. The statistic Vy 4 is computed as below; if the observations
are on a circle, any one may be chosen to begin the ranking.

Let the values in the first sample, in ascending order, be z; , 22, -+ - , Ty, and
those in the second sample, in ascending order, be y1, 42, -+ , ¥y ; and let r; be
the rank of z; , s; be the rank of y; , in the pooled sample of the ordered N + M
observations (the smallest observation having rank 1, and the largest rank
(N 4+ M)). The formula for Vyy is then

(1) Vun = (MN) Ymax;<i<x[(N + M)i' — N7}

+ maxi ;< ul(N + M)j — Ms,l}.
When N = M, this becomes
(2) vy = N {maxigicnl2 — ri] + maxig;<nl2 — s}

We now set out the goodness-of-fit tests.

2.2 Ezact test. This is to be used when N = M, and N + M = 28; or when
N =Mand3 = N = 100.

(1) Calculate Vi from (1) or (2); thus calculate either NMVy,, ,if N = M,
or NVuyn,if N = M;

(2) Use Table 1 or Table 2 to find p for given N, M ;

(8) If p = a, reject H, at significance level a.
Table 1 gives k and p such that, for unequal N, M, roughly restricted by the in-
equality N + M = 28, Pr(NMVyu = k) = p. Table 2 gives k and p such that,
for N = M, with values N = 10 (1) 25 (5) 50 (10) 70 (5) 80 (10)
100, Pr(NVayxy = k) = p.

2.3 Approximate test 1. For N = M, and 100 = N = 500.

(1) Caleulate Vyy from (2); thus calculate N*Vyy .

(2) Use Table 3 to find y, the table entry for given a, N.

3) N Woaw = ¥y, reject H, at significance level a.
Table 3 gives an approximate value for y for which Pr (V' Woaw = y) = a,fora =
.10, .05, .025, .01 and .005, and for N = 100 (20) 300 (40) 500 and for 1/N = 0.

2.4 Approximate test 2. For N % M, values not included in Table 1.

(1) Calculate Vyy from (1).

(2) Caleulatey = [(N + M)M—l]%VNa(a), where Vy(a) is the upper tail per-
centage point of Vy , at level o, given in Stephens (1965), Table 1.

(3) If Vyu > vy, reject Hy at significance level a.

3. The distribution of Vi, .

3.1. Small sample sizes. The value of Vyy depends on the relative ranksof the
two samples. On H, , all arrangement of the two samples, mixed together as one
sample, are equally likely, and the distribution of Vs may be found by calcu-
lating its value for each arrangement. This has been done to give the probabili-
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ties in Table 1. As N and M increase, the number of arrangements eventually
makes this technique prohibitive.
3.2. Equal sample sizes. We introduce

Dix = sup[Fy(z) — Gu(z)] and Dyy = — inf, [Fy(z) — Gy(2)];
then
Vay = Dyy + Dy .

The distribution of Vy» will now be derived from the joint distribution of D}y
and Dyx , given by Iemperman (1959) as follows:

(3) Py(a,b) = Pr (Dyy < a/N, Diy < b/N)
= 22V TN2/k) oKL (sin rra/k)(cos rr/k) ™Y
where a and b denote positive integers and k = a + b. It is easily seen that
Pr (Diy + Dy < k/N)
(4) = 2i=1 Pr(Dyy < a/N, Dy = (k — a)/N)
=D i Py(a,k+1—a) — 23 Pu(a, b — a).

By substituting formula (3) into (4), interchanging the summations and using
the trigonometric identity

Doricos 2rx = $sin (2n + z/sinz — 1]
we have the distribution of Vyy:
(5) Pr(Vyy < k/N)
= VMO E (eos sw(k + 1)™HH — DI (cos srk )]

where & can take the values 2,3, --- , N 4+ 1 and the symbol [x] means the great-
est integer less than or equal to x.

A different expression for the distribution of Vux is reported by Gnedenko
(1954).

Pr((3N)Vsy < 2) = 1+ 267 o 2™ (i)
- (a - 1) Z.E‘Z{a](lvfhs’a - Zz;l z[(N+l)/(a+l)](N+z s(a+1))
+ D0 DL (YD

where a = [z(ZN);], z > 0.
Since in fact Vyy takes only the values kN ™", k = 1,2, --- , N, it is possible to
simplify this expression to

(6) Pr(Viy = kN
= 200k W () — (B 1) M ey
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Upper tail probabilities of the distribution of NMV yar .

TABLE 1

For given N, M and k the table shows

p=Pr[Vyu =2v] =Pr [ NMVNyy = k] where v = k(NM)™!
Pr (Vyy > 1] = Pr (INMVyy > NM] = 0
N M k P N M k P N M k P
3 3 9 .3000 3 18 48 .0947 4 12 32 .4044
6 .9000 45 1579
42 .2368 4 14 56 .0059
3 4 12 .2000 39 .3316 52 .0235
9 .6000 48 .0588
3 2 60 .0130 44 1176
3 5 15 .1429 57 .0390 42 .1588
12 .4286 54 .0779 40 .2353
51 .1299 38 .3059
3 6 18 .1071 48 .1948
15 .3214 45 .2727 4 16 64 .0041
60 .0165
3 7 21 .0833 4 4 16 .1143 56 .0413
18 .2500 12 L5714 52 .0826
48 1734
3 8 24 .0667 4 5 20 0714 44 .3013
21 .2000 16 .2857
18 .4000 4 18 72 .0030
4 6 24 .0476 68 .0120
3 9 27 .0545 20 .1905 64 .0300
24 .1636 18 .3333 60 .0602
21 .3273 56 .1053
4 7 28 .0333 54 .1323
3 10 30 .0455 24 .1333 52 .1895
27 .1364 21 .2667 50 .2376
24 .2727 48 .3038
4 8 32 .0242
3 12 36 .0330 28 .0970 4 20 80 .0023
33 .0989 24 .3152 76 .0090
30 .1978 72 .0226
27 .3297 4 9 36 .0182 68 .0452
32 .0727 64 .0791
3 14 42 .0250 28 .1818 60 .1468
39 .0750 27 .2545 56 L2417
36 .1500 52 .3569
33 .2500 4 10 40 .0140
36 .0559 5 5 25 .0397
3 16 48 .0196 32 .1399 20 .2778
45 .0588 30 .2098
42 .1176 28 .3217 5 6 30 .0238
39 .1961 25 .1190
33 .2941 4 12 48 .0088 24 .1905
44 .0352 20 .3810
3 18 54 .0158 40 .0879
51 0474 36 .2198 5 7 35 .0152
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TABLE 1—Continued

M k ) N M k P N M k P
7 30 .0758 5 16 55 .1538 6 9 39 .1349
28 .1364 54 .1971 36 .2547
25 .2576 50 .2632
6 10 60 .0020
8 40 .0101 5 18 90 .0007 54 .0121
35 .0505 85 .0034 50 .0260
32 .1010 80 .0103 48 .0519
30 .1818 75 .0239 44 .0999
27 .3030 72 .0314 42 .1499
70 0540 40 .1938
9 15 .0070 67 .0745 38 .2737
40 .0350 65 .1073
36 .0769 62 .1442 6 12 72 .0010
35 .1329 60 .1880 66 .0058
31 .2378 57 .2427 60 .0271
30 .3217 55 .2973 54 .0824
48 .2104
10 50 .0050 5 20 100 .0005 42 .3111
45 .0250 95 .0024
40 .0999 90 .0071 6 14 78 .0031
35 .2498 85 .0165 72 .0108
30 .5195 80 .0381 70 .0155
75 .0776 66 .0325
12 60 .0027 70 .1388 64 .0490
55 .0137 65 .2235 60 .0800
50 .0412 60 .3534 58 .1161
48 .0604 56 .1362
45 .1099 6 6 36 .0130 54 .1827
43 .1593 30 .1169 52 .2384
40 .2335 24 .4416 50 .2848
38 .3159
6 7 42 .0076 6 16 90 .0018
14 70 .0016 36 .0455 84 .0062
65 .0082 35 .0758 80 .0094
60 0245 30 1742 78 .0192
56 .0392 29 .2652 74 .0310
55 .0686 72 .0487
51 .1078 6 8 48 .0047 68 .0752
50 .1520 42 .0280 66 .1035
46 .2206 40, .0513 64 .1194
45 .2794 36 1119 62 .1619
34 .1865 60 .2017
16 80 .0010 32 .2471 58 .2397
75 .0052 30 .3450 56 .2954
70 .0155
65 .0361 6 9 54 .0030 6 18 96 .0037
64 .0454 48 .0180 90 .0119
60 .0795 45 .0360 84 .0312

59 .1042 42 .0749 78 .0679
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TABLE 1—Continued

N Mk P N Mk » N Mk P
6 18 72 1382 7 10 49 1128 7 20 91 .0937
66 .2473 46 .1696 86 .1178
60  .3018 43 .2360 85  .1469
42 2028 84 .1687
6 20 108  .0024 80 .1826
102 .0063 7 12 77 .0026 79 .2188
100 .0078 72 .0060 78 L2557
96 .0155 70 0132
94 .0209 65 0283 8 8 64  .0012
90  .0340 63 -.0449 56 .0162
88 .0464 60  .0596 48 L0945
84 .0667 58 .0939 40  .3232
82 .0893 56 .1244
80 .0082 58 .1697 8§ 9 72 .0007
78 1267 51 .2262 64 .0056
76 .1602 49 2738 63 .0098
741826 56 .0280
72 2192 7 14 91 .0013 55  .0490
70 .2626 84 .0067 54 .0622
77 .0237 48 .1084
7 7 49 .0041 70 .0703 47 1615
42 .0449 63 .1645 46 .2070
35  .2162 56 .3336 45 .2350
28 .5833 40  .3196
7 16 96  .0037
7 8 56  .0023 91 0087 8 10 80  .0004
49  .0163 89 .0134 72 .0033
48 0280 84 .0241 70 .0062
41 .1189 82 .0368 64 .0169
40 .1492 80  .0424 62 .0317
35 .24 77 .0615 60  .0424
34 .3333 75 .0863 56 .0695
73 .1047 54 .1086
7 9 63  .00l4 70 .1348 52 .1477
56 .0098 68 1742 50  .1748
54 .0182 66 .2108 48  .2246
49 .0448 64 .2299 46 2004
a7 0797 63 .2705
45 .1063 8 12 8  .0027
42 1622 7 2 119 .0029 80 .0068
40 2350 13 0051 76 .0144
38 .3077 12 .0085 72 .0318
106 .0145 68  .0529
7 10 70  .0009 105 .0209 64 .1007
63 .0061 100 .0241 60  .1599
60  .0122 99 .0362 56 .2470
56 .0288 98 .0467 52 .3558
53 .0551 93 .0580

50 .0778 92 .0780 8 16 112 .0015
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TABLE 1—Concluded
N M k P N M k » N M k P

8 16 104 .0062 9 9 72 .0056 10 10 70 .0699
96 .0207 63 .0381 60 . 2283
88 .0558 54 L1573 50 .5245

80 L1311 45 .4280
72 .2598 10 12 100 .0021
9 10 90 .0002 98 .0043
8 20 136 .0012 81 .0019 96 .0057
132 .0020 80 .0033 90 .0106
128 .0037 72 .0103 88 .0187
124 .0062 71 .0189 86 .0268
120 .0108 70 .0243 84 .0317
116 .0166 63 .0448 80 .0441
112 .0276 62 .0716 78 .0645
108 .0389 61 .0959 76 .0875
104 .0610 60 .1086 74 .1079
100 .0843 54 .1541 72 .1203
96 L1215 53 .2084 70 .1450
92 .1633 52 .2592 68 .1826
88 2173 66 .2253
84 .2805 10 10 100 .0001 64 .2680

90 .0018

9 9 81 .0004 80 .0145

where £ takes the values 1, 2,

are shown to be equivalent.
From (6), the density is found to be

Pr(Vyy = EN7Y)

() = 2("N) 7k 2 (
— 2(k + 1) DI {®+ (w—stet))} -

The moments of Vyy can also be obtained:

'ur/ — 22NN—T IZVN)—I _ N-—T + 2N—r

where

, N. In Maag (1965) equations (5) and (6)

=Pr(Vaw 2 kN') — Pr(Vyy = (k + 1)N)

(viee) + (B + 2) D@ (2 )

12VN)—1 NT

= 2oam(m 4+ (m — 2)" — 2(m — 1)7) D (2,

Formulas (6) and (7) have been used to construct Table 2.
3.3 Equal sample sizes, large samples. For large sample sizes, it becomes diffi-
cult to preserve accuracy in calculating the probabilities from the exact formulas
of equations (5) or (6), so we convert them to series in powers of N*. To con-
vert equation (5) we follow steps (a) to (d) below.
(a) We start with the power series (convergent for |z| < 7/2)

log (cos z) =

— Dot |Bam| ((2m)1)7H(2%™ —

1)2°7¢™™(2m) ™
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TABLE 2
Upper tail probabilities of the distribution of NVyx
For given N and k the table shows p = Pr[NVyy = k]
Pr(NVyy > Nl =0

N k P N k P N k P
10 10 .0001 16 8 1792 22 12 .0195
9 .0018 7 .3733 11 .0519
8 .0145 10 .1203
7 .0699 17 13 .0004 9 .2437
6 .2283 12 .0023 8 .4301
5 .5245 11 .0098
10 .0334 23 15 .0007
11 10 .0006 9 .0939 14 .0028
9 .0053 8 .2196 13 .0091
8 .0290 7 .4271 12 .0260
7 1102 11 .0651
6 .3028 18 13 .0009 10 1432
12 .0041 9 .2772
12 11 .0002 11 .0151
10 .0018 10 .0465 24 16 .0003
9 .0114 9 .1200 15 .0012
8 .0494 8 .2614 14 .0041
7 1572 13 .0125
6 3772 19 14 .0003 12 .0336
13 .0016 11 .0798
13 11 .0006 12 .0065 10 .1675
10 .0043 11 .0219 9 .3111
9 .0209 10 .0618
8 .0753 9 .1485 25 16 .0005
7 .2087 8 .3040 15 .0018
6 .4491 14 .0058
20 14 .0006 13 .0167
14 12 .0002 13 .0027 12 .0424
11 .0016 12 .0099 11 .0958
10 .0084 1 .0303 10 .1929
9 .0339 10 .0793 9 .3450
8 .1062 9 .1789
7 .2630 8 .3466 30 18 .0003
17 .0011
15 12 .0006 21 15 .0002 16 .0032
11 .0033 14 .0011 15 .0088
10 .0145 13« .0043 14 .0219
9 .0505 12 .0142 13 .0497
8 .1411 1 .0403 12 .1026
7 .3183 10 .0989 11 .1927
9 .2107 10 .3285
16 13 .0002 8 .3888
12 .0012 35 19 ~.0006
11 .0059 22 15 .0004 18 .0017
10 .0228 14 .0018 17 .0045
9 .0706 13 .0064 16 .0111
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TABLE 2—Continued

9

1

N k P N k » N k P
35 15 .0252 60 23 .0032 80 25 .0086
14 .0529 22 .0064 24 .0149
13 .1028 21 .0123 23 .0251
12 .1843 20 .0228 22 .0410
11 .3048 19 .0405 21 .0648
18 .0687 20 .0993
40 20 .0009 17 11i7 19 1471
19 .0023 16 1737 18 .2107
18 .0055 15 .2579 17 .2916
17 L0125
16 .0267 70 27 .0007 90 31 .0006
15 .0531 26 .0015 30 .0012
14 .0988 25 .0030 29 .0021
13 .1716 24 .0057 28 .0039
12 .2779 23 .0106 27 .0068
22 .0188 26 .0115
45 22 .0004 21 .0324 25 .0191
21 .0011 20 .0527 24 .0368
20 .0027 19 .0859 23 .0483
19 .0062 18 .1323 22 .0736
18 .0132 17 .1962 21 .1090
17 .0268 16 .2796 20 1568
16 .0513 19 .2190
15 .0925 75 28 .0007 18 .2066
14 .1569 27 .0014
13 .2502 26 .0028 100 33 .0005
25 .0053 32 .0010
50 23 .0005 24 .0096 31 .0017
22 .0013 23 .0168 30 .0031
21 .0030 22 .0286 29 .0052
20 .0065 21 L0471 28 .0087
19 .0133 20 .0748 27 .0143
18 .0260 19 .1148 26 .0228
17 .0483 18 .1701 25 .0355
16 .0849 17 .2431 24 .0540
15 .1414 16 .3347 23 .0800
14 .2231 22 1155
13 .3326 80 29 .0007 21 .1625
28 .0014 20 .2225
60 25 .0007 27 .0026 19 .2065
24 .0015 26 .0048
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TABLE 3
Upper tail significance points of N*Vyy

N a: .10 .05 .025 .01 .005
100 2.241 2.419 2.580 2.772 2.906
120 2.245 2.424 2.584 2.778 2.913
140 2.248 2.427 2.589 2.782 2.917
160 2.251 2.430 2.592 2.786 2.921
180 2.253 2.433 2.594 2.788 2.924
200 - 2.255 2.435 2.597 2.791 2.926
220 2.257 2.436 2.598 2.793 2.928
240 2.258 2.438 2.600 2.794 2.930
260 2.260 2.439 2.601 2.796 2.932
280 2.261 2.440 2.603 2.797 2.933
300 2.262 2.442 2.604 2.798 2.935
340 2.263 2.443 2.606 2.801 2.937
380 2.265 2.444 2.607 2.802 2.938
420 2.266 2.446 2.609 2.804 2.940
460 2.267 2.447 2.610 2.805 2.941
500 2.268 2.448 2.611 2.806 2.942

0 2.291 2.471 2.633 2.830 2.967

where the Bs,, are the Bernoulli numbers. With & = z N*, z bounded, we have
(cos sk = exp [—&'7/21(1 — s'7'(6N2")™ + O(N?))

and replacing z in the above formula by z + N * yields a similar expression for
(cos sw/(k + 1))*. We then can show

(cos sw(zN* + 1)™)™ — (cos smz "N H™
(8) = exp [~/ (2% N} + N (=352~ + 2s*%%)
+ NH4s'r%2 " 4 2s'7'82° — 6s'n'e T — %%l 4 4s%% %) + R)

where the behaviour of R is discussed below.
(b) From Stirling’s formula it follows that the first factor in (5) becomes

(9) /() = 2(=N)H1 + (N8)™ + O(N D).

Thus the product of (8) and (9) gives the typical term in (5), before summing
over s, as:

7 exp [—s'r/2)] [4s'n + 2N“%(2s4 70— 3shr%TY) + N (st
(10) 4 85'n%2° + 4s'r'le™ — 12s'r% — 28%°% 7 + 8s'r’3e )] + 4,
where the remainder
A, = exp [—s'7*/Z][R-O(N?) + R™.

(¢) We now wish to determine the order of the remainder A, where s =
1,2, --- [(k — 1)/2]. From the developments which lead to (8) and (10) it is
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easy to see that both R-N* and R* are of order s™ N~ %, where m is some fixed
positive number. Thus A4, is of order N *s™ exp (—s'n7/2").
(d) Finally the summation over s gives

DIEDP AL < const. N8 D0, ™ exp (—sn/2),

which is of order N* since the series on the right converges. We notice that for

even values of k the last term in the first sum in (5), i.e. (cos kw(k + 1)7H)*.

2°¥/(37) has to be added to the remainder. Since this term decreases to zero ex-

ponentially as a function of N it does not change the order of the remainder.
Thus this sequence yields the distribution of N*V yy for large N:

Pr (N'Vyy < 2) .
=7 Y2, exp [—s'rY/Aast e + N (2t — 3t
+ N ("% ° 4 8s'r% " + 4s'r'Le ™ — 126%% 7
— 28%%277 + 87’2 + O(NTH).
We may now transform (11) into a series which converges more rapidly for large
values of z2(z > 7).
Let G(2) = Doy exp (—s'r’/2%); then it can readily be verified that (11) can
be written in the form
Pr (N*Vay < 2) = 20%(d/d2)G(2) + ©'N}(d*/dz")G(z)
(12) + PN ((d*/3d2°) G (2) — A(dP/1242°)G(z)
— 52(d*/12d2")G(2)) + O(N7H).
The 6-transform applied to G(2) leads to
G(z) = —% + 2/(20') +(@rd) Dy exp (—s%P).
When this is substituted into (12), we obtain:
Pr(N'Vyy = 2) = 2oy exp [—s24s%2" — 2 + 22N (38 — 25%%)
(13) + N7(28° — 3s%* + L't — 8%
+ §s%' — 3"")) + O(VT).

3.4 Comparisons. The probabilities given by the asymptotic formula (13)
are compared with the exact probabilities, for selected values of N and k, in
Table 4. For z = 2, only the first term in each sum in equation (13) need be used.
The accuracy of (13) for N = 100 also makes it of use to calculate further sig-
nificance points of N*V yx , with high accuracy for N = 100. The points in Table
3 are obtained in this way.

Kuiper (1960) has also given an expansion comparable to (13). His result,
with slight changes in notation, is

(14) Pr (N'Vyy = 2) = Doy e "7 (45%"—2)
— (BN) (1 + Y2 e 5% (2% — 7)) + O(N7?).

(11)
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TABLE 4
Comparison of exact and approximate probabilities
For given N and k, the table gives several calculations of Pr(NVyx = k): 1, the exact

probability; 2, the approximate probability using (13) without the term in N~!; 3, the ap-
proximate probability using (13) including the term in N—!; 4, the approximate probability

using Kuiper’s series (14).

N k 1 (exact) 2 3 4
20 8 .3466 .3292 .3494 4327
’ 9 .1789 .1674 .1823 .2384
10 .0793 .0741 .0815 1121
11 .0303 .0287 .0311 .0434
12 .0099 .0098 .0099 L0113
13 .0027 .0029 .0025 —.0017
50 13 .3326 .3257 .3335 .3890
14 .2231 .2176 .2240 .2679
15 1414 1378 1422 1741
16 .0849 .0827 .0854 .1068
18 .0260 .0257 .0262 .0332
20 .0065 .0066 .0064 .0067
21 .0030 .0031 .0029 .0015
22 .0013 .0014 .0013 —.0011
100 19 .2965 .2932 .2968 .3349
21 .1625 .1604 .1628 . 1883
23 .0800 .0790 .0801 .0948
27 .0143 .0143 .0143 .0168
31 .0017 .0018 .0017 .0008

The series (13) and (14) have the same first term, but differ in the terms of order
N " and N™". The numerical comparison in Table 4 shows that the probabilities
given by (14) are substantially different from the exact ones, and support the
view that there is an error in (14).

3.5 Larger unequal samples. When N and M are different, the possible values
of Vo are multiples of (NM)™'; giving many more values than when N = M ;
the probability distribution then takes smaller jumps in the tail. For values not
covered by Table 1, we should like to find a good approximation to the a-level
significance point y for whichPr (Vyy = y) < a,and Pr (Vyy >y — (NM) ™) >
a. Such an approximation is given in approximate test 2, Section 2.4. It is based
on the fact that, for N, M — o, (NM/(N + M))*V yy has the same distribu-
tion as N*Vy , and exact significance points for the latter are in Stephens (1965).
We have examined this approximation for the pairs: N = 6, M = 16; N = 6,
M = 20;and N = 8, M = 20. From the values of y were calculated the exact
probabilities Pr (Vyy = y) = o', using Table 1, and values of &’ compared to
the nominal values a. For N = 6, the values of a’ were not always the best at-
tainable (i.e., nearest to a, but less than «), but for N = 8 they were the best
attainable. The approximation should improve for larger values of N.
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3.6 Further remarks. Suppose we adapt (13) to give
(15) Pr((N/2)Vuy = z) ~ Doy e 2" (8% — 2)
+ AN 200 e (38 — 45

as far as the term in N *. The value of 4 is 2.2%(2.828). The series for the single
sample statistic, given by Kuiper (1960), has for Pr (N*Vy = z) exactly the
same opening terms, but with A = § = 2.667. One might conjecture that a
series approximation for Pr ((NM /(N + M) Y Ve = x) might be of the form
(15) above, with A a function of M, N which, for M = N, decreasesfrom 2-2¢
when M = N to § when M — «, but Hodges (1957) has shown a very erratic
behaviour of the distribution of the Kolmogorov-Smirnov two-sample statistic,
when M and N are different; this presumably extends to Vi .

We wish to thank Professor A. Joffe of the Université de Montréal for sug-
gesting the method which leads to equation (5) and also to express our appre-
clation of the referee’s very helpful comments. We are grateful for the facilities
of the McGill University Computing Centre, where most of the computations
were made.
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