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LIMIT THEOREMS FOR THE MULTI-URN EHRENFEST MODEL!

By DoNALD L. IGLEHART

Cornell Unaversity and Stanford University

1. Introduction and summary. In the multi-urn Ehrenfest model N balls are
distributed among d + 1 (d = 2) urns. If we label the urns 0, 1, -- -, d, then
the system is said to be in state i = (41, %2, - -+, %3) when there are ¢; balls in
unyj (j=1,2,---,d) and N — 1-i balls in urn 0. (The vector 1 has all its
components equal to 1 and x-y is the usual scalar product.) At discrete epochs
a ball is chosen at random from one of the d + 1 urns; each of the N balls has
probability 1/N of being selected. The ball chosen is removed from its urn and
placed inurns (¢ = 0,1, - - -, d) with probability p’, where the p”s are elements
of a given vector, (p’, p), satisfying p° > 0 and Y ¢—op’' = 1. We shall let Xy (k)
denote the state of the system after the kth such rearrangement of balls. Our
interest in this paper is to obtain limit theorems for the sequence of processes
{Xy(k):k =0, ---, N} as N tends to infinity.

For the classical Ehrenfest model (d = 1,p° = p' = 1) Kac [7] showed that
the distribution of (Xx(INt]) — N/2)/ (N /2)’} converges as N — o« to the
distribution of the Ornstein-Uhlenbeck process at time ¢ having started at
at ¢ = 0, provided Xy (0) = [(IV/2 )%yo + N/2]. (The symbol [z] denotes the
integer part of z.) Recently, Karlin and MeGregor [8] obtained a similar result
for the continuous time version of the model with d = 2; in this version the ran-
dom selection of balls is done at the occurrence of events of an independent Pois-
son process. In addition, they obtained a local limit theorem for the transition
function. The proof in [7] depended on the continuity theorem of characteristic
functions. On the other hand, the proof in [8] used the properties of the spectral
representation of the n-step transition probabilities which is available for these
processes. These results suggested the direction we shall follow in this paper.

A preliminary calculation indicates that the process {Xy (k):k = 0, ---, N}
is attracted to the pseudo-equilibrium state Np and that states far from Np
will only occur rarely. Thus it is natural to consider the fluctuations of Xy (k)
about Np measured in an appropriate scale. For our purposes the appropriate
processes to consider are {Yy (k):k = 0, ---, N}, where

Yy (k) = (Xv(k) — Np)/N*.

Next we define a sequence of stochastic processes {yx (¢):0 < ¢ < 1} which are
continuous, linear on the intervals ((k — 1)N ', kN "), and satisfy yy kN') =
Yy (k) fork = 0,1, ---, N. In other words we let

yn(t) = Yy (k) + Nt — k) (Yw(k + 1) — Y (k))
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if ktN°' < ¢t £ (k + 1)N". Throughout this paper we shall let Xy'(0) =
N, + N pY], where yo = (yo', -+, ¥o*) is an arbitrary, but fixed, element of
R“ (It will always be understood that N is sufficiently large so that
0 < Xy'(0)<Nforalli=1,2, ---,d, where Xy'(-) is the ¢th component of
the vector Xy (- ). R® is d-dimensional Euclidean space.) Observe that this initial
condition implies that | V' (0) — ‘| £ N*. With this initial condition and the
Markov structure of the model, the processes {Xy(k):k = 0, ---, N} for
N = 1,2, --- can be defined on a probability triple (Qx, v, Px). We shall let
C4[0, 1] denote the product space of d copies of C[0, 1], the space of continuous
functions on [0, 1] with the topology of uniform convergence, and endow Cj[0, 1]
with the product topology. The topological Borel field of C4[0, 1] will be denoted
by @, . Clearly, the transformation taking the sequence {Xy(k):k = 0, ---, N}
into {y»(¢):0 < ¢ < 1} is measurable and induces a probability measure on €.
We shall denote this induced measure by ux(-; yo)-

The general notion of weak convergence of a sequence of probability measures
is defined as follows. Let S be a metric space and 8 be the Borel field generated
by the open sets of S. If vy and » are probability measures on § and if the

limN_,w fsdeN = f,gfdl/

for every bounded, continuous function f on S, then we say that vy converges
weakly to v and write vy = ».

The principal result of this paper is that uy(-; ¥o) = u(-; Yo) as N — oo,
where u(-; 9o) is the probability measure on @; of a d-dimensional diffusion
process, y (- ), starting at the point y,. The limit process y (- ) is a d-dimensional
analog of the Ornstein-Uhlenbeck process whose distribution at time ¢ is a
multi-variate normal with mean vector ¢ ‘y, and covariance matrix =, where
the elements of X are

(1 - e—2t)p'i(1 - pi)r 1= j}

—(1 =P, i j.

For applications it is useful to note that ux (- ; yo) = u(-; yo) is equivalent
to the statement that’

limyaeuy ((F (¥ (+)) = a};30) = v({(fF(-)) = a}; W)
for all functionals f on C4[0, 1] which are continuous almost everywhere with
respect to u(-; ¥o).

To establish weak convergence two steps are usually required. First, the con-
vergence of the finite-dimensional distributions (fdd) of the approximating
processes, {yx(t):t = 0, N = 1, 2, ---} in our case, to the corresponding fdd of
the limiting process must be obtained. Second, the probability that the approxi-
mating processes can have large fluctuations between points at which these
processes are determined by their fdd must be shown to be small. The notion of

Il

g5

2 The convergence here is in the ordinary sense of convergence of distributions; i.e., for
all « for which the right-hand side is continuous.
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weak convergence is intimately related to the so-called invariance principles. An
invariance principle was first introduced for the case of sums of independent,
identically distributed random variables by Erdés and Kac [4] and generalized
by Donsker [3]. The method of proof used by Erdés-Kac and Donsker was later
modified by Billingsley [1] for dependent random variables. In carrying out the
second step outlined above we shall follow Billingsley’s argument in Theorems 2.3
and 3.1 of [1]. A program similar in nature to ours was carried out by Lamperti
[10] for a particular class of Markov processes.

This paper is organized into the following sections: Section 2 is devoted to our
analog of the central limit theorem (clt), namely, that the distribution of yx (¢)
converges to the distribution of y (¢) at a single fixed value of ¢. In Section 3 the
limit process y (¢) is identified and the properties of the process needed here are
discussed. Section 4 completes the proof of the convergence of the fdd of {yx ()}
to those of {y (¢)}. The proofs in both Sections 2 and 4 are carried out using the
Lévy continuity theorem for characteristic functions. Section 5 provides the
proof required to show weak convergence. The main tool here, in addition to
Billingsley’s theorems mentioned above, is the result of Stone (1961 ) on the weak
convergence of random walks. Finally, in Section 6 applications are mentioned
along with a suggestion as to how the multi-urn Ehrenfest model might be used to
study certain problems in statistical mechanics, networks of queues, and epidemic
theory.

2. Analog of the central limit theorem. We begin by selecting an arbitrary
vector o in R%. Next we set Xy*(0) = [N Yo' + Np'] and only consider those
values of N large enough to insure that 0 £ Xx°(0) < Nfori =1,2,---,d.
For those values of N let the Markov process {Xy(k):k = 0, 1, --- , N}, which
characterizes the state of our multi-urn scheme, be defined on a probability triple
Qv , Fx, Px). The construction of this probability triple from the initial dis-
tribution, one-step transition probabilities, and state space is standard; see
Chung [2]; Theorem 1, page 7. In this section we shall prove for the multi-urn
Ehrenfest model the analog of the clt for sums of independent, identically dis-
tributed random variables. The result is

TuEoREM 1. For any vector y, in R® and initial condition Xy'(0) =
[N’ + Np'] the

limye Px{Yx(INt]) < x}
= (27r)—d/212|_%fxy':ygxx exp {—3(y — w)=7 (¥ — w)ldy
for all x e R® and t € [0, 1], where w = €”'yo, and E has elements
o= (1 —e™)p'0—p), i=j
= -1 — ¢, i j.

The proof of this theorem will depend on the Lévy continuity theorem for
characteristic functions and the following two lemmas.
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Lemma 1. If we let’ Yx (s; k) = En{exp {is-Yy(k)}}, then
Yw(s, k + 1) = gv(s)yn(hn(s, 1), k)
fork =0,1,--- | N — 1, where
gn(s) = exp {—N"'s’As + o (N ")},
A= (1-¢e""%, and
hy(s,1) = 1 — N + o(N7"))s
as N — o, and the terms o (N~ ') are uniform for s in a compact set of R* and inde-
pendent of k.
Proor. Using a standard conditional probability argument we see that
(1) ¥u(s, b+ 1) = Exfexp (35 Yu (k)}
‘Ey{exp {iN7's: Ry (k + 1) — Xn (b))} | X (B)}}.

The transitions allowed for Xy (k) in one step are as follows, where the conditional
probability of the transition is indicated at the right. (The vector e; has compo-
nents e’ = 6.)

Xv(k +1) — Xy(k) =0, p’(1 = N71-Xy (k) + N Ry (k) D,
= —e;, PN Xy (k),
= ei, p'(l — N7'1-Xy (k)),

=e; —e;, pN'Xy'(k) for i5j.
Hence one version of the conditional expectation indicated in (1) is
p"(L = N71-Xx (k) + N 7Ky (k)-p + pN K (k)-exp (—iN7s)
+ (1 — N71-Xy(k))p-exp (N 's)
+ N7 D (Gimy iy €xp (N (7 — §™)}p' Xy (k).

Here and in the future we shall use the notation f(s) as shorthand for the vector
(f(s1), f(s2), ==+, f(s4)). A routine caleulation allows us to write this conditional
expectation in the following simpler form

@ + prexp (N7%)){1 — N 'Xy(k)- (1 — exp (—iN7s))}.
Using this result plus the relation Xy (k) = N Yy (k) + Npin (1) yields
2) ¥w(s,k+ 1) = "+ p-exp GN7%))Enfexp (is-Yu(k))
1 — (V) + p)- A — exp (=N 7%))]}.

By expanding the exponentials, the term in square brackets inside the expectation
sign can be written as

3) 1 —4iNYy(k)-s — iN'p-s — (2N)7p-s’
— @N*Y Yy (k)-s* + o(N7TH).

3 The symbol Ex{-} denotes expectation with respect to Py .
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For s in a compact set of R?, the term (2N**)™'Yy(k)-s’ can clearly be written
as 0 (N"")Yy (k) -s. Thus the logarithm of the expression in (3) is
@) —i(N" + o(NT))Yx(k)s — iN'p-s — (2N)7p-s"
+ @N)T(@-s) + oV T.
On the other hand, the coefficient of the expectation in (2) can be written as
1+ iNps— @N)p-s’+ oV )
and its logarithm as
) iNip.s — 2N)p-s*+ @CN) ' (p-s)* + o(N7Y).
Combining the expressions in (4) and (5) Wifh (2) we obtain
Yn(s,k+ 1) =exp (=N7p:s"+ N (p-s)’ + o(N 7))
-Exl{exp (s-Yy(k)(1 — N7 + oV 7))}

A trivial calculation shows that p-s* — (p-s)* = s’As which completes the proof
of the lemma.
Lemma 2. The characteristic function

¥n (s, k) = J15=0 gulhw (s, 5)W¥albn s, k), 0]

fork =1,2,---, N, where hy(s,0) = s and hy(s,j) = hylhn(s,j — 1), 1] for
jz L

Proor. This result follows immediately by induction using Lemma 1 andfthe
fact that hy (S, j) = hN[hN (S, 1), J - 1].

With the help of Lemmas 1 and 2 we now return to the

Proor or THEOREM 1. From Lemma 2 we have

6)  Ingn(s, IN) = 22757 In galhn (s, )] + dhw (s, [N2])- Y (0).

From the definition of hx (s, 1) and hy (s, j) it is easy to verify that hx (s, j) =
(1 — N4+ o®™))’s. Thus from Lemma 1

7) 2 In gulha (s, )]
= —N7%As 2971 (1 — N7+ o(N))¥ 4+ 0(1).

Furthermore,

®) T A= NT o)~ N - e7)/2
and

©) hu(s, [N]) > e's as N — =,

where the second relation is meant component-wise. Thus combining (7), (8),
and (9) with (6) yields the fact that the

(10) limyoe In Yu (s, [Nt]) = —1s'Ss + ¢ yo-s.
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Finally, appealing to the Lévy continuity theorem for characteristic functions
the limit in (10) establishes the theorem.

3. The multi-dimensional Ornstein-Uhlenbeck process. In this section it will
be convenient to assemble the few facts we shall need about our limit process,
y (). The multi-dimensional Ornstein-Uhlenbeck process is a diffusion process
(strong Markov process with continuous paths) governed by the transition prob-
ability kernel

g% y) = @) 2T exp (~3F — w)'T@ — w)
forte[0, 1] and x, y ¢ R®, where y = ¢ 'x and £ = (1 — ¢™)A with A being a

d X d positive definite symmetric matrix. It i§ easy to verify that this kernel
is the elementary solution of the parabolic partial differential equation

0/0t)g (t; %, ¥) = 25:;a50°9 (¢ %, ¥)/0xdr;) — > :2:(0g (t; X, y)/dw:)

where t > 0, x, y ¢ R%

For any finite number of times 0 < #; < #, < -+ < & < 1 it is easy to calcu-
late the joint characteristic function of the vectors y (&), y (), - -+ , y (). In
fact, if we set y (0) = y, with probability one and let

G(s1,8, v, 8Kty bty oo t) = Efexp [E(sioy () + -+ + sy ()]},
then it is easy to show that
d(S1, -, Sest, e, b)) = exp | —is; (brA)sk
— 3(ska + ase) (hemA) (Sem1 + @isi) -0 —1(s1 + sy
+ o [lias) GA) &1+ asse + - + [ asi)
+ (14 ase + - + [[iaise)- (ayo)},

where a, = exp {— (t; — tia)}, bi = (1 — exp {—2(t:s — ti1)}), and & = 0
The stochastic process {y(¢):0 < ¢ < 1} can be constructed on a probability
triple as follows. Let C[1, €’] be the space of continuous functions on the closed
interval [1, ¢’] and endow it with the topology of uniform convergence. Denote
by €[1, €’] the topological Borel field of C[1, ¢€*]. Construct on €[1, ¢’] Wiener
measure corresponding to Brownian motion, z (- ), on [1, €’] with 2 (1) a constant
with probability one; see It6 and McKean [6], section 1.4. Now take d copies of
CI[1, ¢'] and form the product space C4[l, ¢’] with the product topology and the
product Borel field €41, ¢’]. Take for the measure on C4[l, ¢’] the product measure

with the initial condition for the 7th Brownian motion being z* (1) = > %_; bijys’,
where the matrix B~ ' = {b3,} is the inverse of the symmetric positive definite

root of A;i.e., A = BB'. Nowlet {x(¢):1 < ¢ < ¢’} be this d-dimensional Brown-
ian motion and introduce the transformation

y@) = e 'Bx(¢"), 0<t=1.

This transformation is a measurable mapping of C4[1, €’] onto C4[0, 1] and induces
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on @y the measure u(-; yo). The measure u is the one generated by the kernel
g (t; x, y) and the one referred to in Section 1.

4. Convergence of finite dimensional distributions. We proceed now to show
that the fdd of the sequence of processes {y»():0 < ¢ < 1} for N = 1,2, ---
converge to the corresponding distributions of the multi-dimensional Ornstein-
Uhlenbeck process, {y(¢):0 = ¢ < 1}. The convergence of the one-dimensional
distributions has already been established for the sequence {Yy ([N¢]):0 < ¢ < 1}
for N = 1,2, --- . But since |[Yx*((N#]) — yx'(¢)] < NP fori=1,2,---,d
with probability one, it is clear that we also have the convergence of the one-
dimensional distributions of {yx(t):0 < ¢t < 1} as N — «. More generally, we
have

THaEOREM 2. The

limye Pr{Yy([Nti]) < %1, -+, Yu(ING]) = %}
exists and is the same as the joint distribution of {y (£):0 < ¢t < 1}.

Proovr. Since the argument used for the convergence of the two-dimensional
distributions embodies that for the general case, we shall restrict our attention
to the case k = 2. Let Yn(s1. 52 ; k) = En{exp {¢(s1-Yu (k1) + s2-Yu(k2))}},
where k = (ky, k2) and k; < k; . Then we can write

Yn(s1, 825 k) = En{exp (i51-Yw (k1)) En{exp (4s2- Y (k2))| Xu (1)}}.
Now using the notation and arguments of Lemmas 1 and 2 we obtain the relation
En{exp (4s;-Yu (k2) )l Xy (K1)}

= H?Qkﬁl galhw(s2, )] exp {thw (52, ko — k1) - Yy (k1)}.
Hence
Yn(st, 5 k) = [ gulhw (52, ))Wn (51 + B (s, b — Fn), Fr).
If we now set &y = [Nti] and ky = [Nt] and let N — o, we have
limysw ¥n (s1, 525 (N, [N6])) = exp {—#s)’ (bA)s:
— 3(s1 + @) (A) (51 + anse)
+ ’5(51 + 0«252)‘0«1}’0}-

But this limit is exactly the two-dimensional characteristic function of
{y():0 = ¢ < 1} given in Section 3. This completes the proof of Theorem 2.

Again the convergence of the fdd of {Yy[N#]:0 < t < 1} is equivalent to the
convergence of the fdd of {yx(¢):0 = ¢ =< 1}.

6. Weak convergence. To complete the proof of weak convergence we shall
follow the methods of Donsker [3] and Billingsley [1]. We shall need a theorem
which is a straightforward generalization of Billingsley’s Theorem 2.3.

Let Ax be the set of functions y ¢ C4[0, 1] which are linear on each of the
intervals (¢ — 1)N, iN™") for ¢ = 1, 2,---, N and satisfy y’'(0) =
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([N%yoj + Np’] — Np)Ntforj =1,2, --- , d. Then from the definition of the
measures ux (-; Yo) given in the introduction, we have ux(Ax ; yo) = 1. For any

positive integer ¢ and vectors e, - -+ , @, 81, - - - , B € R* we shall define sets in
C4[0, 1] such as
(11) E = {xeCd[(): ;e = X(t) =6, (.7 - 1)6—1 =t éjc—lyj =12 ... 'C}'

Then by generalizing Billingsley’s set-up for measures on @ (Borel sets of C[0, 1])
to measures on C; we have

TuEOREM 3. If the limy.« Py {Gx} = u(E;¥o) for any set E of the form (11)
where

(12) Gy = {wie; < Yy(i, w) < B5; _
(J_ l)c_l = iN_l éjc_l:j =1-:- 76} C Oy,

then pn (-3 ¥0) = p(-; y0) as N — oo.

This theorem will be our main tool in proving weak convergence. In ad-
dition, however, we shall need the following lemmas. Recalling that
{Xy(k):k =0,1, ---, N} is defined on the probability triple (®» , F» , P») men-
tioned in Section 2 we have

LemMA 3. For every ¢ > 0, there exists @ Ao > 0 and a positive integer Ny such
that the

(13) PN{mavX0§k§N|YNi(k)| = Mo, 1= 1; ] d} 21—

fOT N = N 0.
Proor. Choose ¢ > 0. Suppose we can show that for some Ny and Ao that

(14) Py{maxo<i<n |[Ya'(k)| > N} <¢/d  when N =N,

fort =1, .-, d. If we denote the complement of the set in (14) by A, then
Py{Uis A} < 20LPy{AS) S e

for N = N, or equivalently

(15) Py{Niadd 21 —¢

which is the desired inequality. Hence it will suffice to prove (14 ). Furthermore,
since there are only a finite number of values for 7, we need only prove (14) for a
fixed but arbitrary value of <.

Consider, therefore, the inequality (14) for ¢ = 1. The random variable
X' (k) can be thought of as describing the state of an Ehrenfest urn model con-
sisting of two urns. One of the urns is urn 1 and the other urn represents an ag-
gregation of urns 0, 2, 3, - - - , d. Again a ball is chosen at random and placed in
urn 1 with probability p* and in the other urn with probability 1 — p". The random
variable Yy' (k) = (Xy' (k) — Np')/N* is the appropriate one to consider for a
limit theorem in this modified urn model. Appealing to Theorem 4.2 of Stone
(1961) it is easy tp check that the sequence of processes { Yy ([N#]); ¢ [0, 1]}
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converges weakly to the Ornstein-Uhlenbeck process with infinitesimal mean —y
and infinitesimal variance 2p' (1 — p'). For this limit diffusion & « are natural
boundaries and hence inaccessible. We shall define the first exit time of the
process X (- ) from the interval (z;, ;) as

Toyoy(X(-)) =1inf{t 2 0:X(¢) = 2. or X(t) < i},
then applying Stone’s Lemma 3.7 we obtain
(16) Py{Ton(Yn(N-])) 21} £ ¢/d

for N and A sufficiently large. But this is precisely the desired inequality (14),
which completes the proof of the lemma.

The second lemma is taken directly from Stone (1961).

LeMMA 4. For every e > 0 and 6 > 0, there exists a positive integer N1 and a
positive number vy such that the

Py{maxo<-<: |Yn' ((N7]) — Yx' (0)] > €| Y¥'(0) = 5o} < 8

fori=1,---,d,N = N1, and t < v, uniformly for [yo| = No.

Proor. The proof of this result is a direct consequence of Lemma 3.1 and
Theorem 4.2 of Stone (1961). The only hypothesis we need check is that the
infinitesimal mean and variance of the Y ([N-]) process converge uniformly in
compact intervals to those of the Ornstein-Uhlenbeck process. But this fact is
immediate and therefore omitted.

With the help of Lemmas 3 and 4 we shall apply Theorem 3 to obtain our
principal result. The proof given here follows that of Billingsley [1], Theorem 3.1.
The result is

THEOREM 4. uy (-, ¥o) = u (-, yo) as N — o, for all yo € R

Proor. Select a positive integer ¢, vectors eq , @2, -+ - , @, 01,82, -+ ,8c¢€ RY,
and form the sets E and Gy defined in (11) and (12). Let Gw(e) and E (e) be
sets similar to Gy and E where the e;’s and §;’s are replaced by e; + €l and
8, — €l with € > 0. Choose a positive integer » and let

Nju=1G — 1)é'N + Ncw™], =1, u=1-,»

Now let Gy, be a set similar to G , however where the inequalities on Yy (2) are
required to hold only when < is an integer among the N;. . The set G, (¢) has
the same relationship to G (¢). Clearly,

Q) Py{Gx,} = Py {Gy},  since Gy, D Gn.
Furthermore,

Pu{Gy?} = 1 — Py{Gy} = D10 2 11 PulAn,d,
where

Ayni= {0 Yy®) ela;, 8, k<L, G — 1) S kN =jc, j=1,--¢
Y@ elady,Bh), m=<i—1, (Go— 1) <IN = jic;
Y Q) 2 lag, , B3]} < Q.
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The set Ax,i,: can be described as the set of all Yy (- ) paths for which Yy () is
the first random variable to break out of the tunnel and ¥y* (1) is the first compo-
nent of Yy (!) outside the required interval. For the remainder of the proof we
let o be a positive constant which is large enough to satisfy the requirement of
(13) and the inequality

@18) No > maxi<igs Maxi<i<e {max (o, 8;])}.

(This requirement is placed on Ao so that whenever a path {Yx(k)} is in an ap-
propriate tunnel set, the condition {maxo<r<y |[Yn (k)| < N, 2 = 1,---, d}

will not be operative.) Letting By = {w:maxo<i<n | V¥’ (k)| S No,2=1,---,d}
we obtain
(19)  PulG) = Yo X4es [Puldui, B} + Pulduss, By’ 1]

< D0 tuPy{Anai, By} + ¢ for N = Ny,

where N, is defined in Lemma 3.
If the index [ is such that N;,1 < | £ N;., we can make the further de-
composition

(20) PN{AN,l,i, BN} = PN{AN,l,i7 BN: |YNi(Nj.u) - YNi(l)l > e}
+ Px{Awi,i, By, |[Yx' (Vi) — Ya'Q)| < ¢

Using the Markov property of the {Xy(k):k = 0, --- , N} we obtain the rela-
tion

PulAna,i, By, |Ya' Nia) — Ya'(1)] > ¢
(21) < Djes PulAwaa, Xx () = j}
Pu{|Yy' (Nju) — Ya' ()] > €| Xn () = j},
where,
Ay = {0 ¥y k) ele;, 8,k =1 —1, G — 1)
SEN'=Sjchj=1,---,¢

and
S =1{j:;fe{0,1,---,N}, r=1,--.,d;
(" — Np")N ' e [of, . 7],
m=1,--,i—1, Go— 1)¢" S IN" £ juc™";

G' = Np* )N elag, , B5I° N [—No, Nal;
(G — Np )N e[—ho, N7 =44+ 1,--+,d}.

Since the process {Xy(k):k = 0, - -- , N} is temporally homogeneous, the second
factor in the sum on the right-hand side of (21) is equal to

(22) PuflYy' Win — 1) — Y& )] > ¢|Xn(0) = §}, jeS.
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By choice of Nj,.. , we have Nj,, — | < N/cv. Thus we can let Nj, — | = [N7],
where 7 < 1/cv. Furthermore, for all j ¢S, j° can be written as [Nty," + Np'|
with [yo"| £ Noforr = 1, , d. Hence appealing to Lemma 4 the probability in
(22) is less than or equal to 6 (arbitrary) for N = Ny and 1/ov < 4.

Returning now to (21) we have

(23) Py{Anai, By, [Ya'Niu) — Ya'Q)| > ¢ = 6Px{Aw, 1.4,

provided N = max (No, N;) and 1/cv £ «
Pulling together (19), (20), and (23) yields

(24) Pu{Gy%} Z,uZz_N,u 1+1Z it Py{Ani,i, | V5" Niu) — Yo' Ml=e
+ 5Zz=oz:z=-1PN {Awid + €

for N = max (No, N;) and 1/c» < +.
All the mutually exclusive events making up the first sum in (24) are con-
tained in Gy, (¢). Hence we have

(25) Py{Gy} £ Py {Gr,y(e)} + 6 + 2e.
Combining (17) and (25) we obtain
(26) PN{GN,,,(é)} - 6 - 26 é PN{GN} é PN{GN,,,}.

To complete the proof we must show that Px{Gy} — u(E; yo) in order to
apply Theorem 3. Using Theorem 2 we have for fixed c, », and e the

27)  limysw Pa{Grs} = n({y € Ca(0, 1):3((G — 1)¢ + u(er)™) e lay, B,
j= 1;“’7677" = 1)"' :”};yo)

and a similar limit for Py{Gw~, (¢)}. If we call the set on the right-hand side of
(27) D, and the corresponding set for the limit of Py{Gx,(¢)}, D, (e), then from
(26)

28) u(Dy(e); ¥o) — & — 2 < lim infyeo Pu{Ga)
< lim supw.w Pr{Gn} = 1 (D ; yo),

for1/cv = v. Now if welet » — o, wehave u(D, ; ¥0) — 1 (E;¥o) and u (D, (¢); yo)
— p(E(e); o). Since E(e) /7 int (E) as ¢ ™ 0 and p(0E; yo) = 0, we obtain
from (28) by first letting » — « and then letting ¢ 0 that

limyow Pr{Gy} = u(E; y0)

for every positive integer ¢ and vectors ey, - -+ , @, 81, + -+ , 8. ¢ R%. Thus apply-
ing Theorem 3 completes the proof.

6. Some applications. In the introduction it was pointed out that the weak
convergence of ux to u implied that the

limysw uy ((fx(-)) = a};y0) = p({fF(-)) = a}iyo)

for all functionals f on C4[0, 1] which are continuous almost everywhere with
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respect to u. Thus for applications we can obtain an approximation for the dis-
tribution of f(y~(-)) [or in turn of a corresponding functional on Xy (k)] by
studying only the distribution of f (y (- )). Examples of functionals f which might
be of interest in particular applications are

@) () = maxoges v (),

(i) fo(y(-)) = maxo<i<i |y ()],

i) /(7 (-)) = [oly’ @) dt, and

() £y (-)) = o G ()" d.

The calculation of the distribution of f(y(-)) is in general very difficult, if not
impossible, at the present time. However, for a practical problem requiring an
answer, this distribution could be approximated by carrying out a simulation.

There are at least three areas of application in which a multi-urn Ehrenfest
model might be useful. The first is statistical mechanics in which the urns would
be identified with cells in momentum space and the process {Xx(k):k =0, - - - , N}
would measure the occupation numbers of elements (e.g., atoms or molecules)
in the various cells. The probabilistic structure governing the rearrangement of
balls would correspond to the Stosszahlansatz describing the Rayleigh model of a
gas. For a more detailed description and further references on this subject the
reader is referred to Siegert [12]. Actually the physical model in this case would
probably be better described by a continuous time analog of {Xy(k)} in which
the “collisions” took place according to events of an independent Poisson
process, as was done by Karlin and McGregor [8]. However, for the continuous
case similar results can be obtained.

The second area of potential application is that of networks of queues. We
have in mind here a job-shop with d work centers which correspond to the urns
1, .-+, d. Urn 0 corresponds to potential customers outside the shop. The
process {Xy (k)} would measure the number of jobs at the various work centers
and the transitions in state would correspond to the arrival and/or completion of
service of jobs.

In epidemic theory one can envision a population of size N whose individuals
are each in one of (d + 1) states of health. Urn 0 might refer to well individuals
andurns 1, - - - , d might represent d different diseases. The process would measure
the state of the population and the transitions would relate to the probabilities
of individuals contracting the various diseases. The model would not be com-
pletely satisfactory, however, because of an absence of a contagion effect.

While it is easy to conjure up applications of the above sort, one would un-
doubtedly find in many specific applications that the probabilities of transfer
differ from those assumed for the multi-urn Ehrenfest model. However, there is a
distinet possibility that analyses similar to that carried out here would be feasible
for such models. As further examples of such work the reader should consult
Karlin and MecGregor [8], and [9].
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