The Annals of Mathematical Statistics
1968, Vol. 39, No. 3, 815-832

A SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS FOR THE
DISTRIBUTION OF HOTELLING’S GENERALIZED Ty?

By A. W. Davis
C.8.1.R.0., Adelaide

1. Introduction and summary. Let 8, S, be independent m X m matrices
on ny , ny degrees of freedom respectively, 8, having a Wishart distribution and
8; having a possibly non-central Wishart distribution with the same covariance
matrix. Hotelling’s generalized T'¢" statistic is then defined [7] by

(1.1) T = ny 'Ty = tr §8 .

The complete distribution of this statistic is known only in particular cases.
If m = 1, then (ny/n,) T is simply non-central F. In the case n; = 1, T reduces to
Hotelling’s generalization of “Student’s ”’ ¢, which also has a non-central F dis-
tribution. When m = 2, Hotelling [7] has shown that in the null case the density
function of T is

(1.2) f(T) = [[(m + ng — 1)/T(n)T(n, — DIGFT)™ (1 4 3T)~ "

“oF1 (1, 3(m + n2); 3(ne + 1);0),

where v = T%/(T + 2)%, and »F; is the Gaussian hypergeometric function.

When 7, becomes large, the distribution of 7' approaches that of x* based on
mny degrees of freedom. Ito [9] has derived asymptotic expansions both for the
cumulative distribution function (cdf) of Ty’, and for the percentiles of 7’ in
terms of the corresponding xan, percentiles.

Other approximations to the distribution requiring large n, for validity have
been obtained by Pillai and Samson [12]. These authors have used the method of
fitting a Pearson curve by means of moment quotients to tabulate upper 5%
and 1% points for m = 2, 3, 4.

The exact distribution of 7" over the range 0 < T < 1 has been obtained in the
general non-central case by Constantine [3], using the methods of zonal poly-
nomials and hypergeometric functions of matrix argument developed by James
and Constantine ([2] and [10], for example). Constantine’s solution has the form

(1.3) AT) = M3 + m))/T(3mng) Tu(3n) 1 T 0(T),
where ®(T') is a power series in 7T convergent in the unit circle, and
(1.4) Tna(2) = #1552 — %46).

In Section 2 of the present paper, it is shown that in the null case the density
function f(T') (or rather, its analytic continuation into the complex T-plane)
satisfies an ordinary linear differential equation of degree m of Fuchsian type,
having regular singularitiesat I' = 0, —1, - - -, —m and infinity. More specifi-
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cally, an equivalent first-order system is obtained, and the problem is most con-
veniently treated in this form. Constantine’s series (1.3) in the null case is shown
in Section 3 to be the relevant solution for f(T) in the neighbourhood of the
regular singularity at 7' = 0. The differential equations lead to convenient re-
currence relations for the coefficients in ®(7T'). In Section 4 an alternative deriva-
tion of Ito’s asymptotic formula is presented. Preliminary results are then given
(Section 5) for the regular singularity at T = «, and a heuristic treatment of the
limiting distribution as n; — o is presented in Section 6. Finally, it is shown in
Section 7 that the moments of 7' may be obtained from the differential equations
for the Laplace transform of f(T') given in Section 1.

One objective in deriving the differential equations for f(7T') has been to obtain
a convenient exact method for computing the distribution and its percentiles.
This work is in progress, and it is hoped that results will be available shortly.

2. The system of linear differential equations. Let wy, - -+, w, denote the
latent roots of 88, ; then from (1.1)

(2.1) T=>m"w.

Assuming that 8; has the central Wishart distribution, the joint density func-
tion of the w; when n;, ne = m is

bminyng (W) = [P Tn(3(n1 + 19)) /Tn(310) T (302) Tm(3m0)]
(2.2) (I w) ™™ Tl (1 + wa) 2 0 (wi — wy),
O<wp <+ <wp < o).

(See [5], [8], [13]). The case of singular 8;, n; < m, does not require separate
treatment, since the distribution of 7 then has a simple relation to the case n, = m
([3] Section 4). The following proof holds strictly for m = 2.

Throughout this section, the suffixes on ¢ will be omitted for convenience.
The Laplace transform (Iit) Lo(s) of f(T') may then be written in the form

(2.3) Lo(s) = [o,e > ¢(w) dw, (s 2 0),

where D,, denotes the region {0 < w, < --- < w; < «}. In general, it may be
seen that the functional

(24) L) = [o,6 7" Y(wW) dw

is the ordinary Lt of the following function of a single variable:

(25) U(T) = [on ¥ (T — wy — <=+ — W, Wa, =+, W) AWz -+ AW,
where

Dua(T) = Dpa 0 {20 + ws + -+ + wn < T}
(2.6) =0 < Wn <M W0 < Wng < (m — DT — wp); -+ ;

’LD3<U)2<%(T—'W3— e -—w,,,)}.
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Taking ¥ = ¢ in (2.5), we obtain an integral form of f(T').
Thus Lo(s) = £(¢), and the following Lt’s will also be introduced:

(27) Li(s) = £{¢p(W) Dhictcar, [(1 4+ wry) -+ (1 + w)7Y,
(r= 1,2, ---,m).

The summation in curly brackets is extended over the (7) selections of » distinet
roots, and is a symmetric function of the w; . Clearly, the L.(s) exist for all s = 0.
Differentiating under the sign of integration:

(28) —L/(s) = 8{¢(W) Zica, [(1 + wi) -+ (1 + )]

A Hwe) + -+ (L wn) =+ (0 + - Fw, )],
where (ly, -+, ln—) is the set of suffixes complementary to (k;, - - , k,). Hence,
writing
(2.9) @.(s) = £{é(w) Zhicap, (Wi, + -+ + wy,,_,)

A+ we) oo (1 +w)T,
it is seen that
(210) —L,/(s) = (m —r+1)L,4(s) — rL(s) +®.(s), (r=1,2,---,m).

Now let ! denote any suffix distinct from each of &y, - - -, k, . It follows by in-
tegration by parts that

se{o(W)wil(1 + we,) -+ (1 + we,)] ™
= —Jo. ((3/0w)e” ™ (W) /(1 + wi,) -+ (1 + wy,) dw
211) = e{o(WI(L + wey) -+ (L + wi,) [ [—3(ne + m — 1)
+30u 4+ m) (1 + w)? + ([Tr (i — w;)) 7 wi(8/wi)
JT0e (wi — wy)l}.

Since
(2.12)  (IT% (ws — w)) 7 (8/0w:) [Tis (wi — wy) = 2ot i (wr — wi) ™,
it is necessary to consider the following summation in connection with (2.9):
(213) Dhicoae [(1 + wi) -+ (1 4 w)I
wy iy (Wi — )T A e wn, DT g, (W, — wi) 7.
The coefficient of (w; — w;) ™, (¢ < j), is seen to be
W,y D vy @l by [(1 4= i) =+ (1 4+ wg, )™
— Wi Dk hy @l ke [(1 4 wiy) +or (1 4 we)]™
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= Wil 2 <yl ki [(1 4 wy) o0 (1 4 w,)]™
(2.14) + (14 w) ™ 2ty a ki) ([ we) <o+ (1 + we, )] 7
— (similar term with < , j interchanged)
= (Wi — W) Zhicoct @b [(1 4+ i) <o+ (1 4 w,)]
+ (wi = w)(1 + wi + w)[(1 4+ w)(1 + w)™
Doty @l ey [(1 4 ) o+ (1 4w, )]
The summation (2.13) may therefore be written as
Tei 2t <l ki) [(1 + way) -+ (1 4 wy,)] ™
+ 220 {1+ w) T 4 (1 + w) Y
(2.15) 2ty @i (L we) o (14w,
— 2201 4 w) (1 + w)] ™
+ 2 i<y s @il ki [(1 A way) o+ (1 we, )]
Since the second term in (2.15) is
(2.16) D% (1 + wa) 7 Dt sall byeioy [(1 A+ w3y) o+ (1 4 wy,_,)]™
= r(m — 1) D<o, [(L 4 wi) -+ (1 + w,)]7,
it follows that (2.15) reduces to
(217) (7)) + r(m — D1 2 hca, (1 + wi) - (1 + we)]™
— (1) 2hicecin [(L A way) o+ (1 4w, )7
Hence, from (2.11) and (2.17):
(2.18) s®,(s) = —3(m — r)(ne — r)L.(s) + 5(r + 1)(n + nz — 7)Lrpa(s).
Substituting in (2.10) we obtain:
(219) (m — r 4 1)sL,y + [s((d/ds) — r) — E(m — r)(ny — 7)]L,
+30r+Dm+n—rLun=0 (r=12---,m—1).

The same result holds for » = 0 and m if L_; and L,,;; are defined to be iden-
tically zero. If » = m, a factor s may be cancelled, yielding

(2.20) ((d/ds) — m)Lm + Lu—y = 0.

It now remains to invert the Laplace transforms. As seen earlier, L,(s) is the
Lt of a certain function of a single variable which will be denoted by H.(T),
(H_y=0,H, = f).Invirtueof (2.5) and (2.7), it is seen that H,(T) is dominated
forall T' = 0 by a constant multiple of f(T'). Constantine’s result (1.3) shows that
F(T) = O(T"™ ™) as T — 0+. (This may also be obtained by taking ¢ = ¢
in (2.5)). Hence sL.(s) is the Lt of H,'(T), and since also L, (s) is the Lt of
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—TH,(T), the required system of first order differential equations is ob-
tained:

(221) —(m —r + 1)dH,+/dT + {(T + r)d/dT + a.}H, — b,Hr11 = 0,
(7’ =0,1,:-,m— 1)7
(2.22) —Hpy+ (T +m)H, =0,
where
(223) a = i(m —r)(ng— 1) + 1, by = r + 1)(m + ne — 1),
(r=0,1,---,m).
Although these equations have been derived for m = 2, they also hold form = 1.
Elimination of Hy, -+, Hn, from equations (2.21-22) will clearly yield a
linear homogeneous differential equation of order m for f = H,. The coefficient
of f* is a polynomial in T of order r + 1, that of the highest derivative f ™ being
T(T +1) - (T + m). The differential equation is therefore of Fuchsian type
with regular singularities at 0, —1, «++, —m, and infinity. In particular, when
m = 2:
(2.24) T(T + 1)(T + 2)f" + [3(8nz + 5)T" +2(ng — m +4)T — 2(m = 2)If’
+ 3(ng + D[(ne + 1T — 2(m — 2)If = 0.
If the transformations
(225) f(T) = "1 4+ 317" "(T), o = T/(T + 2)’

are made in (2.24), g may be shown to satisfy a hypergeometric equation in
conformity with Hotelling’s result (1.2).

In the general case, however, it is preferable to work with the linear system
(2.21-22) itself. An extensive literature exists dealing with such systems (see
[1]). To express the result in matrix form, the following notation will be intro-
duced for (m + 1) X (m + 1) matrices, all of whose elements are zero except
those on their leading, upper and lower diagonals:

ko, M0, 0, -+-+, 0 7]
1/1,#1,)\1,"',0
‘ 0.
(226) {()\o,-“,km—l),(uo,“',Hm), (V17"'7Vm)}= . ..
0

Vm—1y Bm—1, Am—1

01 "":07 Vmy Mm

Columns and rows will be numbered 0, 1, -« , m.
Differentiating (2.22) with respect to T' to achieve symmetry, and introducing
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the column vector

(2.27) H = (HO;Hla e 7Hm),7
the system may be written in the form
(2.28) (TEmy + A)dH/dT = BH,

where E,..; is the (m 4 1) X (m 4+ 1) unit matrix, and
(229) A =1{(0,0,---,0),(0,1,2,---,m), (—=m, —(m — 1), -+, —1)},
B = {(bo, -+, bu-1), (—@0, —@1, -+, —an), (0, -+, 0)}.
3. The regular singularity at the origin. Equation (2.28) may also be written as
(3.1) dH/dT = (T7'R + > 1S, TH,

where R, S, are constant (m 4 1) X (m + 1) matrices. The standard procedure
for discussing the solution of (3.1) in the vicinity of the origin is to reduce R
to its canonical Jordan form by means of a suitable linear transformation of H
([1], Chapter 4). For present purposes it is sufficient to find a matrix P reducing A
to its canonical form:

(3.2) P'AP = A = diag {0, 1, -+, m}.
The right-hand side denotes an (m + 1) X (m + 1) diagonal matrix. A suitable
P, together with its inverse, is given by
(3.3) P ={pi}, pu=(D),
P = {pf}, i = (=D™GH, (4,5 =01, ,m).

Clearly, both P and P are lower triangular. It may be shown without difficulty
that

(34) PTBP =C = {(Bo, ***, Bnr), (@0, *++ y @)y (¥1, +** 5 ¥m)},
where

a; = 3(m — 20)ny — ing + (26° — mi — ¢ — 2)],
(3.5) Bi=3(¢+ 1)(m + ny — 7)),

vi= —im =i+ 1)(m— i+ 1).

Thus, if we write

(3.6) H = PM,
equation (2.28) becomes
(3.7) (TEni1 + A)dM/dT = CM,

or, alternatively,

(3.8) dM/dT = {T'Vo + 227m (T + r)7'ViM,
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where
Vo = {(3(n1 + n2), 0, -+, 0), (3mn, — 1,0, ---,0), (0,0, ---,0)},
(39) Vv, ={0,---,0,8.,0,---,0), (0, ---,0,0,0,---,0),
0, +,0,9,0,--+,0} (r=1,---,m).

The characteristic roots of V, are zero (with multiplicity m) and imn; — 1.
The presence of equal roots makes discussion of the complete solution difficult.
However, in view of Constantine’s result (1.3), the relevant solution in the
vicinity of T = 0 is of the form

(3.10) M = k(m; m, na) T 7 30 WT, (71 < 1),
where k(m; ni, ne) is the constant in square brackets in (1.3). The vectors
W, = (We, -+, Wn,)' may be determined without difficulty since imn; — 1

is the largest root ([1] Chapter 4, Problem 13) except when m = n; = 1. Sub-
stitution in (3.7) yields the following recurrence relations:

Wo = (1,0, e ,O),;
(r + tmny — D)W,

(3.11) = YWiaea + [ai — (r + dmm — 2)IWi + BiW i e
(7:= L--,myr =12, "');
rWOr = %(nl + n2)W1r, (T = ]-: 2) . ')'

When m = n; = 1, the roots are —%, 0, and do not differ by an integer.
4. Ito’s asymptotic expansion for large n, . Let us write
(4.1) t = nT = Ty

Then the cdf F(¢) of ¢ has a power series representation, convergent for |{| < n,,
which may be obtained by term-by-term integration of Constantine’s series.
Essentially, Ito’s expansion of F(¢) is obtained by rearranging this series as a
convergent power series in 7, ', and multiplying by the Stirling-type asymptotic
expansion of k(m; ni, ns).

It is readily seen by induection from (3.11) that each W, is a polynomial in
ng of order (r — %) at most. Hence, making the substitution (4.1) in (3.10),

(4.2) M = k(m;na ,me) (t/ne) ™ 7 e W, (W, = n”'W,),

where the components W7, of W,”* are polynomials in n,™", lower powers = 3.
To verify that rearrangement of (4.2) as a power series in ny " is valid, we note
that this series is dominated by the corresponding solution of

(4.3) dM/dt = {£Vo+ D7 (r — ny ') 0 'V,TIM,

where the V,T are obtained from the V, (r = 1, - - - , m) by replacing all negative
signs by positive signs in the expressions for a;, 8, v:. This solution is a double
power-series in ¢ and n, ' with positive coefficients, convergent for [t| < ns.
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In order to obtain the rearranged series for the component M, = f, it is con-
venient to first remove the factor ny* from each W3, , i.e. we make the shearing
transformation

(4.4) M = diag {1,n, ", -+, ng "}N.

Then

(4.5) N = ng "D (m; 0y, ne) Dormons "Y,(8),

where

(4.6) Yo(t) = " y(8), yn(0) = 1,
Yo(8) = "My (1), (r=1,2--),

and the components ¥ (t) of the y.(f) are power series in ¢. The second require-
ment in (4.6) arises because W, and its transform under (4.4) are both (1, 0,
«++, 0)’, which is independent of n, "

From (3.7), N satisfies the equation:

(ny tBmis + A) dN/dt
(4.7) = {(m B0, *++, M Buo1), (M@0, +++, Me am), (v1, *++, Ym)IN
= {Ag + ny Ay + ny AN,
The matrices A; are given by:
Ao = {(0,---,0)(0, =3, =1, -+, —=3m), (v1, ***, ¥m)},
(4.8) A= {(31,--,3m), (&0, 81, ,am), (0,---,0)},
Ay = {(Bo, *+* Bna), (0, --+,0), (0, ---, 0)},
where
(4.9) a; = 3[(m — 20)ng + 28 — mi — 5 — 2],
302+ 1)(ng — 7).
Substituting (4.5) in (4.7), it is found that:
(4.10) [(a/dt) — (Gmny — D))V, — Y1, =30 Yy, v, (r=0,1,--+),
while forz = 1, ---, m:
(4.11) ((d/dt) + 3)Yir — ViV,
= (=t(d/dt) + @) Yipra + 3¢ + 1) Vi1 + Bl a2

Y_; and Y_, are taken to be identically zero. _

These equations determine the Y;, uniquely in virtue of (4.6). It is seen that
forr =0,1, ---, Yo, and Y, are given by a pair of simultaneous linear dif-
ferential equations, inhomogeneous except when r = 0. The corresponding

T
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homogeneous equations are of the form:

1 —
@12) |4 Oazja=|2mm 0L
0, 1

_% mn , fu—

:l Z, (Z = (%, Z0)"),

[N

or, equivalently:
_ | dmm— 1, % 0, 0
(4.13) dZ/dt~{t [ 0, ol T —tmm, -3/ %

The solution corresponding to the root $mn; — 1 of the leading matrix is easily
verified to be

(4.14) Z = const v(¢) (1, —t)’,
where
(4.15) v(t) = ¢ itmmt,

For (Yo,0, Y1,0) it follows from (4.6) that the zero root does not apply, and
that the constant in (4.14) is unity in this case. Hence it follows from (4.11)
that for » = 0:

Yip = (=) %(®)(m — 1)(m — 2) -+ (m — i+ 1)(m — 1)(m — 2)

(4.16) oo (ng — 4 D (mng + 2) (mng + 4) -+ (mng + 206 — 1),
(7: = 2: "':m)°

Similarly, in solving for Yo, Y1,,, (r = 1), it is found that only the solution
(4.14) of the homogeneous part applies. The constant is determined by the

requirement that the lowest power of ¢ occurring is at least 3mn,. The same re-

quirement eliminates the general term const ¢ *‘ in the solution for Y,

(?' =2, "':m)-
In order to derive the expansion ([9], equation (4.3)) of Ito’s paper, it is suf-
cient to calculate the following Y., :

Yoi = ty(){—3n; + L(m + ny + 1)(mny + 1)Y,
You = v()(mms 4 2)7 (3bm(na’* + 2) + (4na 4 2)] — 3t(m + na + 1)},
Yer = (m — 1)(m — D)fy®)[(mm + 2)(mny + 4)]7
A—=3m(n’ + 2) + (4ny + 2)]
(4.17) + {t(mny + 6)7pmnl + m(n + m + 8) + (Sm + 4)]},
Yoo = () (mny + 2)Hdm In(n® + 2) + (4ny + 2)]
— t(mny + 4) 7 M (8ny® + 4) + 3m(nd + nd 4+ 8ny +4)
+ (16n + 24n; + 16)] A
+ L [(mny + 4)(mny + 6)]Vminy + m’ (20 + 20 + 8)
+ m(n® + 20" + 21ny + 20) + (8ns® + 20my + 20)]}.

I
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The density function of ¢ is then
(4.18) F(O) = ™ e(m; na, ma){y (1) + ma Yo, 1+ na Vo + <o},
(It] < ma).
Integrating with respect to ¢ to obtain F(¢), and using the expansion
Ny ™ (ms ny , M) ~ 27T (B )71 + dmngne N(ng — m — 1)
(4.19) + mng(96n°) [Bm’ny — 2m’(3n” — 3ny + 4)
+ 3m(nd — 20 + 5nqp — 4)
+ (—8n + 12m + 4)] + -},

Tto’s result is obtained as an asymptotic expansion uniformly valid for ¢ in any
bounded interval. The corresponding expansion of the percentiles of ¢ for large 7,
([9] equation (3.33)) may be derived formally from that of the cdf by means of
an algorithm found by G. W. Hill and the present author ([6]).

5. The regular singularity at infinity. Letting

(51) 2= T—ly
equation (3.8) takes the form
(5.2) dM/dz = {—27'C + 227w (z + ) 7V,IM

Thus (3.8) has a regular singularity at 7 = «, with linearly independent so-
lutions corresponding to the (m 4+ 1) latent roots of —C, convergent for [T > m.
Since C is similar to B, these roots are

(5.3) a, = 3m —r)(ng—r) + 1, (r=0,1,---,m).

The a, form a decreasing sequence for increasing r. We now seek to relate these
solutions to f(T'). Let I(m; n;1, nz) denote the constant in (2.2). From (2.5) we
have, as T — «,

f( T) T%(nz—m+3)
= Um;m, m) [, im (1 — T 2wt ™™
(T w)*™ ™ P+ 771 - :zn_m‘)]—mw
i (1 4 wy) Hemtn Hm 1= T wi + w;)]
(5:4) Jlegicigm (Wi — w;) dws - - - dwn
— [l(m; m, me)/l(m — Lym — 1, ne + 1)] [o,_1 dntintmgrr(W) dwW
wT(3(n + no — m + 1))T(}(ne + 1))/[T(3m)

ll

= k(m;ni, ny), say.
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In order to justify the limit, we note that since

(5.5) Wt o F e < T —w < 37,
the integrand is dominated on .- by a multiple of $m_1;n,—1,7,+1 . Since
(56) Up-1 = %(n2 —m + 3>’

equation (5.4) shows that in the neighbourhood of T = «, the relevant M may
be a linear combination of the solutions corresponding to all roots of —C except
a, = 1. Although (5.4) yields the coefficient of the a@,,_; solution, the problem of
determining the other coefficients in this linear combination remains unsolved.
A further complication consists in the fact that the a, differ by integers if
ny — m + 1is an even integer, while if n, — m + 1is odd then a, — @42 is integral.
The solutions therefore involve logarithmic terms. This situation is unfortunate
because the tabulation of higher percentile points of f(T) is of considerable
interest.

If n, > m + 1, the first four terms in the expansion of F(T') for large T are:

F(T) =1 — k(m;ny, na) T ™2y — m + 1)
+ [T(ne — m + 3)] ' [m(m — 1) — (2m4 + n2 — 1)]
(5.7) + [T (ny — m + 5)] ' [m*(my — 1)* — 2m(ny — 1)Bny + ny — 2)
+ )t — 2na(ny” — By + 2) + 3(2n — 2y + 1)
+ 2(m — 1) (ny — 2)na(ny + 1) (ny — m +2)7 4+ -},

This result may be derived by applying to H the transformation given later in
Section 7. However, the details will be omitted.

6. The limiting distribution for increasing n; . As n; becomes large, it is clear
that the random variable

(6.1) T = nflT = tr {(n1-181)82_1}

will converge in distribution. The limiting distribution is perhaps of mainly
mathematical interest, but it has the merit of giving completeness to tables of the
Hotelling statistic. Our discussion in this section will be rather heuristic.

We first obtain an integral form of the limiting density function, which will be
denoted by (7). Take ¥ = bm;n, n, In (2.5). Substituting
(6.2) w; = nﬂ:“, (t=2,-+-,m)
and letting n; — o it is found that

0(7) = limp,—w0 maf(ny 7)

a(m; m) [o, 1@ exp {—3(r — 2imu)™ + 2w}
A = i ws) [T wd ™ [T (¢ — X us — )

Jlesicizm (wi — w;) duz -+ + A,

(6.3)
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where
(6.4) a(m; ne) = limn,o0 7 ™™ (m; 01, n2)
= 7™ /2" (300) T (3m).

For large 7, one easily shows that

(6.5) 6(r) = O(r ™™™,
The behaviour for small 7 is more complicated. Setting
(6.6) Vi = TUq, (=2,
in equation (6.3), we obtain: ’
6(r) = a(m;ny)r ™
(6.7) Sanrexp (= (@071 = Z¥e0)™ 4+ 2Ta0)

e m),

A1 = X0 [T v 7 (1 — X0 — v))

'H2_$_7?<f§_'m (7)1' - Uj) dvg +++ dvp
where

(6.8) Rt = {0 <n <M 00 < Vg < (m =1L —0); -+ 3

V3 < v < 31—y — -

— )},

An asymptotic estimate of 6(7) as 7 — 0+ may be obtained by means of a
method due to Laplace ([4] Chapter I, Section 3). Consider an integral of the

form

(6.9) F(r) = [S&7D(0) dv.

Suppose that w(v) is real on (5, £) and has its greatest value in the interval at
v = ¢ withw (§) = 0, &' (£) < 0. Under wide conditions on p, w, we may expect

that,as — 04,

(6.10) §(r) ~ 3¢ 0 TG (r + 1))er ™,
where

(6.11) 2o e’ = p(§(u))y (u)

and v = {(u) is the inverse of )

(6.12) u = 4o — o@)

The integral involving v, in (6.7) is:

g = [E500 exp (= (20710 = Zs — o)™ + o7
(6.13) (1 = Za _ vz)vzlﬁ(nﬁmﬂ)

(1 — Zs — 2u) Hi_z_s (1 - 23 — v; — v3)(v2 — v;)] dvy,

where D_; denotes D5 v;.
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Clearly
(6.14) w(m) = —3(1 — 225 — 0) " + w7
has its greatest value at § = (1 — D _):
(6.15) w(E) = —2(1 — D25 .
Also,
(6.16) u = +[o(E) — o)
=Bl — 27 ¢ —v) + -+,
whence

(6.17) = (u) = 31— 25) — B — Z)lu+ -
Hence, obtaining p from (6.13):
(6.18)  p(s(w))'(u)
= w27 = )T [ s [(1— 208) — 20 + -+
It follows from (6.10) that
(6.19) gy~ dyrexp {—2r (1 — o))
(1= 227" [Lias (1 = 250) — 20,

where
(6.20) dy = M,
The same method may be applied successively to thev;, - - - , v, integrals. The

integral with respect to v, is found by induction to be:

gy~ dir'" exp { —1"(2) (1 — X)) H(A — X)) ™
(6.21) r
'ngr+1 [(1— Zr+1) — v,

where

6.22) d, = 2"'1( %r)r%r(nz—m)ﬂ(ﬂ-l-r+2)(,r — 1) Dremm—de-rte
pr=3r(ng +m — 1) — $(r — 1)(r 4+ 2), Zr+1 = Z:n+1 Vi.
Hence, as 7 — 0+, '
8(r) ~ a(m; ng) (1T drye ™7 Amm= i3m0,
(6.23) = [ DD, dmCne—mD) +1 /obmm—Em=D =) (1 yip (o 11,)]

. g™ 2 —imnati(m=2) (m+3)

Although the above derivation strictly requires that m = 2, it is seen that when
m = 1 (6.23) reduces to
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(6.24) 6(r) ~ (2T (ny)] te Mot

which is the density function of 7 = 1/x’, where x* is based on n, degrees of
freedom.

A system of linear different al equations for 6(7) will now be derived. Let the
following substitutions be ma« = in (2.28):

(6.25) r=n"'T, H=dag{l,m™ - ,n "]

Then
[TEm+1 + {(O; IR O): (0’ nl_I: 2n1_1’ Tty mnl_l):

= {(nl_lboa Tty nlklbm—l); ('—aO, Tty —am)) (07 R 0)}J°

Formally letting n; — o, we obtain

(6.27) (7Emn + Q) dJ/dr = —T7J,
where
(628) Q = {(0,"',0), (0,"',0),(—7’/&,'—(’”&—1),"',*1)},

r=1{(31--,%m), (@m,a, ,ans), (0,0, ---,0)}.
In order to show that J has a regular singularity at r = o, set £ = 7 *. Then
(6.29) dJ/dx = 2 (Epp + 2Q)7'TJ
= {z7'T + > o (—@)'ra}].

The (m -+ 1) linearly independent solutionsin the neighbourhood of « corre-
spond to the latent roots of I', viza, (r = 0,1, --- ,m). In view of (6.5), the re-
quired J may be a linear combination of the solutions obtained from aq, - - -
am-1 , and the problem of determining the coefficients arises as in Section 5.

Turning next to consider the solution near r = 0, let

b

(6.30) J = diag {1, ---, 7 ™K.
Then
(6.31) dK/dr = 73D, + D;)K,
where

Dy = $(Enn + Q)7'E,
(632) B ={(1,2,---,m), (0,---,0), (0, ---,0)},
D = —(Epu+ Q)7H(0,--+,0,--+,0), (ag, - - - JWijy G — M),
0, -+, G=Dlm—j+1),,0}

The system (6.31) is seen to have a singular point of the second kind (in fact
an irregular singularity) at 7 = 0 ([1], Chapter 5). In general, such systems have
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formal solutions which provide asymptotic expansions of the actual solutions for
small 7. As in the case of the regular singular points, we first seek the latent roots
of the leading matrix Dy . These may be obtained from the determinantal equa-
tion
(6.33) det (NEpn + Q) — B} = 0.

The left-hand side is a continuant ([11], Chapter XIII), and may be written in
centrosymmetric form (loc. cit. Section 549) :

(6.34) det {(—\, —2AF <o —m}), O\ N, -, 0,
(=md, -, =20, =)} = 0.

Hence, a theorem on continuants (loc. cit. Section 576) may be used to evalu-
ate the determinant:

(6.35) IIrolh — (m — 20N = \FHTTECDIN — (m — 20)7) = o,

where [ ] denotes the greatest integer part. The matrix D, therefore has
[2(m + 1)] positive latent roots 3m’, 2(m — 2)% ---, and [$m] + 1 zero roots.

Again, the presence of equal roots makes any discussion of the complete solution
of (6.31) extremely difficult (see [14]). However, (6.23) implies that the relevant
solution is that corresponding to the largest latent root im’, since this solution
approaches zero more rapidly as  — 04 than any other.

Noting that Dy has rank m, there exists a non-singular matrix Q = {q;;} re-
ducing Dy to its canonical Jordon form:

Q—IDOQ = {(O; O’ ce yO, te >O):
(6'36) (%m2) % m — 2)2) Sty %(m - 2”)2: 0) Tty 0)’
(O;O: -++,0,1,--- ,1)} =7’

where » = [3(m — 1)], and there are [3m] ones in the lower diagonal.

A suitable set of ¢;; may be obtained from the following recurrence relations:

qOJ'=1’ (j=07"',m); q¢m=0,(i=1,---,m);
gis = 7 (m — 2§)gi1,i — (m — © 4 2)¢isd,
(6.37) (i=1;"',m;j=0"")”);

I

—1

Qi = % (g — (m — ¢+ 2)gis,54l,
(z = 1, ,mij=v+1,---,m—1).
Writing
(6.38) K = QG,
equation (6.31) takes the form
(6.39) dG/dr = (X + ™11)G,
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where
(6.40) Y1 = Q7DiQ = (vy).
We now seek a formal solution
(6.41) G = B(m; no)e ™" 30X, (X0 = 1),

where the constant 8(m; ns) is given by (6.23). The X, = (Xor, -+ , Xmr) and
8 are to be determined. Substitution in (6.39) yields:

(6.42) Xo=(L,0,---,0)5  (vo+ 8 Xoo = 0;
while forr = 1,2, --- :
X = Aipsfi(2m — 3), (=1, ,);
(6.43) Xoprr = m At ;
X =m(Aipr + Xiny),  (GE=»+2,-,m);
(voo + 7 + N Xor = — 2 7m1 w0, X,
where
(644) Aip = =202 70viiXs+ (r+ 8)Xul, G=1,-++,myr=0,1,-+).
From (6.42),
(6.45) 6 = —vy
so that the last relation in (6.43) becomes
(6.46) Xor = =17 D Tav0iXs .
The author has not succeeded in proving in general that
(6.47) veo = imng — t(m — 2)(m + 3)

as required by (6.23) and (6.45). However, this has been verified for some early
values of m.

It has thus been shown that a formal solution (6.41) of (6.39) exists, and we
conjecture that this provides an asymptotic expansion of the required solution as
7 — 0+4. The cdf, ©(7) say, is given by an expansion

(6.48) @(1‘) ~ ﬂ(m, n2)6m212f75+2 Ef:o ,-Tr,
where the U, may be obtained from the relation
(6.49) d0/dr = 0(r) = 270G, (G = (Go, -+, Gn)).

An asymptotic development of f(T') for large n; based on 6(r) would clearly
present a difficult problem, and will not be attempted here.

7. The moments of T. Constantine has shown ([3], Section 5) that the mo-
ments of T exist up to the jth, where j is the largest integer such that
j < i(ny — m + 1), and he has obtained expressions for these moments in
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terms of zonal polynomials. In the present section it is shown that recurrence
relations for the moments may be derived from the differential equations (2.19-
20) for the Laplace transforms L,(s). These equations may be written:

(7.1) dL/ds = [s'B* 4 A]L,
where A was defined in (2.29) and
(7.2) B* = {(=bo, -+, —=bna), (@* -+, an™), (0, -+, 0)},
e =a—1= t(m —r)(ng — 7).

Since L(0) = (1, ---)" and a,,* = 0 is the smallest root of B¥, it follows that L
may be a linear combination of the independent-solutions corresponding to the

latent roots a,* (r = 0, --- , m) (which differ by integers in the same manner as
the a. (Section 5)). In any case, however,

(7.3) L(s) = 22i0Ls" 4+ o(s™), (I = (lor, -+, bur)")
where 7* is the largest integer such that

(7.4) 7* < tma = 3 —m + 1).

Thus 7* = 7, and all moments of T up to the jth exist by a standard result on
Laplace transforms, in agreement with Constantine’s result.
The matrix B* may be reduced to diagonal form by the transformation

(7.5) L = L%,
where
(76) I = {ra}, 7a=@Om+n—)[(m+n—:i—ky"

It may also be shown that
(17 W= {«h),  who= (=1

(m+n—i—k— D(m +n — k) (m + ne — 2),
and that
(7.8) TAI =X = {(\*, -+ M), (o™, -+ ™), (1%, -+ L2 ®)],
where
M=+ —r—1D)m+n—r(m—m+1+7r

om +ny — 2r — 2)(m + np — 2r — D],
[=r(m 4 ne — r)(m =+ 211 4 ny + 1) + m(ns + no) (m 4+ ng + 1)]
m 4+ n, — 2r — 1)(m + ny — 2r + 17,
—(m—=r4+1)m+n—r+ D0m+n—2r+1)
~(m 4 ny — 2r + 2)]°N

The differential equation (7.1) reduces to
(7.10) dL*/ds = [s™ diag {ac", -+ , an’} + Z]L*.

(79) l‘r*

]

Vr
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Taking
(7.11) L* = 21 0L + o(s"),
the following recurrence relations are obtained for the 1L,* = (lo,, <+« , ls)’
(7.12)  Ip* = na!l(my + n2) 1170, -+, 0, 1),
L* = diag {(r — ao™) 7™, -+, (r — an®) Y20, (r=1,---,7.
The moments of T are then given by
(7.13) &(T") = (—1)rtle = (—=1)7!(my + m2)! 2ok ler/ (m + n2 — k)1.
In particular, taking r = 1,
(7.14) 1,* = no![(ma 4+ 1) 770, -+« ,0, —=2\h_1/(ne — m — 1), ™),
whence it is easily found that

(7.15) &(T) = mny/(ne — m — 1).

It

(Constantine, loc. cit).
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