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OPERATING CHARACTERISTICS OF SOME SEQUENTIAL
DESIGN RULES!
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1. Introduction. The sequential probability ratio test (SPRT) provides ar
optimum test of a simple hypotheses § = 0 vs. a simple alternative § = 1 in the
sense of [6]. To assess how good optimum is, the SPRT user must evaluate the
operating characteristics (error probabilities and average sample numbers)
of the test. Exact evaluations have been carried out only in case the log likelihood
ratio is bounded and satisfies

(1) log (go/g1) = kp, » > 0, k an integer, —m =< k =< M(say),

for some (p, m, M), where g is the likelihood when 6 is the state of nature;
see [4] and [5]. Wald assesses the generality of assumption (1), probably too
optimistically, at the beginning of Section 4.A of [5].

Using an SPRT, an experimenter is required to perform the same experiment
for all observations. Consider, as Abramson has done [1], the more general situa-
tion in which either of two experiments e = 0, 1 can be used at any trial to
generate a random variable with density fs,. = gjs—e; When experiment e is used
and @ is the state of nature.

Let (e,, X,) denote the experiment and its random result at trial p. Assume
that given e, , X, is independent of the past. Note that this is a sequential design
analog of random sampling.

An extension of SPRT to this case is the class of sequential design probability
ratio tests (SDPRT). Define the log likelihood ratio after the n trials z,, =
{(ep,2p): 1 = p = n} by

L(z5,) = Z:=110g (fl,ep(xp)/f0,6p<xp))~

For L = (Lo, L1, L,), the SDPRT & = §(L) proceeds sequentially, taking an
(n + 1)st observation only if Ly < L(Z») < L: using ¢ = 1 only if Ly <
L(2s) < Li; 6 stops and decides § = 0if L(z) =< Lo; § stops and decides
0 = 1if L(zs) = L1 . Note that there is no loss of generality in the selection of
e = 1 for large, rather than small, L(z,.), since experiments need only be re-
labeled for the alternative case.

Rules of this type have been considered in the literature. For example, SPRT
which use experiment e at each stage are SDPRT with Ly, = L. Each rule of
Chernoff’s asymptotically optimal sequence (Theorem 2 of [3]) is a SDPRT
with Ly = 0. Whittle [7] conjectures that a Bayes rule for the corresponding
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OPERATING CHARACTERISTICS OF SOME SEQUENTIAL DESIGN RULES 1177

decision problem is a SDPRT, and he shows that this is “approximately true”
in Theorem 4.

Exact evaluation of operating characteristics for SDPRT has been accom-
plished only in the SPRT case and then only when (1) holds. In [7], Whittle
suggests the functional form for average risk of a SDPRT ‘“up to boundary
conditions,” but he makes no explicit evaluations.

The present work uses Whittle’s approach to evaluate operating characteris-
tics of any SDPRT in cases where (1) holds. It thus extends the Wald-Girshick
evaluation to the general SDPRT case and hence answers in part Cox’s call
([7], pg. 389]) for application of the methods of [7]. A method of average risk
evaluation is presented in Section 2. Use in evaluating operating characteristics
is discussed in Section 3, and the final section considers a simple example.

2. Evaluation of SDPRT average risks. In this section, the problem is formu-
lIated from a Bayesian decision theoretic point of view, and the average risk of a
SDPRT is evaluated when (1) holds. Succeeding sections discuss and exemplify
both classical and Bayesian consequences of this evaluation.

Let @ = 0, 1 denote the decision that the state of nature is a and suppose the
loss (#) is incurred when action a # 6 is taken, while no loss results if ¢ = 6.
If the cost c. is paid each time an observation is taken using experiment e, then
the risk of SDPRT 6 when 6 is the state of nature is

(2) 7(0,8) = L(0)Py 4+ D ccs8sN,, 6 =0,1,

where N, = N,(§) is the random number of trials with experiment e used by
6 and Py = P,(8) is the probability that & decides the state of nature is a # 6.
Assign relative weights or prior probabilities to the hypothesized 6 values by

t=Pr{d =1} =1 — Pr{o = 0};

andcall &, = Pr{6 = 1|z} = [1 4+ (1 — £)£ "exp (—L(2s))]" the posterior
probability (given z,,). Thus, for each fixed £in (0, 1), &,, is an increasing, con-
tinuous function of L(zs,).

It is of interest to note that the minimum of the average risk

r(§0) = &r(1,8) + (1 — £)r(0, 8)

over the class of all sequential design rules § is called the Bayes risk at £, denoted
p(§), and shown in [7] to satisfy

p(£) = min [[(1)§ 1(0)(1 — &), min, [e. + [x p(&ea)fz.c(2) du(@)]],

where f () = &fi.(x) + (1 — &)fo..(z). This is an integral equation with at
most one solution. These facts will be used in the final section to verify that a
SDPRT is a Bayes rule, i.e., one which minimizes average risk. For fixed £
and L define £ = [1 + (1 — &) " exp (—L,)] ™", for p = 0, 1, 2. Then 5(L)
is the rule §(%, L) which stops and takes a'= 0 (or 1) as soon as &,, < £©®
(or > £P) and which uses e = 1 only in case ¢? < £ < £® Here L = (Lo, Ly, Ly)
Wlth Lo _S_ Lz é L1.
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In general, the average risk 7(¢) = r(¢, 6(¢, L)) of a SDPRT 4(¢, L) at prior
probability ¢ is shown in [7] to satisfy

(3) r(§) = W(1)¢ if ¢ < £,
(4) = co + [x7(&)fr,0(21) (1) if §9 < £ <9,
(5) =1(0)(1 — ) if £ = @,

That is, if no samples are taken, then average risk is the product of ¢-probability
that the wrong action is taken and the loss for taking that wrong action. If a
sample is taken, then average risk is the cost of the sample plus the expected
average risk of the rule 6(£;,) at posterior probability &, .

If there is at most one solution r(-) to (3)-(5) and if such a solution can be
found, then its value at any point £ must be the average risk r(&’, 8(¢, L)).
Hence the remainder of this section proves generally that a solution to (3)—(5)
is unique (Theorems 1 and 2) and then constructs the solution for cases when

~equation (1) and an easily checked condition are valid (Theorem 3).

THEOREM 1. If 6(&) terminates with probability one for each 0 and each & in
(0, 1), then there is a unique solution to (3)—(5).

Proor. If each of 7 and r, is a bounded &-function which satisfies (3)-(5),
then d = 1, — r; is bounded. Induction based on (3)-(5) establishes, for positive
integers n, that

(6) d(£) = [s, d(Een)ge(220) du*(x,)  if £9 < & < @

=0 otherwise

where g:(z2) = & [I5=1fr.e, () + (1 — &) J]5=1f0.,(25), and
Sn = {Xnif e (£9,£9),1 < p < nj.

Let A = sup |[d(§)]; then A < Ap, , where p, = Pr¢{S,]} is the probability that
 does not terminate before the nth trial. By the termination assumption, there
is an integer no such that if n > no, then p, < 1. This requires A = 0, to establish
the theorem.

TraEOREM 2. If Prs {go = g1} < 1 for each 0, then §(&, L) terminates with prob-
ability one for 0 < ¢ < 1.

The proof of Theorem 2 follows from a slight modification of the usual Stein
argument for the non-design case.

It remains to construct a function r(¢) which satisfies (3)—(5) when (1) is
true. The remainder of this section constructs such a solution under an additional
restriction. The construction consists of reducing (3)—(5) to a set of difference
equations and solving. The result is summarized in Theorem 3 below.

For convenience, define the continuous, increasing transformation ¢ = ¢{(¢) =
p " log (£(1 — &)™) and the function R(¢) = r(£(¢))(1 + €%). Equation (1)
implies that if prior probability has {(£) = (k + €) for some integer k& and some
ein (0, 1), then for any posterior probability &, ¢(¢') isin Z, = {k’ + e:k" an
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integer}, and (3)—(5) defines a separate functional equation for {R({):¢ e Z
for each ein [0, 1).

To describe the functional equation for R({) on Z., note that for ¢ such that
¢(¢) isin Z., 8 = (%, L) partitions Z. as shown schematically in Figure I.
That is, for ¢ in E, ., if posterior probability is £({) then with probability one &
does not use experiment 1 — e for two succeeding trials. With ¢ in £, . and
posterior probability £({), & uses experiment e and with non-zero probability
takes a next observation using experiment 1 — e. For { in A, , posterior prob-
ability £(¢) can be attained from some prior probability ¢ = £(¢') with ¢ in
U B, ; if attained, sampling is stopped and action a is taken. Note that each
A, contains at most M points and each E,,;_, contains at most m points. Note also
that the figure is shown for the case where all E, . are non-null but that the
succeeding analysis can be carried out formally to provide a solution even when
this is not true, e.g., in the SPRT case.

m+L,/p




1180 ROBERT BOHRER

If r(&) satisfies (4), then, on E, ., B({) satisfies
(7) M gesR(E — (—=1)%k) = co(1 + &™)

where g.x = 8.1 — Pry, {log (go/g1) = kp} and & is the Kronecker delta. That
is, (7) are non-homogeneous, linear difference equations of degree M + m for
functions R.({) which coincide with R(¢) on E.,. . A particular solution to (7) is

Ge(g‘) = cepg‘(Ae_l - ep{A;—le),
where
A, = [x (log gsgita)gs du = p 21 k Pr,, {log (g:/g1-s) = pk}

are the Kullback-Leibler information numbers associated with (go , g1). The sum
of G, and any solution to the homogeneous equation

(8) left hand side of (7) =0

also satisfies (7). The following lemma determines a class of solutions to (8).
LemMA. Consider the difference equation

(9) 2kea GiR(§ + k) = 0
where go # 0. If B is a root of multiplicity S for the polynomial > vt Grrar”, then
(10) T(s) = '8, 0=s<5,

s a solution to (9)
Proor. Since g, 5 0, it follows that 8 0 and that

ZZ:: gk:BHk = BH_G Zz;g gk+al8k =0,

i.e., (9) holds for p = 0. For 0 < s < S, suppose (9) holds for non-negative
integers less than s. Then

(11) D hea gr(C + k)BT = p7(d°/da”) Dz Grratloms
= B°°[(d&°/dz") (x — B)°P(2)]ams ,

for some polynomial P(z). For s < S, (z — ) factors each term of the derivative
in (11). Hence, the derivative is zero at 8, i.e., T({) satisfies (9). The lemma thus
follows by induction.
COROLLARY. If {Tw(£):1 < k < b — a} us the set of functions defined by (9).
and (10) and vis any (b — a) X 1 complex vector, then > bt o Tw(¢) satisfies (9).
For each e, define {T.(¢):1 < k < M + m}, corresponding to (7), as in the
corollary. Then for any complex (M + m) X 1 vector a.,

(12) Ro(t, a0) = Go(¥) + 205" @exTon($)
satisfies (7) on E.,. . Define
(13) R(g‘) = R(§7 ao, al) = Re(g‘, ae)7’ §' in Ae U Ee,cu Ee,l—e .

Suppose (a,, a1) can be found such that R satisfies the “boundary conditions”
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(14) R(¢) =U(1)e” on Ao, R(;) =10) on A4,
and (7) on E;yu Ey .

Then r(£(¢)) = R(;)/(1 + ) satisfies (3)—-(5) and by Theorems 1 and 2 is
the average risk of 6(& L) at £ = £(¢).

As noted above, (14) is a system of at most 2(M + m) conditions on the a.
each of which, by (12), is a linear equation in the 2(M + m) unknowns {a..}.
If this system is consistent, then any solution {a,.} defines the solution to
(3)-(5), viz.,

r(8(6)) = R(§, @0, @) /(1 + &™),

The form of these boundary conditions on Ey; u E; is simplified by the following
lemma.
LeMMA. R(¢, @, 1) satisfies (14) on Eq 1 u Ey 0 only in case

(15) Ro(¢, @) = Ri(f, a1) foreach ¢ in Epiu K.
Proor. If Ry(¢, @) = Ri(¢, @) on Eyyu Ei, then (7) is
Z’JCM"—"—'M ge,kR(g‘ - (_l)ek: @, al) = ZIJ«:‘L—M ge,kRe(g‘ - ("— 1)ek, ae) = Ce(l + ep()

on E,i_.,ie., R satisfies (7).
If R(¢, @, o) satisfies (14) on Eyou Eoy; then

(16) R(g‘y @ , al) - Re(g‘: ae) satisfies (8) on Ee,l—e .

By referring to Figure I, note that at the smallest point ¢* in E,,(16) says
Ro(t™ + m, @) = Ri(¢* 4+ m, &1), i.e., the lemma is true at the smallest point
inEyo.Iftrueatall {* 4 swithm < s < s < 2m, then (16) says Ro({* + 51, a0)
= Ri(¢* + s1, @), i.e., the lemma is true on Ey 1 . Proof for ¢ in Ej ¢ is similar and
omitted.

Theorem 3 summarizes this development of a solution to (3)—(5).

TaEOREM 3. Define R.(¢, a.) by (12) and R({, @ , e1) by (13). If o and a; satisfy
the linear system Ro(¢, o) = 1(1)e™ on Ao, Ri(¢, e1) = 1(0) on A1, Ro(¢, @) =
Ri(t, a1) on Boyu By, then r(£(5)) = R(S, a0, a1)/(1 + ™) satisfies (3)—(5).

The system in Theorem 3 is consistent if the matrix of {«. :} coefficients has full
rank. This rank condition can be made more explicit as follows.

CoROLLARY. If Z < Z. let T.(Z) denote an (m + M) column matrix with rows
T.(¢), the kth element of which is T, x({), one row for each ¢ in Z with rows arranged
in order of increasing ¢. The matriz of {a.x} coefficients is then equivalent to

To(4o) [0]
T _ . TO(EO,I) —TI(EO,I)
B I'_TO(ELO) TI(EI.O) J.

[0] Ty(41)
Hence, if T has full rank, then the result of Theorem 3 is true.
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3. Evaluation of operating characteristics. Consider any SDPRT & (L). For
fixed (1(6), c.) and any £ at which the average risk
(& 8(L)) = r(§ 6(§ L))
can be evaluated by Theorem 3, the evaluation is
(17) (& 8(& L)) = &r(L, 6(L)) + (1 — £)r(0, 8(L)).

If there are two such £, then (17) and Theorem 3 give two linear equations from
which to determine

(18) r(8, (L)) = 1 (0)Ps + D cEuN..

Evaluation of (18) for three independent vectors (1(8), ¢ , c1) gives linear equa-
tions from which error probability P, and average sampling &N, with experi-
ment e can be determined.

4. A binomial example. The following binomial example illustrates the use,
as well as the complexity, of risk evaluation by Theorem 3.

Suppose that g, is the density of a binomial random variable with success
probability p, where for some p > 0

po = (7 — 1)/(e” — 1), 1= €’po .

Then (1) holds, since p~" log (go/g1) is either 2 or —1. Suppose also that costs are
symmetric in the sense that [(0) = (1) = 1 and ¢y = ¢; = c. Note that this is
perhaps the simplest, non-trivial case possible. Approximate evaluations of
SDPRT operating characteristics for this case were derived in [2].

For any positive integer I define 6,;(¢) as the SDPRT 6(¢,, L) with
Lo = plc(§) — I1, Ly = p[¢(§) + I], Ly = p¢(£). As an application of Theorem 3,
Result 1 evaluates the average risk of 8;(£) at those £ such that {(£) isin Z, , i.e.,
for & = 1/(1 + €™).

REesuwr 1.

(&, 8:(8)) = r(k) if k=0
= r(—k) if k<O,
where
r(k) = GH(k) 4+ ™A1 + A2 + (—(1 + €°))* 44,
H(k) = cpk(A" — e™*AcY),
Ax(I,c) = Az = [ep(po + p1) (A0 + A7) + (p1r — po) (F1 — Fy)]
' A+ (g1 — po) (G — G,
A, = F, + G4, (s =1,2),
Fi = (H(I) — H(I + 1))/(e” — 1),
Gi= (24 e)e™(—(1+e))/( — 1),

I

I
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Fy =14+ (HI+ 1) — ’H(I))/(e” — 1),
Gy = — (26" + 1)(—(1 4+ €?))'/(e? — 1).

In fact, for some experimental costs ¢ there is a “stopping value”’ I such that
6:(£) is Bayes.
REsuwr 2. If, in the notation of Result 1, (c, I) satisfy

(19) (pr — po) (F2 — F1) = cp(po + p1) (Ac " + A7),

then 6:(%;) is Bayes at & for —(I + 1) <=k < (I +1).
Proor. Condition (19) is equivalent to A3;(I, ¢) = 0, in which case

r(&) = GIH(k) + €A1 + 4,).
It is verified directly that this function is the solution to the Bayes risk equation

(20) p(¥) = min[§ 1 — & ¢ + min, 220 p(£e2)fs,e(2)]
for —(I+1) £ksT+1.

See the proof of Result 4 for details.

Nextnote that 6;(3) is the Chernoff sequential design rule which stops sampling
as soon as |L(zy,)| = Ip. Result 3 shows a minimax property of these rules for
the present examples.

REesurr 3. If the Chernoff rule 8:(3) is Bayes at ¢ = % when cost per trial is c,
then 1t ts minimax.

Proor. The result follows from the fact that p(£) is symmetric about ¢ = 2.
This is true since any risk which can be attained at £, say by a rule 8, can also be
attained at 1 — £, viz., by &’ which, as a function of observations, stops whenever
6 stops but which chooses experiments and actions exactly oppositely. Since p is
a concave function symmetric about %, it is maximum there, i.e., % is the least-
favorable prior probability. Hence, if the Chernoff rule is Bayes at £ = %, it is
minimax.

Condition (19) specifies ¢ = ¢; as a decreasing function of I. Hence Result 2
states that a SDPRT is Bayes at &, for countably many c. This is extended by
Result 4.

Resurr 4. A SDPRT s a Bayes rule at & for uncountably many c.

Proor. From Result 2, there is a Bayes rule at &, for countably many c, viz.,
if I > 0, then 6;(&) is Bayes at cost ¢y such that A;(7, ¢;) = 0. Result 4 follows by
showing that if |¢ — ¢;| is sufficiently small and cost is ¢, then R.(&) =
r(& , 0:(&)) satisfies (18), i.e., that 6;(&.) is Bayes at & for an interval of cost
values including ¢; . By symmetry, (18) needs be verified only for non-negative
integers k. Note that

Ir(%, 8:(8), ¢) — r(§ 8:(8), er)| = |e — e &N (8:(8)) < M |¢ — ¢4,
where M = maxo<i<r 8N (8:(&)). From Result 1,
Rq(fz—l)/min (¢r21 1 — 1) =1— (1 - e_p)CIP(Al_l + GIpAo—I) <1,
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for I = 0, so concavity of the Bayes risk proves, for |c — ¢;| sufficiently small,
that R.(&) < min (& ,1 — &) for0 = k < I — 1, i.e., R, satisfies the Bayes
“optimum stopping’’ condition. The “optimum experiment’’ condition at &, can
be written in terms of s(&) = R.(&)/& , viz.,

Dy, = ¢/t + (1 — p1)s(—2) + p1s(&1) — s(&) = 0,
for0 £ k £ I — 1. By symmetry, Dy, = 0 while by Result 2, if A; = 0 then
Dye; = Dy — Doy = (68 — 1)[er + (1 — p1)(F2 — Fy)] > 0,
since (F; — F1) = ep(po+ p1) (A7 — A )/ (p1 — po) > 0;and
Die; = cr(B0 — A)(€%A0 " — A7) >0 for k= 2.

In summary, Do, = 0 and Di,c = Dy, + (¢ — ¢1)fer, —I < k = I, where
fx.ris bounded for —I < k = I;i.e.,if |c — ¢ is sufficiently small, then D, . = 0
for —1 = k = I, and R, satisfies the “optimum experiment’’ condition at each
£ . Hence R, satisfies (20) and 6;(&:) is Bayes at & when cost is c.

CompuraTions. Table I presents exact evaluations of Chernoff-rule operating
characteristics for some binomial situations wherein these SDPRT are minimax.
The first three columns define the problems evaluated by specifying success
probabilities and cost per experiment. The fourth column gives the “stopping
value” I, such that the Chernoff rule stops as soon as |L(z:.)| > Ip. The next six
columns evaluate average losses and average sampling per experiment for the
minimax rule. The penultimate column gives the average risk, .5(r(0, 8;(3))
+ (1, 6;(3))) of this “best” SDPRT. This can be compared with the cor-
responding average risk, tabulated in the final column, of the SPRT &;° which uses
e = 0 for each trial and which stops as soon as |L(z:,)| > Ip.

For the relatively large experimental costs (relatively small average sample
numbers) considered, the SDPRT is seen to give little improvement over the more
easily applied SPRT. This improvement can be compared with the asymptotic
case wherein experimental cost approaches zero. In this case, the ratio of risk
for the minimax rule 6;(%) to that of 8,° approaches R = 2A;/(A¢ + A;), which is
evaluated below for the cases considered:

p=.25 50 75
R = 958  .9184  .8806.

Note that, if 6 is true, then experiment 6 is the more informative one, in the
sense of Kullback and Leibler exploited in [3]. In this regard, it is of interest to
compare the &Ny and &N,y columns and to note that, on average, sampling
with the more informative experiment predominates, regardless of the true state
of nature.

Acknowledgment. I thank W. Hoeffding for useful insights. For help in mak-
ing the paper more correct and comprehensible I thank H. Chernoff and a
referee.
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TABLE I

Operating Characteristics of Some Minimax Sequential Design Rules with
Binomzal Random Vavirables

Risks

? c I Py &Ny &No P, &N, &No |-

SDPRT | SPRT
.25/.02409| 2 |.26046| 1.76385|1.02438|.44857| 1.31555| 1.76407| .42518 |.42531
.25/.01672| 3 |.34717| 3.91000(1.36473(.26513| 1.75278| 3.39083| .39324 |.39359
.25|.01250| 4 |.23079| 5.71394/2.95121|.27066| 4.36502| 4.75453| .36186 |.36249
po = .581 .251.00972| 5 |.21905| 8.62610|3.84631(.20082| 5.93649| 6.48614| .33094 |.33185
= 746 .25/.00773| 6 |.16550|11.37518/5.33966|.17385| 9.13000; 8.00891| .30059 |.30177
e : .251.00623| 7 |.14011(14.79394(6.45737|.13639|11.76938| 9.57397| .27097 |.27239
.25/.00506] 8 |.10960[18.12115|7.70395|.11158(15.28744|11.00445| .24234 |.24393
.25/.00411) 9 |.08871{21.81714/8.73483|.08834(18.61157(12.30896| .21494 |.21664
.25.00335| 10 |.06998(25.6245119.71628|.07045|22.33533|13.33154| .18901 |.19078
.50].04311] 2 [.15366] 1.67093| .82466|.31135| 1.35966| 1.67117| .35164 |.35250
.50(.02738| 3 |.19357| 3.69736(1.03880(.13252| 1.71271} 2.81608| .28989 |.29189
.50/.01810{ 4 |.08837| 5.00639|1.87717|.11365| 4.06352| 3.52998| .23203 |.23485
Po = .491 .50{.01204| 5 |.07100| 7.26250|2.20718|.06115 5.15224| 4.25978| .17971 |.18293
— 8l4 .50/.00793| 6 [.03824| 8.95798|2.66125|.04210| 7.49283| 4.69861| .13461 |.13776
P ' .501.00515] 7 |.02592|11.14838|2.89590|.02438] 9.07858| 5.02960| .09768 |.10052
.501.00330] 8 |.01496/12.98193(3.10622|.01554/11.23605| 5.27625 .06897 |.07127
.50{.00208| 9 |.00949]15.04440(3.23089|.00924(13.03925| 5.44180| .04757 |.04935
.50(.00130| 10 |.00564|16.92639|3.32384/.00572/15.07428| 5.55457| .03219 |.03352
.75/.05382] 2 |.08385| 1.55343] .63718|.20442| 1.34887| 1.55305| .28116 |.28338
.75/.02938| 3 [.09914| 3.36391| .75327|.05941| 1.59476| 2.28796| .19679 |.20075
.75/.01583| 4 |.02981| 4.21266(1.14764|.04334| 3.57220| 2.60847| .12791 |.13204
po = .410 .75/.00823| 5 |.02076| 5.95070(1.24937|.01634| 4.26947| 2.86128| .07756 |.08097
— 868 .75/.00414| 6 |.00782| 6.96970(1.37168/.00923| 6.01251| 3.00546| .04448 |.04687
P ' .75{.00203| 7 |.00438| 8.52093(1.41497(.00392| 7.01520| 3.05395| .02448 |.02599
.75{.00098| 8 |.00186| 9.67694(1.44798(.00200| 8.53513| 3.06464| .01307 |.01400
.75/.00047, 9 |.00095/10.91470/1.46195|.00089| 9.69409| 3.30847| .00687 |.00739
.75(.00022| 10 |.00042{12.17493[1.47059|.00044(11.09650| 3.40063| .00357 |.00384
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