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THE OUTPUT PROCESS OF A STATIONARY M/M/s QUEUEING
SYSTEM

By P. J. Burke

Bell Telephone Laboratories, Holmdel, New Jersey

0. Introduction. We consider a stationary M /M /s queueing system (Poisson
input at rate \, exponential service time with rate u, s servers, with A\ < su) with
service in order of arrival. In the sequel the terms ““queueing system’ or “‘system,”
if unqualified, always mean such a stationary queueing system, while the term
“queue” will designate the calls (customers) waiting for service in such a system.

For a typical call ¢ in such a queueing system, we discuss the lifetime L, , the
sum of the delay waiting for service, if any, plus the service time, i.e., the total
time spent in the system by ¢. We are concerned particularly with the relation-
ship of L. to the state of the system N (¢), the number of calls in the system either
waiting or being served at an epoch ¢, and to the departure sequence, T, the set of
Interdeparture intervals prior to the departure of c. The essence of our main
results may be summarized as follows:

Let ¢ have arrival time ¢, and departure time ¢ ; then L, = t. — t.. Let
Fyr(z) = Pr{L, < z|N(t, —0) = k} and

F’kdep(w) — PI' {Lc < x|N(tc + O) = k}'

Then Theorem 1 states that Fi*(z) = Fydr(z). If we now let Fler(z, T) =
Pr{L. = z|T} and F(z) = Pr{L, < z}, Theorem 2 states that Fiee(z, T) =
F(x), i.e., the lifetime of a call is independent of the departure sequence prior to
its departure epoch. The application of Theorem 2 is to tandem queues. Let Q,
and @ be a pair of queueing systems in tandem (such that the output of @, is
the input of @) with @, generalized to have an arbitrary service time distribu-
tion. Then the conclusion of Theorem 3 (Corollary 1) is that the lifetimes of an
individual call in @, and Q. are mutually independent.

The present results were found in the course of an attempt to generalize a
result found by Edgar Reich for queueing systems in tandem. Reich discovered
the intuitively unexpected and important fact that in a sequence of tandem
single-server systems (which have a joint stationary state distribution by a result
of R.R. P. Jackson [3]) the lifetimes of a particular call are mutually independent
[4], [5]. This result is all the more remarkable in view of the fact that the inde-
pendence of the lifetimes is not part of a general pattern of independence in the
separate systems. In fact for these single-server systems in tandem the delays for
service, as distinct from the lifetimes, have been shown to be dependent by an
explicit calculation [2].

The question as to whether Reich’s result for single-server systems is true also
for many-server systems has not been give'n an immediate answer, however,
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apparently because Reich’s method cannot be applied to queueing systems which
are not strictly “first in, first out.” In a many-server system it is clear that calls
may pass each other even though initiation of service is in order of arrival. It
was conjectured by the present writer ([7], p. 456) nevertheless, that Reich’s
theorem can be generalized to the many-server case.

1. Preliminaries. We collect here some facts concerning a queueing system
and its state process. If ¢ is an arrival epoch, we take N (t) to be N(¢ — 0), while
if ¢ is a departure epoch, N (¢) = N (¢ 4 0). Since a sample function of N(¢) (a.s.)
hasonly a finite number of discontinuities in any finite interval, we are thus re-
quiring the sample functions to be (a.s.) lower semicontinuous.

The stationary state probabilities, px = Pr {N(¢) = k}, are given by

(1) Pr = Po()\/ﬂ)k/kyy k= O) Tty S,
= po()\/“)k/(klsk_s)y k=s + 1} Tty

po being found by the normalizing condition > pr = 1. (See [6] p. 101 for these
probabilities with some obvious changes in notation.) It is a routine exercise to
show that these same state probabilities apply to the discrete parameter chains
associated with arrival or departure epochs.

Since N (¢) is a stationary birth-and-death process, it is reversible. A stochastic
process X (t) is said to be reversible if the finite-dimensional distributions of
X (—t) are the same as those of X (¢). For a proof that a stationary birth-and-
death process is reversible, see Reich [4].

Let the instants of change of state be denoted -+« 73, 70, 71, -+, 74, + -+
Let js = min [j, s]. If N(r; + 0) = j, then the occupatlon time 7,43 — 7; has the
conditional distribution function (df)

(2) (t) —(Jsl-t-i')\) t

It is clear that 7:41 — 7; has the same conditional df given N(r:y1 — 0) = j.
Let Pjx = Pr{N(ria — 0) = k|N(+; — 0) = j}. Then by the reversibility
of N(t) :

(3) Pix = Pr{N(zi 4+ 0) = k|N(r: + 0) = j},
and hence
Pijv = NG +N),  Pjja = jou/(Gsu + N),

while otherwise P;;, = 0.
The conditional df of the occupation time 7; — 7, given that N(r..y + 0) = j,

and given a sequence of interarrival intervals T, ={t', -, taf} following 7, ,

with ;" the time interval from 7,_; to the first subsequent call arrival, is

(4) Ri(t) tl,) = 1; P t 2 tll,
=1— g7t 0t<t

It is clear that T/, except for &, is irrelevant for R;. By the reversibility of
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N (i), thedf of r; — 7,1, given that N(r; — 0) = j and given a sequence of inter-
departure intervals T, = {1, - - - to} preceding r;, with ¢ the interval from the
last such departure to 7;, is given by R;(¢, &).

2. An independence relation between delays and departure sequences. We
first consider the relationship of the delay of a delayed call to the number of calls
behind it in line at a departure instant. Let ¢; denote a generic delayed call which
finds at least j — 1 calls,j = 1, - - - in the waiting line at its arrival instant t:j and
let ¢.,; be the instant that ¢; advances from jth to (j — 1)th in line (where ¢, is
the instant that c; enters the service mechanism). Let K denotethe number of calls
in line behind ¢; at ¢.,; . We denote the conditional df of ¢,,; — t:j ,given K = k,

H;.(t). Let [-1** denote the k-fold convolution with itself of the df in the
square brackets, with the convention (used in the sequel) that [-]** is the df of the
distribution conecentrated at zero for k =< 0.

Our first result is that H; () is independent of 7 and is the same as the df of
the delay of a delayed call given there are k delayed calls in line at its arrival
instant.

LemMa 1. H; 1 (8) = H(t) where

(5) Hy(t) = [1 — & ***, k=0,1,---.

Proor. Let p(k|t) be the probability that K = k, given that t,; — t:j =t
Thenp(k |t) = (\)*¢™/k! since there will be k calls behind ¢; at t,,; if and only if
there were k arrivals in the interval (th , tc,7). The frequency functlon for the
event that ¢; will advance from jth to (j — 1)th in line at ¢,,; = tc, + ¢ is found
as
(6) D im0 Pati-rsisu(sut) e /il = poyjaspe” VY,
with the help of (1). The probability of k calls in line behind c; at ¢.,; is simply
Psriaa(N/ (su))¥, by (1). By Bayes’s Theorem and a modicum of algebra we find
the dens1ty corresponding to H; (1) to be su(sut)’e™‘/k!, which implies (5).

The main result of this section is

LemMma 2. The partial delay t.; — te ;> gwen K = k, is independent of the sequence
of departure intervals preceding t..; .

Proor. We show that the df of ¢,,; t:, , given K = k and given the departure
sequence previous to t.,; ,is Hy(¢). Let T'; jrepresent the ¢ mterdeparture intervals
immediately preceding ¢.,; , and let H; (¢, T'; ;) be the df of ., ; tc, given T'; ;
and K = k. Let f; be the length of the last interdeparture interval preceding ¢.,; .
Then fort < 4,

(7) Hjo(t, Tij) =1 — ™
by (4). Fort > ¢,
(8) Hio(t, Tij) = 1 — € ™" 4 e ™3 Hjpo(t — b1, Tic1,i0).

Since H; i (t, To,;) = Hi(t), by Lemma 1, it follows by induction on ¢ that (7)
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holds for allt. Fork > Oand t < & ,
(9) H;u(t, Tiy) = [osue " Hjpu(t — x, Tiz) dx
and fort > t;,
(10) Hju(t, Tiy) = [¢* spe™H;pa(t — x, Tij) da
+ " Hipa(t — b1, Tima i1)-
It is obvious that
(11) Hju(t, Teg) = [ — ™" = Hy(1),

satisfies (9) since it is in the form of a convolution; and the calculations necessary
to show that (11) satisfies (10) are fairly trivial. Since by Lemma 1, for ¢ = 0,
(11) is true for all ¢ and all j, k; it follows by induction on 7 and k together that
(11) is true in general.

3. Distribution of the lifetime given the departure state.
TueorREM 1. The conditional df of L. given N (t.) = k is the same as that given
Nt =k, ie.,

(12) Fider(t) = Fie(t) = Fip(t) = [1 — e[l — ¢ et

where the symbol [-] * [-] indicates ordinary convolution.

Proor. We view the process in reversed time, proceeding backward from ¢, .
The first state (last in forward time) preceding ¢, is k + 1, which has occupation-
time df Gi41 given by (2). The remainder of the history of ¢ depends both on the
value of k¥ and on whether the first state is preceded by state k or state &k + 2.

Consider first the case k < s — 2. If the first transition is to state k, which
oceurs with probability Py, ¢ either had just arrived at the system, with
probability 1/(k + 1); or had arrived previously, with probability k/(k + 1),
and its previous lifetime has the same distribution as that of a call whose de-
parture state is k — 1. These statements follow readily from the renewal property
([8], p. 9) of the exponential distribution, which implies that the last call to begin
service has the same probability of being the first call to complete service as any
other call. If, on the other hand, the first transition is to state k£ 4+ 2, which
occurs with probability P14, ¢’s previous lifetime will be distributed as that
of one whose departure state is k + 1, since there is no queue of delayed calls at
this instant of transition. These facts can be summarized by the recurrence,

(13) Fi = Pepi(k + 1) (Grpa + *Gipr * Fry)
+ PrpgteGrenr # Frpn, E=0,---,8— 2.
For k = s — 1, by a similar argument we have A
(14) Foy = Pyu1s'[Go + (s — 1)Ge % Foo]
+ Poans (s = DG+ Fy + Gy » Hol.



1148 P. J. BURKE

Finally,
(15) Fk = Pk+1_ka+1 * Fk—l
+ Pk+l,k+2s_1[(s — 1)Gua*Frpn + G xHi ], k 2 s

The Laplace-Stieltjes transform of Fi, [¢ ¢ " dF.(t), will be denoted ¢x(6).
Substituting the values of Gy, , P; , and Hy given by (2), (3), and (4) respectively
into the above recurrences, taking transforms and simplifying somewhat, one
obtains the linear recurrences

(13")  @(8) = [(k + D+ N + sl 7w + kuges(6)
+ )\<Pk+1(6')]7 0
(14") ¢e1(8) = (s + N+ &) Hu + (s — Dpess(6)
+ (V/$)[(s — 1)es(8) + sp/(su + 0)]},
(s + N+ 8) Hsueea(8) + (M/8)[(s — Dersa(6)
+ (sw/(su + 0))""7°R, kzs.

Letting P; = > pr , where p; is given by (1), we may write the uncon-
ditional lifetime df as

(16)  F(t) = Poall — ™ + (1 — Pyl — e ™ x[1 — @M.

IIA
&
A
[V

|
o

(15")  eu(6)

I

Thus there is the additional condition

(16") 2 iopren(0) = Poa(p/(n + 6))
+ (1 — Poa)(w/(p 4 6))- ((sp — N)/(su — N+ 0)).

The values of ¢, £ > 0, can be found in terms of ¢y by successive elimination
in (13")—(15"). Then ¢, is determined by (16’). Hence if a solution exists it is
unique. It is a routine matter to verify that

(17) ou(0) = w(p + 0) 7 [su/(su + 6)]% 7,

where [z]" means max (0, z), is a solution to these equations, and by inversion
of ¢ we have the statement of the theorem.

The fact that in the stationary queueing system studied the conditional life-
time distribution given the departure state is identical with that given the same
arrival state justifies calling the lifetime arrival-departure symmetric. It is
fairly obvious that the delay proper is not arrival-departure symmetric, since the
delay is zero with probability one if the the call arrives when at least one server
is idle and otherwise is positive with probability one. On the other hand, the
conditional probability of zero delay is positive given any departure state, say
k. This is so since the following event has positive probability: the call arrives
when the state of the system is zero and exactly %k other calls arrive during its
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service interval, all of which have service times exceeding that of the call in
question. For a single-server system the probability of zero delay given that the
departure state is k is readily calculated to be [u/(x + M)

4. Independence of the lifetime and previous departure process.

THEOREM 2. The lifetime of a call is independent of the sequence of departures
previous to its departure instant.

Proor. Let T; = {1, ---, t;} be the sequence of the lengths of the last ¢
interdeparture intervals preceding ¢, , with ¢ the length of the last such interval
and let Fi(¢, T;) be the conditional df of L. given N (¢) = k and given T.

Then by considerations similar to those discussed in the proof of Theorem 1,
we have fort < 4,

(18) Fo(t, T) =1 — e ™,
while fort > t
(19) Fo(t, T:) = 1 — e + e Fi(t — t1, Tia),
and induection on ¢ gives
(20) Fo(t, T) = 1 — ™ = Fo(t).
Forl = k=<s—2andt = 4,
F(t, T9)
@D = folk 4+ Dee” ™k + DT 4 (k/(k + 1)Fial(t — =, T dz.
Similarly, for ¢ >
F.(t, T:)
(22) = [¢ (b 4+ Due “Pk + D7 4 B/ (k + 1)Fea(t — ), T4)]dz

+ e TRt — b, Tia).
Fork=s—1,t = t,
(23) Fou(t, T:) = [ospe™[s™ + ((s — 1)/8)Fos(t — z, T)]dx,
and fort > 4

Foa(t, Ts)

(24) = [Qspe™[s + ((s — 1)/8)Fes(t — =z, Ti)]da

+ (s = 1)/8)Fo(t — t1, Tica) + s Ho(t — tr, Ti)].

Fork = sandt = 4, ‘

(25) Fi(t, T:) = [osue ™ Fia(f — z, Ty) dx
and for ¢ > f;,
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Fi(t, T:)
(26) = [o' sue Fia(t — z, Ts) da
+ e [((s — 1)/8)Frpa(t — b, Tict) + 8 Hemopr(t — 1, Tic1)].

After substituting the value of Hy(¢, T';) given by Lemmas 1 and 2, one may
verify by routine calculation that the above equations are satisfied by

(27) Fi(t, To) = Fi(1),

and hence by induction on ¢ and k together (27) is indeed true. Therefore the
lifetime, given the departure state, is conditionally independent of the previous
departure sequence; and since the latter is independent of the departure state,
it is independent of the lifetime and departure state jointly.

5. Independence of the lifetimes in tandem queues. We now consider a pair
of systems @; and @ in tandem in that order. It is not necessary that @, have
exponential service times (or, trivially, have a stationary state distribution)
but it must have order-of-arrival service and satisfy the remaining usual
postulates of an M /M /s system. (The Poisson input to Qs is guaranteed by the
stationarity of @i .) Then we have

TaEOREM 3. Let t; be the departure instant of the jth departing call in Q1
j= -1,0,1, ; let wji be the corresponding lifetime in Qi , k = 1, 2; and
let N k(t) be the state of Qk at time t. Then the pair Cj1 = [N1(t;), wil s mdependent
of Cina = [Na(ty)), wire), where j' < j.

Proor. Let T; denote the sequence of departure instants in @; previous to
t;. By Theorem 2, Cj; is independent of T';. Since C;» is completely determined
by T; and the sequence of service times in Q. , which are postulated to be jointly
independent of Cj; and T;, it follows that C is independent of Cjrz .

COROLLARY 1. The lifetimes of a particular call in Q1 and Q. are independent.

CoroLLARY 2. The lifetime of a call in Qy is independent of its delay in Q.

If now we consider a sequence of queueing systems {@:}, k = 1, -+, K with
K = 3, in tandem, and assume there is but a single server in each Q;, 2 = ji=s
K — 1, then we can assert by arguments similar to the above that the life-
times of an individual call in the {Q:} are mutually independent.

The results given above thus constitute only a partial generalization of Reich’s
result to many-server systems, since in these results there can be only one such |
system——and this must be the last one—in tandem after the first system. It is a
curious, but nevertheless plausible, conjecture that the lifetimes of a call in
three or more many-server systems in tandem are not pairwise independent,
although the lifetimes in any two consecutive such systems are independent.

6. Proof of Theorems 1 and 2 by reversibility. The referee was perspicacious
enough to assert that Theorems 1 and 2 could be proved by an appeal to the
reversibility of the N(t) process. The following argument (in which the single-
server system is an implicit special case) carries out this suggestion.
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Let K = N(t.') denote the arrival state of a call c. All other random variables
in what follows are, if not explicitly so, implicitly understood to be conditional
on K. The queue size at t, + 0is [K + 1 — s]*, and thus the possible departure
epochs of ¢ are the downward transition epochs, t;, ---, t;, --- in the N(t)
process where # is the ([K + 1 — s]* 4+ 1)th such epoch after ¢,. Let N;, =
min {N(¢t;) + 1,s},2 = 1,2, ---, let W = {N,,}, and let » = {n;,:} be a
generic set of values of the components of 9. The conditional probability that ¢
departs at ¢; given L = » is

Qzln = nz:H;;i — Ny, s),

in which the empty product is unity. Here, as in the sequel, we use the “lack of
memory” of the exponential distribution. Let Ty, = ¢; — t., conditionally
that 91 = ». Then we may write the lifetime of ¢, conditional on K, as

(28) Le = 200 22:QuaTan Pr {90 = o).

We now show that the lifetime, given the departure state, has the identical
representation as a random variable on the reverse state process that Lg has on
the forward process. We use K now to denote the departure state, N (), and
thus the possible arrival epochs are the downward transition epochs in the reverse
process starting with the ([K 4 1 — s]* 4+ 1)th such epoch before ¢, . We write
the conditional lifetime in question as

(29) Le' = >on 2 iQiinTin Pr {90 = ),

in which the symbols, primed or not, are defined analogously in terms of quan-
tities related to the reverse process as these same symbols were defined previously
in terms of those related to the forward process. Identical (unprimed) symbols
in (28) and (29) denote, by the reversibility, obviously indistinguishable random
variables. To show that Q”,, = Qin, we note that if N(¢;) < s — 1 (where ¢;
is now ¢th possible arrival instant in reverse order) the probability that ¢ arrived
at {;, given that ¢ was in the system at ¢; + 01is 1/[N(¢;) + 1. If N(¢) = s,
then ¢’s arriving at {; is equivalent to ¢’s entering the service mechanism from
the queue at some upward transition epoch (in the reverse process) completely
determined by N (¢;). The probability of ¢’s having entered the service mechanism
at this epoch, given that it is one among s calls in service immediately afterward,
is 1/s. Thus,

Q:M = ni_j Pr {c did not arrive at t,, - - - , ti4}
= ;;} (1 nj, s) = Qi[n

Hence, by the reversibility of N(t), not only does L have the same distribu-
tion as Lx but also, since Lg is independent of, the arrival process subsequent to
t., Lx" is independent of the departure process previous to ¢, . The statements of
the theorems then follow easily.
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