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ADMISSIBILITY AND DISTRIBUTION OF SOME PROBABILISTIC
FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS!

By Cuia Kuer Tsao

Wayne State University

1. Introduction and summary. In [1], Anderson and Goodman investigated
statistical inference about Markov chains for random samples of independently,
identically distributed chains, in [6] Goodman obtained results for single chains
and in [3] Baum and Petrie studied inferences for probabilistic functions of
Markov chains. Most of their results are either for a large number of identical
chains or for very long chains. In this paper, we shall be mainly concerned with
the distributions of certain probabilistic functions of a finite chain and the
admissibility of these functions as test statistics. Some similar and related
results in this respect, especially those for a two state Markov chain may be
found in the works of many authors, such as Fisz [5], chapter 11, Goodman
[6], Lehmann [8], pp. 115-6, and Mood [9]. The results in Goodman [6] dealt
more generally with s state Markov chain with s = 2 and certain extensions
and supplementary results can be found in [2] and [7).

Throughout this paper, we shall assume that our Markov chain is defined
on a finite state space and has a discrete time parameter which takes on non-
negative integers. Our derivations make use of a vector representation of an
arbitrary Markov chain as given in Section 2 below. In Section 3, a special
sequence of probabilistic functions of a Markov chain is defined and shown to
be independently, identically distributed multinomial random vectors under
certain assumptions about the transition probabilities. The admissibility of test
statistics based on some of these functions is shown in Section 4 and a few
examples are given in Section 5.

2. Probability distribution function of a discrete finite state Markov chain.
Let s = 2 be a fixed positive integer and %, = {21, 22, - - - , 25} be a finite state
space consisting of the s states (vectors) zi = (8i1,8i, -+ ,0i),¢ = 1,2, -+, s,
where §;; is the Kronecker delta. Let Zo, Z1, - - -, Z7 be a Markov chain defined
on &, , that is

Zt:(ZtI:Zﬂ;“"le): t=0r1:"'7T7
where, for each ¢ (¢ = 0,1, --- , T), one and only one of the random components
Za,Zw, -+, Zi assumes the value 1 and each of the other (s — 1) compo-

nents assumes the value 0. Let Q = (¢1,¢2, - - - , ¢s) and P = ||pi;|| be the initial
probability distribution and the stationary transition probability matrix of the
Markov chain Zy, Z1 , « - - , Zr . Then we may express the elements of @ and P as
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exponential functions of 21, 25, - - - , 2, . That is, we have
(2.1) ¢ = Pr{Z, = 2] = exp [L(Q)z], i=1,---,s,

where L(Q) = (Ingi, -+, Ing,) and 2/ is just z; written as a column vector
(transpose of 2;) and

(22)  py =Pr(Z, = 2;|Ziq = 2] = exp[s:L(P)z], 4,5 =1,---,s,

where L(P) = |Inp.||. Here, for notational convenience, we have defined
(In0)0 = 0and (In0)y = 0 if eitherx = Oory = 0.

With this representation for a Markov chain, we may state

TueorEM 2.1. Let Q = (q1, -, ¢s) and P = ||py| be the initial distribution
and the s X s stationary transition probability matriz of a finite state Markov chain
Zo, -+, Zy. Then the probability density function of the chain may be written as

(2.3) f(zig, -+, 2ip) = exp [L(Q)ziy + D im 2s_L(P)zi,],
2, €Xs, t=0,1,---,T.

3. Distribution of probabilistic functions of a Markov chain. We know that
if the rows of the transition probability matrix P = ||pi]| are identical, then
Zy, Zs, -+, Zr are independently, identically distributed multinomial random
vectors. This property is also shared by other functions of some Markov chains.
The purpose of this section is to define a classof more general functions of
Zy,Zy, -+ ,Zyand give a sufficient condition for these probabilistic functions to
be stochastically independent.

Let A = |ja(u, v)| be an s X s matrix of positive integers such that the rows of
A are s permutations of the positive integers (1, 2, -+ - , s). Let & be a positive
integer with the property 2 < 2 < sand M = ||m;|| be an s X h matrix with the
properties:

(3.1) (a) each my; is a positive integer,
(b) ma+ - +ma=s i=1--,s

Let X1, Xe, -+, Xrbe T vector-valued probabilistic functions of Zy, Z1, -+ , Zp
defined by

(3.2) Xi= (Xa, -, Xua), t=1---,T,
where
(3.3) Xy = 2 Zﬁg‘ﬁw_nﬂ Z o 1yuvaqu,vy j=1,--,h,
and where
My = 0, u =1 ---,s,
My; = Mg + -+ - + My, j=1,--+, h.

I} is easily seen that X, - -- , X, is a sequence of random vectors, each defined
on the state space %5, . These random vectors are not generally stochastically inde-
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pendent. However, if the transition probabilities satisfy certain mild conditions,
they may become independent random vectors.

TuEOREM 3.1. Suppose the transition probability matriz P = ||p.j|| of the Markov
chain Zy, - - - , Zr satisfy the property that for each u (uw = 1, --- , 8) and each

J(G=1,---, k), the set of transition probabilities Puau,sy(;—1)+1) » *** » Dualu,my;)
18 a scalar (p;) multiple of a mu-variate multinomial distribution au; =
(aujt s *+* 5 Qujmy; ). In other words, we have
(34)  (Puatu,stugs—1y41) 5 *** 5 Puatu,m))

= pi(awl; :aw'muj) = Diluj .7 = 1’ ’h, u = 17 ERER )
where (p1, + -+, pr) 18 an h-variate multinomial distribution with non-zero members.
Then X1, ---, Xr are independently, identically distributed multinomial random
vectors with the common distribution (p1, +++ , pn).

Proor. Itis sufficient to prove that for any positive integer « = 2 and any
subset (t1, - -+ , ) of (1, -+, T), the following identity is satisfied :

(3'5) Pr [th = Ripy Xta = zia] = H;‘-—-l Pr [Xli = 21']-],

where each 7 is one of the numbers 1, - - - , A. We shall prove this identity by

mathematical induction.
First of all, by the definition of X, and assumption, we have, for any

t(t=1,---,T)andany (¢ =1,---,h),
(36) PriX,=z]="Pr[Xy;=1 = 2 oc 2 iy PriZesZuuy = 1]
= Zu Pr [Z;_lu = 1] Zv Pua(u,0) = Pi-

Next, we shall show that for any 1 < #; < &, £ T and any pair (2, k), 2, k =
1, - -+, h, the following is true:
(3.7) PriX, = 2, Xy, = &) = Pr(X,, = 2] Pr[X,, = @l
Now, if we denote by psy’ = 8;; the Kronecker delta and p{}’ the n-step transition
probability from state z; to state z;,¢,j = 1,2, ---,8;n = 1,2, -+, then we
have

I

PriX, =z, Xy, = &l

Pr[X, X, = 1]

Do Zfﬁzﬂu(i_l)ﬂ Do Zc}i‘icll’;c(k_l)—}-l

Pr(Z1, 1.2ty Z 5102 tyate.dy = 1]

= 2uPrlZy s = 1] 20 Pustuw) 2o Palinte - 2o Peate.d
= ppr = Pr[X,, = 2 Pr{X, = 2z

. This completes the proof of (3.7).
Finally, assuming that (3.5) is true for @ = 2, - - -, n, we need to prove that
it is also true for &« = n + 1. However, this can be easily proved by using the

same argument as that in proving (3.7).

(3.8)

Il
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CoroLrARY 3.1. Under the assumptions of Theorem 3.1, the probability dis-
tribution of the sum

sir=X1+ Xo 4 - + X

1s given by the following multinomial density

(39) PriSwr=(T1,To, -, Tha, T — Ty — -+ — Thy)]

=TT - (T — Ty — -+ — Th)!Tpa™ oot 7T,
In the case & = 2, we have the binomial distribution
(3.10) PriSer = (2, T —2)] = (2)p¢" %5 2 =20,1,2, ---, T

where p = prand ¢ = p;.

4. Some admissible tests based on S:r . We shall now consider the problem
of testing statistical hypotheses about the transition probability matrix. We are
concerned only with the case where 4 = 2 and assumptions (3.4) in Theorem
3.1 hold.

Let 7o and 7 be two given numbers such that 0 < 7y, 7, < 1 and let
(41) iy = (aia, o+, almgy), (=1, -,85 j=12,
be 2s distributions (known or unknown). Let H;, k = 0, 1, 2, 3, 4, denote the
following hypotheses:

Ho:p=7'0, aif=agj: 1:=1:2:"':8;j=1)2)

H1§p=1"1, aij=agj; 1:=172¢"'?8;.7.=1’2;
(4.2) Hy:p>r, aj=ay, i=12 ,8j=12,

Hy:p <, aj=ay, i=12-,85]=12,

Hi:p 5 o, aiJ':agf; t=12---,875=12
We shall derive four optimum tests for testing H, against the four alternative
hypotheses Hi, H,, Hs and H, respectively. In the following derivations, the
transition probability matrices under the five hypotheses Hy, H;, H,, Hs, H,
will be denoted by Po, Py, P;, P;, P, respectively.

TrEOREM 4.1. Suppose the initial distribution Q remains fived (known or un-
known ). Then the most powerful test for testing Hy against Hy is given by

a(x) =1 for 2> ¢
(4.3) =d for z=¢

| =0 for z< ¢
if 7o < 7 or

p(z) =1 for z < ¢

(4;74) dy for z =c

=0 for > c
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if ro > 1, where (¢1, di) and (cz, dz) are determined by a preassigned level of

significance and the value ro and where x is gwen by x = Ty + T + -+ + Tm
with

Ty = ZZ=1 9t 84y _yudisatu,n) > t=1,.-.-,T.

Proor. We shall prove the theorem only for the case 7o < 7. The proof for

the case ro > 7 is similar.
By Theorem 2.1 and Neyman-Pearson’s fundamental lemma, for any given
level of significance, say «, the most powerful test is easily seen to be given by

‘P(zio"",zir)=l for R(Zio"",zir)>c
d for R(ziq, ,2ip) =¢

=0 for R(zi{, - ,2i0) <¢C

(4.5)

where (¢, d) is determined by (e, 7o) and

R(zi, * s 2i0) = anlzit_l[L(Pl) - L(Po)]zgt

(nm—Inrdz+In (1 —n) —In1—r))(T — z)
In (1 — 70)/7(1 — r)]z + Tln (1 — m)/(1 — 70)].

Thus, the most powerful test given by (4.5) is equivalent to the test given by
(4.3).

This completes the proof of Theorem 4.1.

CoroLLARY 4.1. If the initial distribution Q remains fized, then (i) the test
o1 18 uniformly most. powerful for testing Ho against Hy and (ii) the test ¢y 15 uni-
formly most powerful for testing Ho against Hs .

CororLARY 4.2. If Q remains fixed, then the test

e(z) =1 for z<c¢orz>c

(4.6) =ds for 'z =c¢' orc
=0 for ¢ <z<¢

where (¢, ¢, ds) is determined by (a, ro), vs uniformly most powerful unbiased
test for testing Hy against the alternative hypothesis H, .

We note here that if we regard {agj} as nuisance parameters, then the three
tests ¢1, @2, @5 are actually UMP unbiased similar tests. Secondly, since the
power functions are all binomial with parameter (7, p), all tests are uniformly
consistent. Thirdly, we may use the same tests for testing the null hypothesis
H, against more general alternative hypotheses by relaxing the conditions on the
distributions {a;;} and/or on the initial distribution @ = (g1, - -+ , ¢s), as we shall
show below.

CoROLLARY 4.3. Let \ be a posttive number such that 0 < N\ = 1/s. Let the initial
distribution Q of the Markov chain be such that @ = & = (N, --+, \), that s,
g = Ni=1,2 ---,8 Then ¢1, @2, @3 are asymptotically UMP unbiased tests

for testing the null hypothesis Ho against the hypotheses Hy , Hs and H, , respectively.



PROBABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV 1651

Let us now consider the problem of testing the hypothesis H, against one of
the following extended alternative hypotheses:

H': p=nmn,
(4.7) H': p>n,
Hf: p <,
H': p#n.

Obviously, UMP unbiased tests do not exist for testing H, against these
alternative hypotheses. However, since we have

H;,c H/, i=1,23,4,

the following result is apparent.

TueorEM 4.2. Under the assumptions of Theorem 3.1 and assuming @ remains
fixed, the tests o1, 2, @3 are admissible for testing Hy against the alternative hy-
potheses Hy', H,', Hy and H,, respectively, and have the same power functions
Just as those for testing Hy against Hy, Hy , Hy and H, respectively.

It, perhaps, should be mentioned that in Theorem 4.2 we do not require the
2s nuisance parameter distributions to remain the same under both the null
and alternative hypotheses.

5. Some model statistics. Since the distribution of Ser is binomial under either
the null hypothesis or one of the various alternative hypotheses, it is rather
convenient to use in applications. Furthermore, the statistic S.r may be considered
as a generalization of some well known statistics, especially for the case

(5].) My = Mo = *°* = Mg = ].
The following are several examples.

(1) The “sign test” model. If (5.1) is true and a(u, 1) = 1,4 = 1,2, -+, s,
then Ser reduces to

8 = (2taZa, T — 2iwZn),

and the corresponding test may be considered as a generalization of the ‘‘sign
test”’, since, for the case s = 2, it is just the well known ‘‘sign test”.

(i) The “total number of runs”’ model. If (5.1) is true and a(u, 1) = wu,
u =1, ---, s, then S reduces to

8 = (X > ZiaiZi, T — 2ot 21 ZoriZo)-

This is just the statistic “total number of runs’ of the s states for our Markov
chain (see chapter 11 of [5], pp. 155-6 of [8] and also [9]), since

T+ 1-— Zf:q Z;=1Zt——-1uztu

is pexactly the total number of runs of the s states. This statistic was first in-
troduced by Goodman (pp. 189-91 of [6]) and later used by Barton, David and
Fix [2]. We notice that the second component of 8” is used by Goodman in formula
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(16) of [6] and the first and second components of S” are called 7' and L by
Barton, David and Fix [2].

Example (persistence in a chain of multiple events). Suppose, in a certain
city, it is known that, according to past experience, the chance is 3 for a randomly
selected summer day to be one of the three types of days: rainy, cloudy or sunny.
If one wishes to test the hypothesis that the chance for two consecutive days
to be of the same typeis % (randomness) against the alternative hypothesis that it
is greater than %, one may then denote the three types of days by z; = (1,0, 0),
22 = (0,1,0) and z; = (0,0, 1) and use 8” as the test statistic. In this case, one
may choose the initial distribution to be @ = (3, %, 1) and start the chain by
selecting an arbitrary summer day as the observed value of Z;.

We note that this example is a special case of a more general problem studied
in the above mentioned paper by Barton, David and Fix [2] and also by Good-
man [7].

(iii) The “cyclical random walk’ model. If (5.1) is true and a(u, 1) = u + 1,
u=12 ---,8s — 1and a(s, 1) = 1, then S;r reduces to

S/” = (ZZ;I Z;=l Zt—luZtu+1 5 T - Zf=l Zi&=l Zt—-luZtu+1);

where Zi;y1 = Zu . This is a UMP unbiased test statistic for testing either a
one-sided or a two-sided hypothesis about p in a Markov chain with, say,@the
4 X 4 transition probability matrix

N

0 p 0 ¢

0 0
qu P

0 ¢ 0 p

p 0 ¢ O

which is just the stochastic matrix for a cyclical random walk (see, for example,

p. 386 of [4]).
(iv) A “mazed trend” model. We shall illustrate this model by a simple ex-

ample. Let the transition probability matrix of a Markov chain with three
possible states be given by

orp (1 — au)p q
P=|gq ap (1 — a2)p
q azp (1 — as)p

If one wishes to test the hypothesis of randomness
Hy:oi =ap=03=% and p =%
against the alternative hypothesis of ‘“mixed trend”’

Hy:p> %
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then one may use the test statistic
Sv=(Y,T-7),
where o
Y = 2 (ZewZa + ZenZo + ZevZo + ZesZi + ZisZo + ZosZi).

ExampLE. (Social mobility.) A problem of interest in sociology may be to
test the effect of the social class of father on the social class of son. That this
model may be appropriate for such a test is evidenced by the following observed
transition relative frequency matrix of a Markov chain with three states (upper,
middle and lower social classes):

448 484 068
P =054 699 .247
011 503 .486

(see p. 257 of [10] and also [11]).
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