Thel 10/1111 tinn] Q4 b
1968, Vol. 39, No. 5, 1638-1645

EFFICIENT DIFFERENCE EQUATION ESTIMATORS IN
EXPONENTIAL REGRESSION

By C. A. McGILCHRIST

University of New South Wales
1. Introduction. A multiple exponential regression curve is given by

(1) (Y,) = n = a — D iz Bipss 0<pm< - < pp <1

where Y, is the observation at z. We consider here the estimation of the p; when
the observations are independent and normally distributed with constant vari-
ance, o*, and are equally spaced at « values denoted by z = 0,1,2, --- ,n — 1.

For single exponential regression (kK = 1) a technique used by Hartley [3]
and Patterson [6] is to replace the regression curve by a difference equation which
generates it and to estimate the parameters of the difference equation. Using
this technique Lipton and MeGilchrist [5] have obtained a class of estimators
for the p; of the multiple exponential model. Denoting an estimator of p; by 7;,
this class is given by the solution of the equations,

(2) [(—=D*ye + (=1)* %y’ + - + 7/ IDI(—1)* (875 + be)yo
+ (=) b + by + -+ W] = 0, =12, ---k,
where Yo = {YP)YP+1)"' ;Yn+p—k—1}; D =0, 1, 2, e, k,

pth order symmetric function in 1,72, -+, 7%,

5
S
It

Py

b, = 96,/ar; .

The above equations correspond to those given on p. 507 of [5]. The b; are con-
stants and D is a square matrix of order n — k, and the b; and D are selected
to satisfy suitable criteria. Except for the case of single exponential regression
(already studied by Patterson [6]), Lipton and MecGilchrist found the usual
criteria of zero bias and minimum variance too difficult to apply to (2) in order
to select the b; and D, and were unable to proceed. In this paper alternative
criteria are considered in Section 2 and these found much easier to apply in
Section 4.

2. Estimating equations and criteria. The criteria now described are similar
in principle to those suggested by Barnard and reported by Durbin [2]. Repre-
senting estimating equations (2) by

(3) TJ'(Y)T) =0, j=172)"°)kr
we consider the equivalent estimating functions, T;(Y, p), which are obtained
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ESTIMATORS IN EXPONENTIAL REGRESSION 1639

from the left hand side of (3) by replacing the 7’s with p’s. The T;(Y, p), being
functions of the observations, are random variables but considering the p’s as
variables the T';(Y, p) are random surfaces in £ + 1 dimensions. The point on
each surface corresponding to the true p values should be distributed close to
zero. The first two criteria listed below require 7;(Y, p) to be distributed about
zero (for true p values) and the third that this distribution should have small
variance.

The criteria are:
(a) If T(n, p) is obtained from T';( Y, p) by replacing each Y, with its expected
value 7. , then we require T';(n, p) to be zero for all j.
(b) {T;(Y, p)] should be zero for all 7.
(¢) Since Var [T;(Y, p)] may be made arbitrarily small by dividing (3) by a
large number we minimise Var [T';(Y, p)] subject to the slope of T;(Y, p) con-
sidered as a random surface being standardised. It is standardised by holding

S = [0/0p;T{(Y, p)] Yo = n,
constant. The above procedure is then equivalent to minimising S~ Var
[T5(Y, p)].

3. Matrix notation. In this section we set up a notation and establish some
results used in the following sections. Let

2= 2 oo (1) POy, = 2o (—1) 770y,
then from (2) and (3) we have
(4) Ti(Y, p) = z/D(z1 + bjzs;).
Let 1 be a vector with » — & elements each of which is unity,

0 = {1’ Piy Pi27 ttty Pin—k_l}

)

and U, be a square matrix of order n — k with all elements zero except for a
diagonal of 1’s elevated s rows from the principal diagonal (note that U, is the
identity matrix and if s is negative the diagonal of 1’s is below the principal
diagonal). Using this notation we have

(5) e(z) = aD oo (—1)* P01 + D ii [Bipi( D oo (—1) 5 04_p0)]
= “HLl (1 — pi)l,
since
b (=120, = TTEa (1 — ) and 250 (—1)¥ 6, pps® = 0.
Similarly we find

(6) e(227) = a][it e (1 — p)1 + Bioi I Lies,cimn (05 — pi).
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Covariance matrices, =;; = Var z; and =i, = Cov (z;, z;) are then
(7) Zu = "D (—1)°Us 200" uhtar
2{2 = 022€=—k (—l)sUleI:;(I)SI 0h0i+ls| .

4. Application of criteria.
4.1. First criterion. Using (5) we obtain

Ti(n, p) = e(z1)De(z1 + bjzs;) = a][is1 (1 — p:)1'De(z1 + bz)),

and thus T';(», p) is made zero by requiring
(8) 1D = 0.

4.2 Second criterion. Since

dT(Y, p)] = e(z)De(z1 + b;z;) + tr [D Cov*(z1 + bizej , 21)]
= Ti(n, p) + tr D=y + b; tr D31,
then provided T';(n, p) is zero, this criterion is satisfied by requiring
(9) b; = —tr (D2n)/tr (DZ)
= =Dk (1)t 2T Obniar/ 2k (—1)% 200 Oh6ipial

where ¢, = tr DU, and we have used equations (7) in substituting for =y and
2.

4.3. Third criterion. Using (4) and results relating fourth order moments of a
multinormal distribution to its second order moments,

Var [T5(Y, p)] = Var [z/'D(z + b;z;)]
= &(z)D Var (z' + bjz;)De(z)
+ 2¢(z,")D Cov (z1 + bize; , 21)De(z1 + bjzz;)
+ €(z1 + bjz2;)'DEZuDe(z1 + bjz;) + tr [DZuD Var (z + b,z
+ tr [D Cov (21, z1 + bjze;)D Cov (z1 + bjze5, 21)].

The first three terms involve the square of means of the Y’s and the first power
of the variance while the last two do not depend on the mean values of the Y’s
but on the second power of their variance. Since the variance of the Y’s must be
small compared with their average mean value, particularly to be justified in
fitting more than one exponential term we propose to neglect these last two
terms. Using (8), (5) and (6) the first three terms reduce to

Var [T;(Y, p)] = bie(2:5) DZuDe(22;) = bi'8; ] Lict.en (05 — p:)’ei DZuDe; .
Since aT;(Y, p)/dp; = biza;Dzs; , we have
S = bie(z2;)De(z2;) = b8 [Tict, 2y (05 — pi)’0i De;

using (6).
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Thus

S Var [TH(Y, p)] = 87 [ Tict,cse) (05 — p:) i DZuDp;/ (05 Des)*,
and we apply the third criterion by choosing D to minimise g,/ DZuDe; under
the restrictions p; Dp; = constant, 1’D = 0. This may be done using Lagrange

multipliers in a similar way to that of Patterson [6] to obtain
—1 o1

(10) D = ¢ =d — (2l Ush/1z01),
where Zy; is given by (7). An important feature is that this D matrix is the
same for all j.

5. Details of method. The D matrix to maximise the efficiency of the esti-
mating equations, as measured by S~ Var [T;(Y, p)], depends on the true
values of p1, p2, ** , pr . We may proceed therefore ds follows. We choose a D
matrix with optimum efficiency for guessed p values denoted by p10, 20, = - * , pro -
These guessed values are used also to evaluate

Kip=0i—1?bi+0k—p’ p=0)1)2)""k, .7‘=1)2)""k

where the guessed p values are used in the expressions for the ¢’s and b; . Esti-
mating equations (2) are now written as

[(—D)*ye + (—1)* by’

(11) + - + WIDI(=1D*Kioyo + (=1) 'Ky
+ -+ Kayil = 0, J=12--,k,
and solved for r;, 72, - - - , 7% . These new estimates may be used as initial values

for a further iteration of the above procedure.

If reasonable efficiency over the whole range of p values can be obtained with
just one D matrix for each sample size n some numerical labour is saved since
then only one set of y,'Dy, values is needed for each problem. At least for small
n it would be possible to tabulate such D matrices and this is the subject of

further investigation.

6. Particular cases.
6.1. Single exponential regression. The estimator of py is given by the solution

for r, of the equation,
(=¥ + y1)D(—Kuyo + 1) = 0,
where Ky = —[to — putil(pufo — &) and D is given by (10) where
o Zn = (1+ pio) Us — po(Uy + U).

This technique is very similar to that advocated by Patterson [6]. It differs only

in the way the bias is treated.
6.2. Double exponential regression. Estimating equations for p; and p, are

112) ["“17'2370, —(n+ Tz)Y1, + Yzl]D[KmYo — Kuyi +y] =0,
[7‘1"‘2}'0' — (r + 7‘2)Y1, + YzI]D[Kono — Koy +3] =0,
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where Ko = p2o(b1 + pu), Ky = (b1 + pw + o),
Ko = pu(bs + p2),  Ku = (b2 + poo + pn);
by = —ltoao + 261 + 2ballte(ar + puota) + 4(1 + p2o + 202) — tyou]
by = —[toao + 201 + 2haallto(ar + pade) + (1 + pio + 202) — taprd]
ao =1+ (p1o + p2)’* + plopro ar = —(pw + pn) (1 + pp),

Gz = p10P20 -

The D matrix is given by (10) where =y follows from
o Zn = alUo + ax(Ur + U) + ax(Uz + U-).

Equations (12) may be written

Firyry — Go(ry 4+ 12) + Hy = 0,

Foriry — Go(ry + 1) + Hy = 0,
where
Fy = Ko Dyo — Kuyo Dys + 9 Do, Fo = Kogyio Dyo — Koo Dys + o Dy,
G: = Ky’ Dyo — Kuy' Dyy + yi' Dy , G, = Ko’ Dyo — Koy’ Dy + ' Dy,
H, = Kis'Dyo — Kuys Dys + 2’ Dys,  Hs = Koqys Dyo — Koy’ Dys + o' Dys
whence the solution of the quadratic equation

(F1Gy — F.G)r* — (FiH, — F2H1);“ + (G\H, — G.H,) = 0,

will give r, and 7, .

7. Example. The observations used in this example are those used by Lipton
and McGilchrist [4] in obtaining maximum likelihood estimates in double ex-
ponential regression and came originally from [1] where a full description of them
may be found.

They are

0 1 2 3 4 5 6 7

8

Y 10.430°  4.703 2.327 1.140 0.615 2.325 0.170 0.117
z 8 9 10 11 12 13 14 15
Y 0.050  0.040 0.046 0.022 0.036 0.021 0.018 0.016

An initial value of (py, p) = (0.3, 0.7) was taken simply because this is about
the centre of the region 0 < p; < p; < 1. The D matrix for these values is sym-
metrical about each diagonal so that it is merely necessary to tabulate (as is

4
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done in Table I) as follows:

dll d12 ) : ' d1,13 d1,14
de - - - oy

drr  dis
The full matrix is obtained by symmetry.

From this the following results may be found on a desk calculator:

yo Dy, = 281.387,  y,/Dy, = 62.387,

yo Dy, = 132.443,  y,/Dy, = 30942,
YoDy. = 65.671,  y,/’Dy, = 15.349,
Ky = —3.562, Ky = —0.793,
Ky = —4.389, Ky = —2.344.

These lead to the quadratic equation
89.360r" — 59.996r + 7.383 = 0
giving
1 = 0.161 and 7 = 0.509,

and these two roots are then treated as the initial values for a second iteration.
Matrix D is given as above in Table I, and corresponding results to those given
above are

yo Dy, = 207.105,  y/Dy; = 45.041,
yoDy: = 96.538, y,/'Dy, = 22.270,
yoDy, = 47.718,  y,/Dy, = 11.014,
Ky = —2.283, Ky = —0.560,
Ku = —3.976, Kyn = —3.318,
59.5497* — 38.366r + 4.164 = 0,
r o= 0138, 7 = 0.506.

These results agree closely with those obtained in [4].

REFERENCES

[1] CorNELL, R. G. (1962). A method for fitting linear combinations of exponentials. Bio-
melrics 18 104-113.



ESTIMATORS IN EXPONENTIAL REGRESSION 1645

[2] Dursin, J. (1960). Estimation of parameters in time-series regression models. J. Roy.
Statist. Soc. Ser. B. 22 139-153.

[3] HarTiey, H. O. (1948). The estimation of non-linear parameters by internal least
squares. Biometrika 35 32-45.

[4] Lipton, S. and McGiLcHRIST, C. A. (1963). Maximum likelihood estimators of parameter
in double exponential regression. Biometrics 19 144-151.

[5] Lirron, S. and McGircaRIisT, C. A. (1964). The derivation of methods for fitting ex-
ponential regression curves. Biometrika 51 504-508.

[6] ParTERsoN, H. D. (1958). The use of autoregression in fitting an exponential curve.
Biometrika 45 389-400.



