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1. Summary. Let
&' (1) = (@m(1), 2(1)), (t=1,2--+)
be a two dimensional, Gaussian, vector process. Let the process z'(¢) have the
representation
(1.1) 2'(t) = 2h=oBuy(t — m),
where
Bu = {bijm;t,j = 1, 2};
(1.2) ¥'(©) = (1), 1a(8));
yit) = au(t)el?) (l=1,2).

The random variables ¢(t) are independently and normally distributed with
mean zero and variance unity. p is a finite positive integer. The coefficients
By = (bijm)sxe are finite real constants, and ¢;°(¢) are non-random sequence of
positive numbers which are not, in general equal, but do satisfy the conditions

(1.3) N Velt) =m < (as N — =),
and L§Ul2(t>éU<°° (t=1721"')'

The relation (1.1) is a multivariate representation of a finite moving average
process with time trending coefficients. Consider the matrix

fu(V)  f(N)
14 FQ\) =
14 ™ <f21(?\) f2z(>\)>

nn O
G(\) < > G*(N),
O Vo

where G(X) = D_2_oBne™ and G*(\) is its complex conjugate. Under the
condition (1.3), Herbst [1] has defined fi1(\) and f2(M\) as the spectral densities
of the processes z1(¢) and z,(t) respectively, and considered their estimation.

Here we generalize Herbst [1] results to a vector process and show that under
the conditions (1.3) and (3.3) fi2(N), which is defined as the cross spectral
density of the process z1(t) and z,(t), can consistently be estimated.
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2. Generalization of a cross periodogram. Let /() = (z:1(f), 2.(t))(¢ = 1, 2,
-+« , N) be a sample of size N from the process considered above. Consider the
quantity

(2.1) Jo(N) = (2eN)F DN a(t)e™

Substitute the expression for z(¢) from (1.1) in (2.1); then following Herbst
[1] it can be shown that the periodogram matrix F* () is

(2.2) FY™(\) = J.(\JZ(N)
= GOVF,Y (NG (V)

where

F,V(N) = {f50(N)54,5 = 1,2},
(2.3) BN = cdy(N) + dgia(N),

a5\ =0 (G=1,2),
and

G(N) = (gs(N);4,7 = 1,2),
gii(\) = Z£=ob¢jm6im)\.

The expressions for the coperiodogram cf3’(\) and quadrature periodogram
qu')()\) which are, respectively, the real and imaginary parts of the element
B (N\) of the matrix F™(\) can be shown to be

(24) e (N) = 2o 2 b [HE(Neiy(N) — Hir(N)gil (V]
g ) = i ZhalHR g0 + Hir (el (W),
where
(2.5) Hi(\) = 2200 220 o busbary cos NG — 7)),
(N = 2t 220 0 bugbars sin NG — 7).
From (2.2) it follows that

V1 O
(2.6) E(F™(\)) = (2r)7'G(\) <0 > G*' (),
and hence
(2.7) E(ei’ (W)= (2m) 7 2l nHL(ON) = 6(N),

E(gi’ (M) (20) ™ 2iavHu(\) = ¢(\).

In the case of a stationary Gaussian vector process, Rao [3] has shown that
the quantities

2r) DA HEON)  and  (2r) 7 2o Hu(\)
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(then the limits of j and j' of the expressions (2.5) will be from 0 to =) are re-
spectwely the cospectral density and quadrature spectral density of the process
z'(t).

When o;(t) of (1.2) is independent of ¢ (say o/°(t) = o°), o> (2) ™" D  HEH(N)
measures the dependence of inphase harmonics of z;(¢) and 2.(¢), and
o*(2r) ™ 2 :H3(N) measures the dependence of out of phase components. Even
if ¢/°(t) is not independent of ¢ this interpretation holds. It is therefore reasonable
to regard ¢(\) and ¥(\) as cospectral density and quadrature spectral density,
respectively, of the process z'(¢).

The sampling properties of c¢j3’ () and ¢i3’ (\) are given in Theorem 1.

TueOREM 1. Let the Gaussian vector process ' (t) have the representation (1.1)
and let o1 (t) satisfy the conditions (1.3). Then for Ny # A\,

(1) cov (cfy’ (M), a3’ (Ne)) = OCN™?),
(2.8) (ii) cov (g3’ (M), a2’ () = O(N™%),
(iit) cov (cf3’ (M), g2’ () = O(N7%).

Proor. From (2.4) we get
cov (cf3’ (M), ¢’ (M)
= 2t mm {(Hir (M) Hamw (N) €0V (¢824 (M) ;5 comr 4 (M)
(2.9) — Hip (M) Hpm (\s) €0V (¢i32(M), o w(Ns))
- Hiu(m)HZmI(xz) cov (i1 (M), G (M)
Hiv (M) Hy (N2) €0V (g527(M), gromr w(Ae))}

There will be sixteen combinations of indices I, I’, m, m' in each term of (2.9).
For illustration we consider the evaluation of the first term. By definition we
have

(2.10) ¢\ = (2N 2 2o su(t)ov(s)e(t)er(s) cos N(s — )
= (27FN)_16zQw()\)éz';

where e = (e(1), e(2), --- , a(N))(I = 1, 2) and 1(¢)or(s) cosAN(s — ¢) is
the (s, t)th term of the matrix Q- (\). Using the result

cov (zPy’, 2Qu’) = tr P’ZQX"™ + tr PZVQz"",
where 2% = E(a’), it can be shown that
cov (e, (M), e ()
= Ap(c, M, N) i (1) 1=1,7
2)1=11
: 3)1=21

2,m=2,m =1,

il

1

2,m=1m = 2,

1,m =

]
=
s

It
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Wi1=210=1,m=2m =1,

(2.11)
= 24u(e, M, N) if l=m=1U=m =1,
= 2Un(e, M, N) if l=m=1=m =2
=0 otherwise,

where

(2.12) Aw(e, M, N) = 3 22wy cos i cos ISt (1),

Aw(s, M, ) = dn2 242 oy sin A sin NS0 (1)

(2.13) S(t) = N7 25 ol (G + t)ov(5) if ¢>0

— NPV — Oed() i 1 <.

The expression for cov (g5 (M), ¢:37(A2)) can be obtained similarly from (2.11)
by replacing 4 (¢, M, \2) by A(s, M, o).
From (1.3), (2.12) and (2.13) we have

All'(C, M y >\2> = %7!'—2 thv;i(zv_l) CcOoS t)\l CcOS t)\zS%l'(t)
LU N 2 vy (N — |t]) cos ths cos ihe
1PN sin? AN (M + Ne)/sin” 30 + o)

IIA

(2.14) =
4 sin? AN — Ao)/sin’ 300 — M)]
= O(N?) if M= N;
Aw(s, M, N) = ONT?) i M # N,
and

thv_;l(zv_l) COS t)\l sin t)\zS% 1I(t) =0 for all )\1 and A2 .

The result (i) of (2.8) follows from (2.9), (2.11) and (2.14), for the first term
and the last term of (2.9) are of order O(N ) (if i # Ao) and the two middle
terms of (2.9) are zero. Similarly the results (ii) and (iii) of (2.8) can be ob-

tained.
CoroLLARY 1. Let the conditions of Theorem 1 be satisfied. Then

(2.15) (1) Var (¢’°(\) = 3L 7" Zu(N),
(i) Var (¢ () z 3L " Zu(N),
where
Zu(\) = (HH0) + HRO)) + 2HE () + 2HE()
(HSO) 4 HR())? + 2HR) + 2HR(N).
*Proor. Put \y = A = \in (2.10). Then by using (2.11) we get
Var (¢ (V) = Aule, , N (HBO) + Han(\)*
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(2.16) + 24u(e, \, NVHE(\) + 24(c, \, NV HE (V)

+ Ax(s, \, N) (H:(N) + Hu(\))?

+ 245 (s, \, NVHI(N) + 2455, \, N HE(N).
The result (i) of (2.15) can be obtained from (2.16) and the inequalities

(2.17) >V v cos NSTH(2) = AL ? (LU =1,2),
DAt vy sin® ST (¢) = AR (Ll =1,2).

Similarly the result (i1) can be obtained.
These results show that ¢3’ (\) and q{'{)()\) do not provide consistent esti-
mates of ¢(N) and Y(\) respectively.

3. Heuristic treatment of sampling properties of the cross spectral estimate.
Though ¢4 (\) and ¢ (\) are respectively, asymptotically, unbiased estimates
of ¢(\) and ¢(N\), it follows from Theorem 1 and Corollary 1 that they are not
consistent estimates of them. Hence, to ensure consistency, we consider the
estimates (Rosenblatt, [2]),

cta(N) = [T wn(n; Neid’ (n) dn
(3.1) o 2o N7 2T wn (N, wi)ely (w)),
(3.2) g(\) = [§ wy(n; N)gid’ (n) dn
=~ 2e N P wn (N, w)gin” (w)),

where w; = 27j/N(j = 0,1, 2, --- , [N/2]) and the weight function wx(n; \) is
assumed to satisfy the conditions (Rosenblatt [2], p. 253).

(33) (1) Jews(y;Ndy =1, [Twn'(y; N dy < o,
(2) Given any € > 0, wx(y; \) — 0 uniformly in y for |y — )|

It has to be noted that gi2(\) = 0at X = Oor .
Using (2.7) and the conditions (3.3) it can be shown that, as N — oo,

(3.4) E(ca(N) = [ wa(X, n)¢(n) dn = ¢(N),
E(gia(N) = [ wx(N, )¢ (n) dn = (M.

TurorREM 2. Let the conditions of Theorem 1 be satisfied. Also let the weight
function wy(y, \) satisfy the conditions (3.3). Then

(i) Var (ciz(N))
& 2N Ap(e, \, N) (HE(N) + HEO))?
(3.5) + 24u(e, \, NVHE () + 24m(c, N\, NVHE (M)
+ Awnls, N, M) (H(N) + Hu(N)® + 24u(s, N, N HL(N)
+ 245(s, , N HE(N)} [5 wa' (o, N) do

v
m
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(ii) Var (gfz(\))
& 27N HAwp(s, \, ) (Hi(\) + HE(O\))?
(3.6) + 24u(s, A, NVHE(N) + 24m(s, , NHE ()
+ Aule, N, ) (HR(ON) + HLZOD)? + 24u(e, N, NHL(N)
+ 24(c, \, N HLEOV)} T wi' (0, \) do.
=0 if N=0 or

The right hand side expression of (1) has to be doubled when N = 0 or .
Proor. Since ¢y’ (M) and ¢y’ (Ne), for Ny 3 Ay, are asymptotically uncor-
related, we can write

(3.7) Var (cia(\)) & 40°N 72 22w’ (\, w;) Var (i (w;)).

Substitute the expression for Var (i3 (w;)) from (2.16) in (3.7). Then by
using the conditions (3.3) one can arrive at the result (i). Similarly the result
(ii) can be obtained.
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