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0. Summary. For a random vector (X, ---, X;) having a k-variate normal
distribution with zero mean values, Slepian [16] has proved that the probability
P{X, < &, -+, Xy < ¢} is a non-decreasing function of correlations. The
present paper deals with the “two-sided”” analogue of this problem, namely, if
also the probability P{|X1| < ¢, - -+, |Xx| < ¢} is a non-decreasing function of
correlations. It is shown that this is true in the important special case where the
correlations are of the form A\)\p:;, {p:;} being some fixed correlation matrix
(Section 1), and that it is true locally in the case of equicorrelated variables
(Section 3). However, some counterexamples are offered showing that a com-
plete analogue of Slepian’s result does not hold in general (Section 4). Some ap-
plications of the main positive result are mentioned briefly (Section 2).

1. Main theorem on probabilities of rectangles. For convenience of the reader,
who may wish to compare the results for one-sided and two-sided barriers, let
us state here precisely the one-sided result mentioned above which is due to
Slepian [16] (see also Gupta [8], p. 805):

Let (X1, -+, Xk) be a random vector having a k-variate normal distribution
with mean values 0, variances 1, and having, under the probability law Pg , the
correlation matrix K = {«;;}, and, under the probability law Pz, the correlation
matrix R = {p«;j}. If Kij = pij for all ’i, j, then

(1) PefXai<a, , Xi<a}l SPlXi<a, -, X <al

for any numbers ¢;, -+, ¢ .

Let us mention here that, unfortunately, Slepian’s elegant proof of (1) does
not extend to the case of a two-sided barrier. For this latter case, the following
Theorem 1 gives a partial two-sided analogue to (1).

TuroreEM 1. Let (X1, -+, X&) be a random vector having a k-variate normal
distribution with mean values 0, variances 1, and with the correlation matriz
R(N\) = {pij(N)} depending on a parameter \, 0 = N\ = 1, in the following way:
under the probability law P\, we have pi;(N) = pu(N) = Npyy for 7 = 2,
pii(N) = pji(N) = piifori,j = 2,17 # J, where {pi;} is some fixed correlation matriz.
Then

(2) P(\) = PAIX] < ey ooy |1 Xl < e}
s a non-decreasing function of A\, 0 £ X\ = 1, for any positive numbers ¢y, - - - , cx .
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Proor. Before starting, let us make one clarifying observation. If the matrix
R(1) is positively semi-definite, so is the matrix R(\) for 0 = X = 1 so that the
normal distribution Py is well defined. Actually, for any vectorz = (z1, - -+ , k)
we have £ R(\)z = 2’ \NR(1) + (1 — MR(0)]z = M'R(1)z + (1 — \)2'R(0)z,
where both of these summands are obviously non-negative. Moreover, this is the
only reason why we restrict ourselves to A < 1;it is easy to see that the function
P()\) defined in (2) is non-decreasing as long as the matrix R(\) is positively
semi-definite, maybe even for A > 1.

We will only indicate here some more important steps of the proof rather than
giving the proof in full detail, since this would involve lengthy manipulations
with algebraic expressions and integrals.

I. First, suppose that the matrix R(1) = {ps} is positively definite. Introduce
auxiliary random variables Yo, Y1, - - - , Yi such that they have the normal dis-
tribution with mean values 0, variances 1, the correlation matrix of Yy, -+, Y%
is { p:;} while Yyisindependentofall Y1, - -+ , Y& . By f(y1, - -+ , ¥x) we denote the
density of Y1, - -+, Y&, by f(yo) the density of Yo, and by f(y2, - -, ¥x | 41) the
conditional density of Ys, -+, Y given Y; = y;, and similarly. Clearly, the
variables \Y; — (1 — A)Y,, Y., -+, Yi have the same distribution as
X,, .-+, X4, so that, for our problem, we may put
(3) X; =\ — (1 =MW, Xb,=Y,,--+,X; = Y.

Tt is sufficient to carry out the proof for A > 0. Supposing this from now on, and
substituting (3), we get
P(\) = P{NY: — (1 = V)Y <o, Vo] <oy ooe, |Vl < i}

P{l—c + (1 = MY N < ¥y < [+ (1 — W)Y,
— <Y, <e, r, e <Y< i)
(20 f(yo) Jo0m [2, o [R5 fn, Yoy oo s Ue) dyodyndys - - - dys

= [Zuf(yo) [atue [+ [%f(ye, -5 ye Y0 (vn) dyo dyrdys - - - dys
where a(\, %) = [—a + (1 — M), b\, %) = [ + (1 — M)y
Differentiation now gives
dP()‘)/d)‘ = fwf(yo) fc—zcz tee fﬁ“% [f(y‘A’ y t s Yk I b()‘7 yo))

(BN, 9o)) db(, o) /dN
= fys, -+ 5 ye ] @O w0))f(a(X, yo)) da(X, yo) /AN dyo dys - - - dys .

After inserting the derivatives db/d\, da/d\, putting together the members with
one-dimensional f, and after some manipulation, we obtain

dP(\)/d\
= |2, 0_202 fc—ktkf(y2y ,yklbO\, %))
F((o + (1 = NN (N —a — yo(1 — N) "l dyodys - - - dys
— 2 2, [Ty o el al, W0))
Sy — (1 = NYHNf(e)Ner — wo(1 — M) dyo dys - -+ dys .
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Substituting now yo = As — ¢1(1 — A)¥in the first integral, 7o = s + &1 (1 — )
in the second integral, and rearranging the terms we get

PO/ = f(e)(1 — )7 [2af(e)st o5, - [,
(4) Sy yrlwa(s)) dye -+ - dye
- B—zoz"'fc—k%f(y27"';yk|u2(s))dy2"'dyk}ds)

where us(s) = (1 — N)¥s — e\, ua(s) = (1 — A% + o

Further, split the integral f_w in (4) into the sum of two integrals fo and f
Beginning by investigation of the first integral fo , we have s = 0 in its reglon
and we shall prove in this case that

(5) [ - [, e ,yk|u,(s))dy2 e dye
_02 f—Ckf(yZ)""yklug(s))dy2-..dyk.

Towards this end, we will make use of the following result due to T. W.
Anderson [1]: If V = (Vy, -- -, V) is a random vector with density g(v) such
that g(v) = g(—v) and {v; g(v) = a} is a convex set for every a (0 = a < =),
and if F is a convex set, symmetric about the origin, then P{V + ww ¢ E} is
a non-increasing function of the parameter (0 < » < 1) for any vector w.

Returning back to our proof, observe first that f(y., - - - , yx | %) is the density
of a normal distribution with the mean values piou, - - - , pwtt, and with some
variances and correlations not depending on w. Clearly, the density
f(ya, -+, yx| 0) and the integration region in (5) satisfy the assumptions of the
quoted Anderson’s result. If u,(s) = 0, then, moreover, 0 = u;(s) < uq(s),
which implies (5) by Anderson’s result. If u;(s) < 0, we use in (5) the equality

(6) f—w ff-kckf(yz, ,yk[ul(S))dyz <o dyg
e [y, eyl —wa(s)) dye -+ dy

since now 0 < —uy(s) = —(1 — N Vs eN = (1 — M) 4 o = us(s), we get
again (5).

Thus we have proved that the expression (4) with [Z, replaced by [7 is non-
negative. The second integral f‘lw may be treated analogously, or, simply, the
transformation s = —¢ may be made in it. Summing up the results for both
integrals we see that the derivative (4) is non-negative, which proves Theorem 1
in Case I.

II. Second, let the matrix R(1) = {ps;} be only positively semidefinite, i.e.,
let the distribution P; be singular. However, P; can then be approximated by a
sequence of non-singular distributions. Since for the latter distributions the as-
sertion of Theorem 1 has been already proved, by passage to the limit we can
obtain the same assertion also for P; . Theorem 1 is thus completely proved.

Of course, in Theorem 1 we may permute the subscripts, and write any other
subscript in place of 1. In this manner we get the following

CoROLLARY 1. Let (X;, ---, X}) be as stated in Theorem 1, except that its cor-
relation matriz, depending on k parameters Ny, + -+ , e (0 = N £ 1), be given, under



1428 ZBYNEK SIDAK

the probability law Py, ..., , by {N\joi;} for © # j. Then
P()\l NN ) = PM."-'M{IXll < Cy e, |Xk| < Ck}

18 a non-decreasing function of each \;, 1 =1, -+ JE, 0 = N = 1.

Let us note that normal distributions with analogous, but simpler, correlation
matrices {A;} were studied by several authors, e.g. by Dunnett and Sobel
[7]. As a matter of fact, our representation (3) has been inspired by a somewhat
similar representation employed in [7].

Further, putting A; = (\)? for all subseripts ¢ = 1, - -+, k in Corollary 1, we
obtain
CorOLLARY 2. If (X1, -+, X&) is as stated in Theorem 1, except that its cor-

relation matriz, under the probability law P\*, is {\pi;} for all i # j, then
P*(\) = PM{|X| <o, oo, 1X0] < o

s a non-decreasing function of \,0 = X = 1.

Both Corollary 1 and Corollary 2 may also be regarded as partial two-sided
analogues to the one-sided Slepian’s result (1).

Finally, putting A\ = 0 and A = 1 in Corollary 2, we have obviously

CororLrArY 3. If (X1, -+, X&) has a normal distribution with mean values 0
and with an arbitrary correlation matriz, then
(7) P{X:| < e, -+, Xl < @} 2 JTia PUX < i

Inequality (7) was proved for special cases k = 2, 3 and for the case of correla-
tions of the form A\\j (4,7 = 1, --- ,k; 72 % 7),where0 =\, = 1(¢ =1, --- | k),
by Dunn [2]. The first general proof of (7) was given by the present author in
[13] (later published in detail in [14]); this proof was different from the present
one. Still a different proof was found by Scott [11] only a little later.

2. Applications. In applications, one often encounters also the multivariate
Student distribution. Recall (see [6], [7], [8]) that this is the distribution of
(Xy/s, -+, Xi/s) where (X1, ---, Xi) has a normal distribution with zero
mean values, common variance ¢, and some correlation matrix R, and where
vs’/o* has the x’-distribution with » degrees of freedom, and s is independent of
(X1, -+, Xi). It is immediately seen that the results of Section 1 continue to
hold also for the multivariate Student distribution. For clarity, however, we
shall state here explicitly at least the analogue of Theorem 1.

TuroreM 2. Let (X1, ---, Xi) be as described in Theorem 1, and let s be a
positive random variable which has, under all Py , the same distribution and s inde-
pendent of (X1, -+, Xx). Then

PX{]XII/S <6, e, IXkl/S < Ck}

18 a non-decreasing function of A, 0 = N < 1.
Proof is immediate if we use Theorem 1 for conditional distributions givens,
and then take the expectation.
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We shall not state any more the analogues of the three corollaries from Section
1. The analogue of Corollary 3 was proved in [13], [14], where also additional in-
formation concerning this result can be found.

Finally observe that, of course, all the results in Sections 1 and 2 are valid also
for the case of arbitrary variances oy, - - - , 0%

ArrricaTioN 1. We can here note only briefly that Corollary 3, as well as its
“Student” analogue, may be used in constructing a conservative rectangular
confidence region for the mean vector of a normal population; namely, correla-
tions may be disregarded and all coordinates handled as if they were independent.
Details, discussions, and some numerical comparisons can be found in [13], [14],
(15], [21, (3], [4].

AppricatioN 2. Let us have k ‘“‘experimental” groups with observations

Za, +, Zim; (+ = 1,---, k) and one “control” group with observations
Zo, ++ y Zong. Supposing that all Z; are independent and that Z;
(i1 =0,1, ---, k) has the normal distribution N (u:, ¢’), our aim is to test
which of the mean values u; , - - - , u differ significantly from po . If ¢* is known
we use for testing the vector

(8) (Z-t - Z.o)a_’[non,-(no + ni)‘lli, 1 = 1, ey, k,
which clearly has the normal distribution with correlations

(9) Nij = [nan;i(no + ni) " (no + n;i)-ll%~

If ¢° is unknown, it is replaced by some suitable estimate, and the situation is
completely analogous having now the k-variate Student distribution. This pro-
cedure was given by Dunnett [5] along with tables of critical values for the case
Ng = My = ++- = Ny, 1.e.forcorrelations \;; = 4. If the sample sizes no,ny, -+ - , N
are not equal, \;; need not be equal to  but still they are of the form A;; = \\; ;
therefore, in the case of a two-sided test, we can use Corollary 1 in connection
with existing tables to find some useful inequalities for the levels of significance
or for the critical values. These inequalities were discussed in detail in [12].

3. Equicorrelated variables. Inthe present Section, we will denote by T = {r}
the correlation matrix having all diagonal elements 74s = 1 (z = 1, , k) and
all off-diagonal elements 7;; = 7 (4,7 = yk; 75 7) where 0 < 7 < 1.

The distribution of the vector (X;, - - X k) is again normal with mean values
0, variances 1, and its correlation matrix, under the probability law P, is
R = {pi;}, whereas, under the probability law Pz, it is T = {7;;}; that is, under
Py, the variables are equicorrelated.

It may now be conjectured that + < p;; implies

PT{IXll <y oo 7|Xkl <ck} éPR{IXII <6, 7IX’¢I <ck}'

(Note that Dunn and Massey [4] mentioned a very similar conjecture with
¢t = ¢ = -+ = ¢.) Though we were not able to prove this conjecture com-
pletely, we are going now to prove that it is true at least “locally” (believing that



1430 ZBYNEK SIDAK

the method of proof, or some part of it, might be useful for further investiga-
tions).

The following auxiliary result is probably well known, and can be easily
established.

Lemma 1. The cofactor T':; of each off-diagonal element :; (4,7 = 1, - -+, k;
t # 7) in the matriz T is Ty; = —7(1 — 7)*7* < 0, and the determinant of T is
T = (1 =21 — 7+ kr).

TaEOREM 3. Forany ¢,j = 1, --- , k; 7  j, we have

(10) AP{|X1| < €1y ce, | X < a}/87i; > 0

at each point where all ;5,7 # 7, coincide.

- Proor. Obviously, it is sufficient to prove (10) only for 71, . As usual, denote by
f = f(21, -+, xx) the normal density in question, and write, for brevity,
Si= —Ti/2|T|fors,j =1, -+ ,k,and S = S;j for ¢ # j; note that Lemma 1
gives S > 0. Making use of the well-known equality 8f/dr. = 9°f/9z10x, (see
[10], [16], or [9], Exercise 15.4), then performing the integration, and taking into
account the property of symmetry f(z;, -+, ) = f(—z1, -+, —xi), we get

P Xy <, o, | Xu| < cr}/Om1e
e [y, e, ) /OmadTs day - -+ da
=202 - [ e, ca, @, e, 2p)
(11) —f(—c1, 2,25, -, xx)] das - - - day
| A3, o % {exp [2Scic; + 28ci D i
+ 28c; 2 bsmi + D% s Sumas]
— exp [—28cic; — 28¢; > v sz
+ 28c D sz + 2% ims Simitl) das - - - da,

where A = 2(21r)~k/2|T|—* exp [1811012 + S22022] > 0.
- Next, let us investigate the expression

(12) fvfca s o {exp [2Sc D tosmi + 280, Dtz i 4 D ¥jes Sz ;]
— exp[—28c; D ks zi + 28c Z’.;s z; + Z'f,j=3 Sizax;]} das « - - day, .

If we split the integral in (12) into the sum of two integrals, the first of them over
{ D %_s2: > 0}, the second of them over {D 53 z; < 0}, then make the change of
variables x; = —y.in the second integral, and again sum the two integrals, we
see that (12) equals

(13) [ - faexp 2 Sumail{exp [28c: 2 fs 2] — exp [—28e, D sz}

{exp [28¢c; D 55 x] — exp [—28c; D ks z;]} dxs - - - dzs,

where

A= {(xS)"’)xk);(—cuéxnécn),n=3,"',k, and .’L‘3+"‘ +xk>0}.



MULTIVARIATE NORMAL PROBABILITIES OF RECTANGLES 1431

Since S8 > 0, we have here 28¢; Dt s 2: > 0 > —28c¢; ) s Z; ; hence the factor
in the first curled bracket in (13) is positive, and the same is true about the
second bracket. Therefore the whole expression (13), and also (12), is positive.

Finally, if we multiply the first exponential term in (12) by exp [2Scics] > 1,
this term increases so that (12) also increases. Futher, if we multiply the second
exponential term (which is subtracted) in (12) by exp [—28cic;] < 1, this term
decreases so that (12) again increases. Therefore (12) after these two multipli-
cations is a fortiors positive; however, (12) after these multiplications is exactly
the last integral in (11), so that (10) is proved.

CoROLLARY 4. Let (X, - -+ , Xi) have, under the probability law Py , the normal
distribution with mean values O, variances 1, and correlations 7:;(\) = (1 — N)xy;
+ Noi;, where {ki;} and {pi;} are some correlation matrices, ki;j = pi; (for all

i, =1,---k;7 # J) with a strict inequality at least for one pair <, j. Then
AP\ X < ey oo, | X < ci}/dN >0

at each point where 7:;(N) = 7> O0foralli,7 =1, --- ,k;2#j.
Proor. Writing simply Py for PA{|X1] < ¢, -+, | Xkl < cx} we have

dPy/AN = 2i<i (0PA/0735) (drij/dN) = 2ici (9PA/07i5)(pii — ki) > 0,
where positivity of the last expression follows from Theorem 3.

4. Counterexamples. From the intuitive point of view, and as it was expressed,
e.g., by Slepian [16], the values of correlations may be regarded as some measures
of how much the variables “hang together.” Roughly speaking, the larger the
(positive) correlations are, the more the individual variables “hang together,”
and the more likely is that they will behave similarly. From this point of view,
Slepian’s inequality (1) can be regarded as some consequence of this intuitive
principle, and one might then perhaps expect that also an analogue of this in-
equality will hold for the case of a two-sided barrier (at least for positive correla-
tions). However, this is not true, and such a general analogue does not hold, as
will be shown now by the following two examples.

Both examples will concern the three-dimensional case, ¥ = 3, and
(X1, X5, X;) will have in them a normal distribution with mean values 0,
variances 1, and some correlation matrix {o;}.

ExampLe 1. We assert that if ¢13 — oo < 0 (>0), and if ¢, is sufficiently
small, then

(14) oP{|Xy| < a1, |Xs| < e, | Xs] < €3}/d013 < 0 (>0, respectively).

Thus, in the first case, if 013 increases, the probability in question decreases.
To prove this assertion, let us use once again the equality of/dcs; = 9°f/0z:dzx; ,
by means of which we obtain

6P{|X1| < C1, leI < Ce, |X3| < 03}
(15) = "'61 _62 fﬁ’c, af(xl , T2, X3)/0210%3 day das dxs
=2[2,[f(cr, 22, ) — fler, x2, —cs)]dma.
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However, at the point ¢z = 0 we have

(16) (d/de) [2,[f(cr, 22, €3) — fler, 22, —C3)]ds

2[f(¢1, 0, ¢3) — f(er, 0, —c3)]

2/(0)[fo(er, €3 | X2 = 0) — faler, —¢s| Xz = 0)]

where f, denotes the conditional density of (X;, X;) given X, = 0. Now, the cor-
relation coefficient of this last density equals (o153 — o12093) [(1 — o12) (1 — a35)] %
Therefore, if o153 — e < 0 (>0), (16) is negative (positive, respectively);
hence also (15) is negative (positive, respectively) in some neighborhood of
¢s = 0, and (14) is proved.

This example also shows that for stationary Gaussian sequences their correla-
tion funection may increase, while the probability of not crossing a two-sided
barrier may decrease. Even more can be shown without difficulties: if we in-
crease the correlations so that they have the form o1z + €, 023 + ¢, 013 + e,
where e = 0, @ > 0, and if a is sufficiently large, the probability in question may
decrease, while e increases, i.e. while all of the correlations increase.

The second example will be only sketched, because it involves too lengthy
calculations. However, we think that it is worthwhile to discuss it, since it works
for arbitrary ¢.’s, and since it introduces still another model of random variables
different from (3) or from that in Corollary 1.

ExampLE 2. Let us consider the model of random variables

X,‘ = )\,'Yi - (1 - )\,;2)%Y0, 1= 1, 2, 3,

where0 S \; = 1(:=1,2,3),and Yy, Y1, Y2, Y; have a normal distribution
with mean values 0, variances 1, the correlation matrix of ¥y, Ya, Y3 is {ps}
while Y, is independent of them. Then the correlations between X; and X; are

o5 = B{XX;} = M + [(1 = M) (1 =\, i #j.

Now, we shall regard )\; as a variable in our model, and write
P(n) = P{Xy < ci,i=1,2,3}.
We have then
P(N) = P{l—ci+ (1 =AY < Vi<les+ (1= M)V, 0= 1,2,3).

Continuing now step by step in a completely analogous manner as in the proof
of Theorem 1, we obtain finally

dP(N)/dN = fla) (1 — M) [2, f(s)s{ 125500 M f(va, ys | wa(s))
ddyadys — [R50 [MESZ0 T W, ys [ ua(s)) dy dys} ds,
where the function &; (z = 2, 3) is given by
hi(de, di) = A7Mds + di(1 = ORI = A 4+ a1 = A,
and w(s) = (1 — )\12)*3 — o, ue(s) = (1 — )\12)*3 + oM.
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For constructing our example, let the matrix {p;;} be, in the sequel, some fixed
matrix with p;z = 0,0 < p13 < 1, 0 < po3 < 1. Denote also by R, the covariance
matrix of f(y2, ys|y1) in this special case.

Define now an auxiliary function D(\;) by

D(\) = [Zof(8)sP{U; — e (1 — MHHA — )P — a7 (1 — MDY
< e\, |Us — ey (1 — ML — AP — pscih| < cohs '} ds
— [uf(8)sP{|U: 4+ eh' (1 — MDA = M) — s (1 — A
<ol [Us + ens (1 — MM — MDY 4 pah| < e\ ds,
where A; is a function of A, given by
N = A(M) = MO — Mpls + pls) 7

and where (U., U;) has the normal distribution with mean values 0 and with
the covariance matrix R;. Since the correlation coefficient between U, and U,
is poa(1 — p?g)_* > 0, it can be shown that limy,.1- D(N) > 0.

Finally, fix some A\* and \,* (near \; = 1) such that D(\*) > 0, and find the
corresponding As* = A\(M*). It can be seen then that we have, at this point
)‘1*7 >‘2*1 >‘3*)

dP(\)/dNn = fle) (1 — M) TD(N*) > 0.

Thus, if we increase A in some neighborhood of )\1*, NSNS N e (keeping
A*, \s* fixed), the probability P()\;) increases. However, it is easy to see that,
at the same time, the correlations o1, and a13 decrease (while g3 remains fixed).
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