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ON SLIPPAGE TESTS—(II)
SIMILAR SLIPPAGE TESTS!

By Irving J. Hari?, Axro Kup6® aNp NENG-cHE YEH

Towa State University and Kyushu University

1. Introduction. This is a continuation of the previous paper of Hall and
Kudé [1], and all the notations and nomenclature are the same as in the previous
paper. The purpose of this paper is to explore the possibility of applying the
concept of similarity in hypotheses testing to slippage tests.

The authors are grateful to the referee, who suggested the strengthened version
of the result in the original manuseript.

2. Similarity in exponential family of distributions. In accordance with hy-
potheses testing we can define a similar size & decision function.

In this section we consider some general aspects of uniformly most powerful
symmetric similar size « decision functions. A decision function is said to be
similar size if the expectation of ¢o(x) is equal to 1 — a whenever H, is true.

Let S be distributed according to the exponential family with parameter space
Q = {6} which can be divided into & + 1 disjoint subsets @ = QU Q u--- U Q,
such that @ u Q is covered by a family of disjoint curves originating
from Q, &% = {0i(v,0): 0 < v < ®, 0eQ}, 0:0, ) = o and 0:(y, o) £Q; for
ally € (0, « ) and ¢ so that the parameter can be expressed as 6;(y, o) or (7, v, o)
for 6 £ Q; and o for 6 & Qo .

We assume that U is the minimal sufficient statistic, for Qo , (U, T';) for @y u Q.
Sfor Qu Qu -+ uQ and that the density of S wrt u can be expressed as

(1) dP*(s)/du(s) = dPi,q(s)/du(s) = C(i,, o) exp [a(4, v, 0)U(s)
+ B8(v, o) Ti(s)].

As before we assume there is a group G@ = {g} of transformations on S isomorphic
to the permutation group of (1, 2, --- , a) itself or to its subgroup transitive on
(1,2, .-+ ,a) and u(A4) = u(gAd). Let the number of elements in G be N. In
addition we assume

Al Ti(s) = Tr,i(gs).

A2. U(gs:) = U(gs:) for all g if and only if U(s1) = U(sy).

This enables us to define G, = {g.}, a transformation group defined on the space
of U. G, is, of course, finite and its number of elements is denoted by M.
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Let @ be a transformation group on Qy, to which @ is homomorphic, and let
g be the element of G corresponding to g. We also assume

A3. C(i, 7, 0) = C(myi, v, Jo).

Ad. a(i, v, o)U = a(my, v, §o)g.U

A.5. B(0, ¢) = 0, and B(y, o) is non-decreasing in v and B(v, o) = B(v, o).

A.6. U is complete for Q .

A.7. When 6 ¢Q,, the conditional distribution P,*' " of S given 7 = g.u
remains the same for all g, .
Let G = {j} be a group of transformations on @ defined by (% v, ¢) =
(g, v, o).

LemuMa 1. The distribution of S satisfies P o(A) = Piune(gA), for all
g € @, namely, G induces G.

This follows from A.1, A.3, A4 and A.5.

Levmma 2. The margmal distribution of U satisfies P{ ,o(B) = Pgiis o (3uB)
namely G, also induces G.

Proor. By Assumption 2, gU " (B) = U '(¢g.B) and by Lemma 1

Piyo(B) = Piyo(U(B)) = Piinao(gU " (B))
= Pt (U (guB)) = Pitine(9:B).
Lemma 3. The conditional distribution of S given U = wu salisfies
PiLd(A|u) = Piy.(94 | g.0),

namely, G induces a group ((z,v, a), u) — (9(3, v, 0), guu) when ({7, v, ¢), u)
18 taken as a parameter of the conditional distribution.
Proor. By Lemma 1,

Piye(Sed, U(S) eB) = Pyuyn(Segd, U(S) e g.B)
or
[aPird (A |u)dPlyo(u) = [0 Prciyo(gA | u) AP0 (w)
fB Pg(t : ,,-)(gA IguU) dP%u 7o (u).

By Lemma 2, and by the uniqueness of the conditional probability, the result
follows.

As the distribution of S is exponential, the conditional distribution of S given
U is also exponential and we have

Lemma 4.

AP} ys (s u) = Cu(d, 7, o) exp [B(v, o) Ti(s)Ih(s; u) dh(s)
where

(a‘) Cu(i) Y 0') = Cﬂuu(g(i: Y, 0));
(b) A(s;u) = h(gs; guu),
(e) M(4) = M(gd) = Nu(A).
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Proor. The conditional density can be written in the form of
P31 (s u) = Ku(d, v, o) exp [8(v, o) Ti(s)] dvu(s).

As U is sufficient for @y, K, (0, 0, ¢) does not depend on o, which we write as
K, . By Lemma 3 and A.5, we have

(2) Ky (A) = Kouvgu(ga).

Letting Cu(%, v, ¢) = Ku.(, v, 0)/K., and applying Lemma 3, we have (a).
Since K, .v,,.(A ) is absolutely continuous with respect to

M(A) = M7 Y00 Kouvow(A) forall gy e Gy,
there is a measurable function A(s; u) by Radon-Nikodym theorem such that
(3) Kourou(A) = [4h(s; guu)lu(s).

It is straightforward to verify (¢) by the definition of M\,(A4), and (b) can be
verified by (1), (2) and (¢).
LemMA 5. h(s; u) of Lemma 4 satisfies h(s; u) = h(s; guu) for all g, ¢ G, .
Proor. For 6 € Q, we have from A.7

PS' A |u) = P (A |gu) forall g,eG,,
which implies
Jah(s;u) d\(s) = [ah(s; guu) du(s)

and the result follows.
LemMA 6. Gu(4, v, o) s free from i.
Proor. Consider a sum

1=aN"" Zy: =i f dP;‘-’(‘i,’.j.,)(s | gutt)
= aN7' X0 v [ Con(3(1, 7, 0)) exp [8(v, §o) Trp(8)Ih(s:gus) du(s)
= Cu(1,7, o) [ exp [B(v, o) Ts(s)Ih(s; u) du(s)
= Cu(3, v, o) | exp [B(v, o) Ti()Ih(s; u) du(s),

which implies C\,(7, v, 0) = Cu(1, v, 7).

In the following, E(-; v, o) denotes the expectation by P%,,., , Ei(- | u; 7, o)
the conditional expectation when U = w. E¢(-; ¢) and Ey(- | w) are the same
for 6 € Q9. (Because of the sufficiency of U for Q, the conditional expectation
given U is free from o.)

DeriniTions. We define sets of decision functions &, , - - - , &; by the following
conditions

@ : Ei(ei 57, 0) = Erji(r,i; 7, §o). Such ¢ are called symmetric in power.

®, : Ey(¢p : o) is independent of . Such ¢ are called similar.

®; : Eo(po | w) is independent of U. This is called the conditional size of .
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&y : Ei(ei | Us v, 0) = Eayi(er,i| guU; v, §o). Such ¢ are called symmetric
in conditional power.
@5 1 0i(8) = @r,i(gs). Such ¢ are called invariant.

Lemma 7. Py = 3.

Note that those decision functions in ®; may be said to have Neyman struc-
ture with respect to U in accordance with the theory of hypothesis testing.

Lemma 8. For any decision function belonging to ®1 n &, or ®; n 4 there exists
one in ®s n &, or B3 n D5 , which has the same size, or conditional size and power
or conditional power, respectively.

Let S be distributed with the density

C(% Y ‘7) exp [a(iy s U)U(S) + 6(7) U)Ti(s)]

with respect to u, and assumptions A.1, - -+, A.7 be satisfied. Consider a rule
o of the form:
(4) (po(S) = 1) E(S), 0 if max, T,(S) <, =, > 0(8)>

(pj(S) = ‘r)j(S), 0 if T,‘(S) =, < max; T,(S)

We have the following theorems.
TarorEM 1. (a) For any other rule ¢ if Eo(¢o | u) = Eo(po | u) then

de(}‘ Ewyi(‘pﬂgi l guUs v, QO') = Zth Ergi(éjrgi l guUs Y, éa')

for all i, v, o and u.

(b) For any «, there is a rule ¢ of the form (4) with £(s) being a function of u
only and Ey(¢ |u) = 1 — a for all w. Thus this ¢ belongs to ®; .

(¢) Further ¢ can be made symmetric in conditional power, so that ¢ belongs
to CI>4 .

Proor. (a) By Lemmas 4 and 6, we have

AP35 (s|u) = Culy, o) exp [B(v, o) Ti(s)JA(s; u) dhu(s).

By applying Theorem 2 [1], we have, Eo(¢o(s) | u) = Eo(eo(s) | w) which implies
25 Bilei(s) |us v, o] 2 2254 Bilei(s) | us v, ol.
On the other hand, by Lemmas 4 and 5, we have
AP}y 0 (s | guu) = Coulv, o) exp [B(v, §0) Tryi($)h(s; gu) dNg,u(s)
= Cu(v, o) exp [8(y, 0)Tr,i(8)]h(s; u) dhu(s).
and hence
aN™' 3 peainp=i AP3LY 0y (s | gun)
= aN 72 geour1mi Culy, o) exp [B(v, o) Ti(8)Ih(s; u) dhu(s)
= Cu(y, o) exp [B(y, o) Ti(s)Ih(s; u) dNu(s) = dPiq0 (s | u)
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and
253 Ejlei(8) lus v, 0] = 2254 f“’f(s) dPjy.q(s [u)
= 20 [ 0i(8)aNT Y gegmyims APELY oy (s | guu)
= aN7' 2 ea Enyiler,i(S) | guu; dol.

As the same relation holds good for &, we have the proof.

(b) Fix u, v, o and consider dP,* ' *, dP{!%, , -+, dPL.Y%, , then we get
the result by applying (iii) of Theorem 1 [1].

(¢) By the same argument as in Corollary 1 [1], ¢ can be made to be invariant,
and thus it is symmetric in conditional power.

TuarorEM 2. (a) For any «, there is a rule of the form (4), o(s) in &, with
Eo(¢o) = 1 — a. Furthermore, it can be made symmetric in power.

(b) For any other rule & with Ey($o | u) = Eo(eo | u) for all u

(5)  2ogea Bryilen,i(S); 7, do] = D pee E.,d¢+,:(S); 7, gl for all i, v and o.

(¢) (5) holds true for any other rule & in ®, with
Eo(%0) = Eo(eo).

Proor. (a) Theorem 1 guarantees the existence of a rule for each u with
conditional size «, which is a measurable function of Ty, ---, T, for fixed w.
This can be viewed as a function of S, whose measurability can be proved in
exactly similar manner to that in Section 4.4 of Lehmann [3]. The second part
is a consequence of (¢) of Theorem 1. This leads us to the completion of the
proof of (a).

(b) 206 Bryileon,i(8) 2 v, dol

= 20e0 | Brylor,«(8) [ u; v, §o] dPFei,y,.0(u)
20ca | Bryilen,i(S) | gu; v, dol dPYy o(v)
2 0c6 | Bryilen,i(S) | guu; v, ol APy 0(w)
20ea | Bryiltr,i(S) | guus v, do] dPYy o(u)
= 2o0eo Bryilen,i(8); v, dol.

(¢) This follows from Lemma, 7.

CoROLLARY 1. For any «, there is a similar size a decision function which is
the uniformly most powerful among all the decision functions which are similar
size a and symmetric 1n power.

The above result is not convenient in applications. The following theorem
corresponds to the Theorem 1 of Section 5.1 in Lehmann [3], and is useful for
applications.

THEOREM 3. Assume the same conditions as those in Theorem 2. Let H(z, y)
be a measuradble function, increasing in y for fized x. Suppose V;, = H(U, T;)

Ir

Il

v
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(2 =1,--+,a) are independent of U when 0 & Oy, then the decision function (3)
can be written as
(6) 4’0(8) = 1) & 0) if max; V; <, =,> C’
ei(s) = (1 — @o(s))/k(s),0, if max; Vy =, > V;,

where k() is the number of tvmes max; V; is attained, and C and & are constants
depending only on the size condition o.

3. Examples.
Exampre 1. Slippage of normal variance [5]. Assume that we have n random

observations (z;1, -+, %) (7 = 1, a) from each of a N(0;, o; ) popula-
tions and we wish to test Hoioy = --- = o, = ¢ against Hjiop = -+ =
ol + )t =...= 6, = ¢(j = 1---a) where y > 0 and o, v, and
(61, -+, 6,) are unknown and free.

The densities under H, and H; are, respectively, of the form
fo(x; 6,0,0) = ¢(0,0,w) exp [—3o " 201 D i &y + no* D5 0.5
Ji(%; 0, 0,7v) = c(j,7v, ) exp [‘%0_2Z?=1 Z/?=1 ik
+ 02t 0i0 7 F 4 2o (y/ (1 — ) i 73]
where ¢(0, 0, ) = ((2r) 6 ™)" exp (—ino 2D i1 6)
c(d v @) = ((20)707)"(1/(1 + v))" exp [~ dno ™ 20 67
+ 3n6,%0 7 (v/ (1 + 7))

and o = o 61,02, -+, 0a).
If we let G be the permutation group introduced in the beginning of [1],
and put

U= [Z?=1 ZI?=1 xh y 1y e, 9'0'.,],
Tj = Z]?;lx?k (J = 1’ “ee ,a),

then the conditions of Theorem 2 are satisfied.
Let

V= [2imah — 0| 2ia 2imah — 0 iad " G=1,-,a).

Under H, the distribution of V; (j = 1, ---, a) does not depend on the param-
eters and are jointly independent of U and hence by Theorem 3 the uniformly
most powerful symmetric similar size « decision function can be written as
(5), i.e.

eo =160 if max, V; <, =, > C,
¢oi= (1 — @)k 0 if max;V;=,> V;,

where & is the number of times max; V; is attained.
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This result is identical to the solution derived by Traux [5], who imposed in
addition to the condition of similarity and symmetry the following type of
invariance: ¢(z) = ¢(hz) for all h ¢ H, where H consists of transformations
from z;; to axy; + b;, where a > 0, — < b; < 0,7 = 1,---, a
andj =1, ---,n.

The following examples seem not to have been considered before and the
derivation of solutions seems somewhat cumbersome when we impose the assump-
tion of invariance of the decision function with respect to change of location
and/or scale.

Examrre 2. Let {(zu, yax); &k = 1, -+, n} (z = 0, 1) be random samples
from bivariate normal distributions with means 6, and 6 respectively and
common variance covariance matrix ¢°I where

8 = (61, 00), 6 = (6, 0u)

and consider the problem

Ho:01=00, Hj:01=00+’)/55, j=1,---,a,
where
~_|cos2r(j — 1)/a|,
% = [sin 2r(j — 1)/a v >0,

and 6y , 61, v and ¢ are unknown and free.
The densities under H, and H; are, respectively, of the form

o, 95 00, 0%, 0) = ¢(0,0, ) exp [ — 307> Dimo 27 (21 + vs)
+ nbu0 X(Zo + T1) + n00o (G0 + §1)],
Fi(®, Y3 00, o v) = e(Gy v, @) exp [ — 07" 2ico 2oim (wi; + vis)
+ nbuo (& + F1) + n0po (Go + 1)
+ yno (& cos (2r(j — 1)/a) 4 fu sin (27(j — 1)/a)]

where c(j, v, @) = ((2ro *)*" exp [nyo (2t o) — 3mvo “(6u cos (2m)j —
1)/(1) + 6oz sin (27I'(j - 1)/0,)] and w = (0', Oo1 002).

Let
o= D0 2=t (Th + Yik), U= (s, %o, &1, H0,71)
and T; = & cos 2w(j — 1)/a + 1 sin 27(5 — 1)/a.
Consider a group of rotations {g;} of (4 , ya) given by the orthogonal matrices

cos (2wl/a) sin (2wl/a) _ 3
[—sin (2rl/a) cos (27rl/a):l (1=0,1,---,a—1)

It is readily seen that all the assumptions of Theorem 3 are satisfied. In particular
we note that m,, ¢ = ¢ — 1 (mod @), and all the groups, G, G, , II and G are
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cyclic groups of order a. The optimum decision function is given by
Q) = 1, E, 0 if mMaXi=1...a Vz <, =, > C,
(1 - qO())IC_l, 0 lf maxi=1,...,a V{ =, > Vj,

It

(2}
where
Vi=[(& — &) cos 2x(t — 1)/a + (5 — o) sin 2x (¢ — 1)/a)/s
and &= s — n(& + & + G0 + §10).
The generalization of this example to the p-variation situation is immediate.
Exampre 3. Lety; (¢ = 1, --- ,a) ben X 1 vectors such that y; = X8; + e;
where X is a known n X p matrix with rank p < 7 and e; is distributed as
N(0, ’I).
Consider the problem
H0261'=ﬁ7 j=1,--~,a,
Hf::Bkzﬁy ]¢k<k:1a:a’) and BJ:B_'_'Ya
whered’ = (0,---,0,1),v > 0, and 8, v, and ¢° are unknown and free.
Under H, and H; the densities are of the form,
fo(y; B, %, 0) = €' exp { =30 " 2l yiys + o BX 25y,
fJ(y: ﬁ: ‘72, 'Y) = C”f(rexp {0—27xp,yi}7
where z, is the last column vector in X and C” is independent of 7 (j = 1, - - -, a).
Let G be the group consisting of permutations of the y,’s,

U= (2iayly, X'2%0y:) and T, =1,y;.

It can be verified that the best linear unbiased estimate 4 of v under H; can
be written as

9i= (1 — l/a)xp’xp[Ti - xp'(aﬂlz ya)l.

Theorem 3 can now be used to obtain the solution
=180 if max;V; <, =, > C,
oi= (1 —¢)k0 if max;V,=,> V;;
V= ’91’/[23&1 yi’yi - a‘l(Z Z/z’),M(Z yi)]%, M = X(XIX)_IX,'

A generalization of this example to the situation where B; is split into two
parts: B = 8/, B/") and one considers a + 1 hypotheses H,
(i= 0,1, ---,a) of the same type of 8;* is also straightforward.

Note that when p = 1 and the elements of X are all 1 this reduces to the case
of Paulson [4] and further when n = 1 this reduces to the case of Kud6 [2].

Theorem 2 is also applicable to the slippage problems with discrete distribu-
tions such as Poisson, hypergeometric, ete.
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4. Note on similarity and invariance. A transformation group {h} of S is
said to leave the problem invariant if the induced group of transformations {A}
on Q satisfies A(Q) = Q, and i(¢, v, ¢) = (4,7, ¢’ ) for all 4.

TueoreMm 4. All optimum decision functions are invariant under a transforma-
tion group which leaves the problem tnvariant. Indeed, if the uniformly most powerful
symmetric similar size a decision function exvsts uniquely a.e. (u) then it is almost
tnvariant under a transformation group which leaves the problem tnvariant.

This can be proved in a manner similar to Theorem 6 of chapter 6 in [3].
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