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BIVARIATE SYMMETRY TESTS: PARAMETRIC AND NONPARAMETRIC

By C. B. Bert! anp H. Smira HALLER

Case Western Reserve University

1. Introduction and summary. In testing whether a treatment has an effect
or not, the experimenter is often obliged to use the same subjects for control
and treated groups. In such a case it is generally unrealistic to assume in-
dependence and one is led to tests of bivariate symmetry. The object of this
paper is to show that bivariate symmetry is not equivalent to univariate sym-
metry; that there exists a feasible procedure different from the likelihood ratio
test in the normal case; that there is no unique “natural’’ concept of rank; that
all distribution-free (DF) procedures are based on permutations; and that
optimal DF procedures for a simple alternative are based on permutations of the
likelihood funection.

2. Terminology and notation. The tests are based on random samples
z=1[x1,y1;%,%; ° ;Tn, Ya) from bivariate continuous distribution F. In
such a case the joint distribution is F™(z) = J]f F(:, y:). The hypotheses
classes are then

Q(Hyu Hy) = {F™:F, continuous};

and Q(H,) = {F™:F, continuous; and F(z, y) = F(y, z) for all (z, y)}.

Of prime interest are functions, sets and statistics which exhibit some in-
variance wrt Q(H,), and, hence, the invariance properties of Q(H,) itself.

DerintTION 2.1. Wrt Q(H,)

(i) A set B is similar if there exists « such that P(B|J) = « for all J in
Q(H,);

(ii) A test function ¢ is sémilar if there exists o with f YdJ = aforall Jin
Q(Hy).

(iii) A statistic T is DF (distribution-free) if there exists a univariate dis-
tribution @ such that P{T < ¢|J} = Q(¢) for all ¢ and for all J in Q(H,).

In order to construct such sets, tests and statistics one extends the ideas of
Pitman (1937), Lehmann and Stein (1949), Hajek and Sidak (1967) and Bell
and Doksum (1967) in constructing the maximal permutation group under which
each element J of Q(H,) is invariant. It is easily seen that this group is

8" =8, [8, thewreath product (Hall, (1959))

of the symmetric group S, of the n! permutations of the intact pairs with S .
The set 8’ (z) of images of z under S’ is called the orbit of z, and one sees that
each J in Q(H,) is invariant over each orbit. By Scheffé (1943), one needs to
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260 C. B. BELL AND H. SMITH HALLER

select points from the orbits; and this is facilitated by the use of the functions
defined below. The first type of function distinguishes among all points on a.e.
orbit, and the second type ignores the chronological order of the data.

DrFINITION 2.2.

(i) tisa B-Pitman function if P{#(z) = t(6(z))|J} = Ofor allJ in Q(H,) and
all non-identity elements of 5 of S’.

(i) ¢* is a BNS-Pitman function if (a) t*(2) = ¢*(v(2)) for all v in S,’, and
(b) P{t*(z) = t*(+(2))|J} = O for all non-identity elements = of X7 Ss:.

It will be seen that all DF statistics can be expressed in terms of rankings of
such functions. The two pertinent ranking statistics are

B(t(2)) = Doss €ft(z) — t(8(2))}; and
R*(1%(2)) = D yesw eft(z) — t(x(2))},

where e(U) = 0 or 1 according as U < O or U = 0.
One can now proceed to study the various formulations of symmetry.

Il

3. Formulations of symmetry. In order to give directions to the tests and to
demonstrate that several definitions of symmetry are not equivalent, the fol-
lowing are presented. Table 3.1 gives several formulations of symmetry under
the assumptions of continuity, absolute continuity, and normality. As is cus-
tomary (X, Y) is the “basic” bivariate random variable and (W, V) is the
transformed random variable with W = X 4+ Yand V = ¥ — X.

For the table below F and G are the distributions of (X, ¥) and (W, V), re-
spectively. F, , F, and G, are marginals, while G(-|w) is a conditional distribu-
tion. f, g, f+ , fv » g» and ¢g(-| w) are the corresponding densities.

TABLE 3.1
Formulations of symmetry
Continuous Absolutely Continuous Normal
(A) F(z,y) = F(y, z) for all  f(z, y) = f(y, z) for all E(X) = E(Y) and
z and y. z and y. Var (X) = Var (¥)
(B) 2G(w, 0) = G(w, v) + g(w, v) = g(w, —v) for E(V) = 0 and Cov (W,
G(w, —v) for all w all w and ». V)=20
and v.
©) G |w) + G(—v|w) = g |w) = g(—v | w) for E(V |w) = 0 for all w.
1 for all w and ». all w and ».
(D) F,=F,,ie. thez-and f.=j,,i.e thez-and = E(X) = E(Y) and
y-marginals are equal. y-marginal densities Var (X) = Var (Y).
are equal.
(E) Gy(t) + Go(—t) = 1 for gv(t) = go(—t) for all ¢. E(V)=0
all {. (Univariate Sym-
metry).
F) PX>YV)=%=G0 [ugt)dt=1% EWV)=0
(Q) G0 | w) = % for all w. e g | w)dv =} for E(V |w) = 0 for all w.

all w.
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One can readily establish
TuroreEM 3.1. For bivariate normals
(1) conditions (A), (B), (C), (D) and (G) are equivalent;
(ii) conditions (E) and (F) are equivalent; and
(iii) the conditions in (i) tmply those in (ii) but not vice versa.
The theorem in the continuous case is
THEOREM 3.2. For continuous (and absolutely comtinuous) bivariate distribu-
tions
(i) conditions (A), (B) and (C) are equivalent;
(ii) no other equivalences hold,
(iii) (A), (B) and (C) imply each of the other conditions; and
@iv) (F) is emplied by (G), and also by (C).
In summary one should say that
(a) in the normal case symmetry is equivalent to equal means and variances
of the (X, Y) distributions; and independence and E(V) = 0 for the (W, V)
distributions; and
(b) in the continuous case symmetry is equivalent to the symmetry of the
conditional distribution of V for every value of W.

4. Tests in the normal case. The usual first procedure in such a case 1s to
derive the likelihood ratio statistic.

TuroREM 4.1. The likelihood ratio test is of the form (z) = 1 if T = M(n, a);
= 0 otherwise, where Ty = [1 — {r(W, V)JI[1 + U™, r(W, V) is the correlation
coefficient of W and V; and Uy’ = n(V) D, VE— oV

To obtain the null distribution of 71, one makes use of the following lemma
from Kendall and Stuart (1958), p. 385.

LemMA 4.1. If Cov (W, V) = 0, then W, 7, sw’, sv° and 1* are mutually inde-
pendent.

Now from elementary considerations it follows that

THEOREM 4.2.

(i) (n — 1)U,* is distributed as an F-statistic with 1 and (n — 1) degrees of
freedom.
(ii) Under Hy, r and Uy are independent.

(iii) Under Hy, T has density which vanishes outside of (0,1) and for0 <t < 1

satisfies

h(©) = T(n)(HEP I (0 (G — 2)7 17 2107
(e — (n— DA —a) e+ (0 — 2)/(n — 1) ™" da
T'(m)[20T (m — )b "™ " [32 (¢ — sing)™ " do
wherea = (2m — 2)/(2m — 1),b = £ ' + a, B = —11I,
By, = arcsin {[(1 + o)™ — (1 + b7H)126(b — 1)7}.
In view of Theorem 4.2 and well-known results it is seen that

Ty = (W, V)(n — 2)[L — (W, V)] and Uy = Tnls,™
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are mutually independent, and have ¢-distributions with (n — 2) and (n — 1)
degrees of freedom, respectively. Further it is clear, T, is a “good” statistic to
test “cov (W, V) = 0” (or e’ = ¢2’), while U is directed toward “E(V) = 0”
(or w1 = u2), i.e. each statistic is directed toward one of the facets of symmetry in
the normal case. Consequently, another test of bivariate symmetry in the normal
case can be given by

TaeorEM 4.3. Let ¢ = 1 4f |To| > t(B1,n — 2) or |Uy| > t(8:, n — 1), and
¥ = 0 otherwise, where t(p, m) is the 100,th percentile of a t-distribution with m
degrees of freedom and T and U, are as in the preceding paragraph. Then ¢ is a test
Sfunction of size . = (1 — 281) (1 — 28.).

Of course, infinitely many tests are possible in the normal case, but attention
will now be turned to the continuous case. Initial considerations will be of rank
tests.

6. Rank Sets. The usual (e.g. 1, 2, 3, 5) procedure for characterizing rank
sets (and, hence, rank tests) is as follows:

(1) Find a group G of 1-1 monotone transformations (of the sample space
onto itself) which generates Q(H,).

For such a group three conditions are satisfied

(1.1) Q(H,) is an equivalence class of Q(H,u H;) under G.
If B is invariant under G, then
(1.2) B is similar wrt Q(H,); and
(1.3) B is SDF (strongly distribution-free), I.E., P{B|J,} = P{B|J} for
J in Q(Hou H;) and for all g in G.
(2) If Q(Hou H,) is chosen to be appropriately complete, then one finds
(2.1) if A is SDF, A is equivalent to a set invariant under G.
The sets invariant under @ are then referred to as ‘“the rank sets.”

For the bivariate symmetry problem both an (X, Y) and a (W, V) sample
space have been considered and so there are in some sense two classes of candi-
dates for ‘“the rank sets.”

Let B(s,v) = {v(s(z1, 1)) < -+ < v(s(xs, ya))} for each continuous real-
valued function s on R, . Then the “most natural” sets to consider are (for each v
inS,):

B(z;v) = {v(z) < -+ < v(za)}; B(y;v) = {v(y) < -+ < v(yn)};
B(w;y) = {y(wn) < -+ < y(wa)};  B;v) = {y(m) < -+ < y(a)}.

However, under H, the V-distribution is symmetric about zero, and one will
wish to consider

I

B(lpl;v) = {v(l]) < -+ < ()}

Further, let m: = min (z:, ¥:), M = max (z;, y:) and & = e(y: — z:) = e(vs),
where ¢(v) = 1if v = 0, and 0 otherwise. These lead to sets of the form

B(m;v) = {y(m) < -+ < v(m)};
B(m;v) = {y(M) < -+ < v(7a)}
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and
Ble/, &) =fa=¢, ", & =26}
The pertinent groups are

Gz*(2n) = {g' g(rl y T 7’27,,) = [g(rl); ) g(rzn)]};

where § is a 1-1 monotone increasing continuous transformation of the realline
R; onto Ry, to be considered on the (X, Y) sample space as well as the (W, V)
sample space; and [see Lehmann (1959), p. 234].

G2*(n) X H2*(n) {(g; ﬁ). (g; ﬁ)(wl y s Way U1, c 0, vn)
= [w), -+, §wa); h(v1), -+, h(va)]},

where ¢ is as above and } is a monotone increasing continuous odd transformation
of R; onto R, , to be considered on the (W, V') sample space alone.
From elementary considerations the similarity results below follow.
Lemma 5.1.
(i) Each B(z;7), B(y, v), B(w;v), B(v; 7v), B(Ivl, ), B(m;v) and B(m; )
is simalar of size (n!)™" Wrt Q(H,).
(ii) Each B(e', -+ , € ) 18 similar of size 27",
(iii) Each B(e', --+, & )B(s; v) for s = m, @, |v| and w, is similar of size
(n))727" = K, .
(iv) Further, if S is an arbitrary continuous real-valued function on the plane
R. , each of the sets B(s; ) is similar of size (n!)™* -
For the groups the following results are valid.
LeMMmA 5.2.
(i) Neither G2*(2n) nor Go*(n) x Hy*(n) generates Q(H,) or its subfamily
with strictly monotone marginals;
(ii) the sets in Lemma 5.1 (i) except those involving B(|v|; v) are invariant
under G2*(2n);
(iii) the B(e', -+ , ') are invariant under G*(2n) on the (X, Y) space;
(iv) the B(|v], v) and B(e', -+ , &) are invariant under Gy*(n) x Hy*(n)
on the (W, V') space; and
(V) intersections are tnvariant if their factors are.
That the “2-sample” ranks sets in the (X, Y')-space are not similar is seen from
Exampire 5.1. Let H (21, 41, 22, 42) = s + 2y’ ][z2ye + 22°y2] on the unit
hypercube in Rs. Then {z;1 < 11 < 2 < 12} and its 7 images under S’ have prob-
ability 2 Whlle for {x1 <z < 41 < Yo} and {21 < yz < 22 < y1} the prob-
abilities are +2% and 1o, respectively.
The authors were unable (see OPEN PROBLEMS) to find a group G which
generates Q(H,) (or some dense subfamily), Hence no characterization of rank
sets is possible here. However, one can consider several rank statistics.

6. Rank tests.
(1) Sign test. The simplest rank statistic for the bivariate symmetry hypothe-

]
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sis is:
S = D le(ys — i) = D1 e(vi).

Under Hy, S, has a binomial distribution with parameters n and %. However,
it is clear that for any non-symmetric distribution with P{Y = X} = %, or
Median (V) = 0, the power of any test based solely on S, is equal to its size.

(2) Two-sample procedure. Lehmann (1959), p. 234, and several other authors
suggest tests which are based only on the v; = y; — z; in the following manner.
If S, =k let {Vi,---, ¥/} = {|Vi: Vi = 0} and {Xy, -+, Xna} =
{|Vi: Vi < 0}. Then apply any 2-sample DF test to the resulting two samples.
For example the Mann-Whitney-Wilcoxon statistic becomes = R(|vi|)e(vs),
where R(|v:|) is the rank of |v:] among |v|, |va], -« - , |val-

One sees immediately that such tests have power equal to size for alternatives
with the V-marginal symmetric about zero. Further, there is some difficulty in
applying the test if S, is near 0 or n. For this latter reason, one introduces the
modification below.

(8) Modified two-sample procedure. Let D(r, m) be a 2-sample DF statistic
for sample sizes r, and m, respectively; C(e, r, m) be a critical region of size
related to « for each a, r and m; and k1 = ki(a, n), k2(a, n) and {C(e, r, m)} be
chosen such that

= P(S, < In} + 8, > kn}
+ >k, P(S, = r}P{D(r,n — r) eC(a, r, n — 7)}
(D27 4 ren ()27
+ Xk, (M2"P{D(r,n — 1) eCla, r,n — 1)}
Then let
Y() =1 if Sp <k or >k
=1 if k=8 =k and D(S.,n— 8,)eC(a,S,,n — 8,)
= 0 otherwise.

This procedure eliminates the second difficulty above, but the power is still «
when the V-marginal is symmetric about zero, i.e., when one has univariate
symmetry.

From Section 3 it is clear that univariate and bivariate symmetry are not
equivalent. It is therefore desirable to bring into the test procedure some de-
pendence on W.

(4) A chi-square procedure. Let — oo = wy < wy’ < wy’ < - < wy = + o be
arbltrary pomts on the w-axis; let T ") = {e ('w] — 1) — e(w,_l — t)}; and

;= Plwia < w < w/}. Then ni = > T (W )e(V;) is the number of
sample points (W, V;) with wia < Wi £ w; and V; g 0 and n” =
DT/ (W1 — e(V3)] is analogously interpreted. Under Hy , n; has a binomial
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distribution with parameters » and %p; . Therefore, the statistic
25 (= 3np) ()T + 205 (0" — npy) ()

is DF, and has as asymptotic null distribution a chi-square distribution with
2k — 1 degrees of freedom.

Unfortunately, the {p;} will, in general, be unknown. Further, an arbitrary
choice of {w;'} and estimation of the probabilities may lead to a poor approxi-
mation of the asymptotic distribution, due to small E(n,). An alternative pro-
cedure is to choose the {w;} as appropriate order statistics of the W’s.

(5) A chi-square procedure based on_order statistics. Let pi, p2, -+, i be
probabilities which sum to one: P; = D ip,; —o = W(0), W), -+, W(n),
W(n + 1) = « be the order statistics of the W-sample; 7;(¢) = {e(W(Pm) — t)
— (W(Pj_m) — t)};and n; = 2 ie1 T;5(W:)e(V.:). Then one has

Lemma 6.1. Under Hy and conditionally given W (Pm), W (Pan), - -+ , W(Pyn),
the ny, -+, my are independent and binomially distributed with parameters
np1, NPz, * -+ , NPk , respectively, and 5.

Therefore, for the statistic S, = 4 Y+ (n; — inp;)*(np;) ™" it is immediate
that

THEOREM 6.1.

(i) Si' s a DF (“rank”) statistic;
(i) any test based solely on Si' has power equal to size for all alternatives with
the property P{V = 0|w} = % for all w; and

(iii) under Ho, Si’ has asymptotically a chi-square distribution with k degrees of
freedom.

In order to rectify the situation in Theorem 5.1 (ii), one first thinks of dividing
the V-axis as was initially done with the W-axis. A personal discussion with H.
Rubin resulted in the consideration of V order statistics in the manner to be
described below.

(6) A modified chi-square procedure. In addition to the py, - - - , px , one selects
{u, -+ @mas " Qu, -, Gmyi} With the property that > 1 g = 1 for
j=1,2,---,k Nowlet Qi; = D ¥ 1, let the collection

{V:i:r = 1,2, cte 1npi}
represent the collection,

{lV,I W(P,-_ln) < Wi < W(P,n)},

the jth subsample; V;'(Q:;Pm) be the (Q:;Pn)th order statistic of this latter jth
subsample for all j. Further, let

8ii(s) = {elV/(QiPm) — s] — [V, (Qir,iPm) — sl}.
Then
i = Dt Ti(W)Ss(|Vi)e( V)

is the number of sample points whose W-values lie in [V, (Q,1.;Pm),
4
Vi (QniPm)].
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Analogous to Lemma 6.1 one has

Levma 6.2. Under Hy and conditionally given W (Pyn), ---, W(P;on) and
{VJ',(QiJ'an):i =12--,m—17=12--- ) e},

(1) each n.; is binomially distributed with parameters q.;pm and %; and

(i) the {npjir = 1,2, -+ ,m;,j =1,2, -+, k} are independent.

Now let Sy’ = 42 54 > ™ (e — qupm2 ) [npigi]”", the “natural chi-
square’ statistics for this partition of the plane. It now follows that

THEOREM 6.2.

(i) 8 is a DF (“rank”) statistic, and

(i) wnder Hy, S’ has asymptotically a chi-square distribution with D5 m;
degrees of freedom.

(ili) Further for an arbitrary specified alternative with the P{V = 0 | w} = }
for all w, there exist {p;} and {q:;} such that Sy’ has asymptotic power greater tham its
size.

- Of course, the number of possible “rank” procedures is unlimited. However,
attention will now be given to constructing the class of all DF statistics.

7. The family of all DF statistics. In order to characterize the class of all similar
test functions, one proceeds as in Bell (1967), and finds
THEOREM 7.1.

JYdF™ = a forall F™ in Q(H,)iff D se ¢(5(2)) = aK,

for a.a.z, where K, = (n!)(2").

This theorem characterizes the class of all DF test functions and from this
theorem one derives immediately the fundamental result concerning similar sets
(analogous to that of Bell and Doksum (1967)).

COROLLARY 7.1.

(i) If A s similar wrt Q(H,), then P(A) is one of the values K, 'k for
k=012 ---,K, = (n))(2").
(ii) The following conditions are equivalent:
(a) A s similar of size o;
(b) there exists a B-Pitman function t such that A = {R(t) < aK.,}; and
(e) A contains a proportion of a of a.e. orbit.

(iii) If one replaces “similar” by “NS similar’’; “ B-Pitman” by “BNS-Pitman”
and “(n1)(2™) by “(2")7; “¢” by “£™7; and “RB” by “R*”, then (i) is valid, and
(ii) (a) and (ii) (b) are equivalent.

One notes that the sets {41, ---, Ax,} constitute an (essentially) maximal
similar partition of Rs, , if A; = {R(t) = ¢} and K, = (n!)(2"). This is so in the
sense that none of these contains a proper similar subset of smaller probability
and the complement of their union is a null set.

The characterization of the family of all non-randomized DF statistics follows
immediately.

THEOREM 7.2.

(i) If T is DF [NS and DF] wrt Q(Ho), then T has a discrete null hypothesis
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distribution with probabilities which are integral multiples of (n!) 727" = K, '[27"].

(ii) T 7s DF [NS and DF] wrt Q(H,) if there exists a B-Pitman function
t(BNS-Pitman function t*] and o measurable function U,[U.*] such that
T = U:{R(1)}[= V" (R*(£)]].

(iii) For each discrete distribution Fo with probabilities which are iniegral
multiples of (n!)7'27"[27"], there exists a DF [NS and DF] statistic with null dis-
tribution Fy .

Now one turns to the “best” DF test for a simple alternative.

8. Optimal tests and alternatives. For specific simple alternatives one can
obtain the (most powerful) MPDF test by simply applying the Neyman-Pear-
son Lemma to each orbst. This is what Lehmann and Stein (1949) and Lehmann
(1959), p. 185 did in obtaining the MP permutation tests for several hypothe-
ses. However, now it is known (Theorem 6.2) that all DF statistics are functions
of permutation statistics. Hence one has

TaEOREM 8.1. The MPDF level a test of Ho against simple H, is of the form

Y(z) =1 if R[t(2)] >k
N if R[t(2)] = &
=0 if Rt@)]<Ek

where t is a B-Pitman function whose ordering of the points on the orbits is con-
sistent with that of Ly , the joint density of Z under Hy .
[One should note here that if the sample is non-random in the sense of non-
identical marginals or dependence, but L, is invariant under S,’, then the power
of the MPDF test is . See Bell and Donoghue (1968)].

ExampiE 8.1. For the general bivariate normal distribution it is easy to see that
a MPDF test is based on the NS Pitman function

t(z) = (of — )2 (m — y3) (@i + y)}/ (o1 + 02" + 201000)]
+ {1 — w) (o1 + 05> — 209000)

— (o8 — 02") (i1 + m2) (01’ + 02" + 20000) Hn(z — 7).
When o1 = o2 it is clear that {(z) reduces to £ — § or equivalently 5. However for
arbitrary o, and o, , note that the NS Pitman function depends upon V and W.

Exampre 8.2. For the case where X and Y are independent with unequal
marginals, consider the pdf 2(z, y) = Mexp (—z — M\y). From Theorem 8.1 it is
immediate that #; = [sgn (1 — A\)](2_ z:). One notes here as in the preceding
example that ¢; is a B-NS Pitman function.

One notices that in both examples above the MPDF test depends on the param-
eters as well as the form of the distribution of the simple alternatives. In order to
obtain “optimal” tests which do not depend on 6, one introduces the concept of
L (locally) MPDF tests. (This parallels the development in Bell and Doksum
(1967)).-
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To this end one needs the following notation:

(a) A, an interval containing O;

(b) {Q(8, -, -):0 ¢ A}, a class of absolutely continuous bivariate distributions
with

(1) Q(0;z,v) = Q(0; y, z) for all z and y; and
(ii) regularity conditions given below in terms of the power function

(¢) L(6;2) = [1:q(z:, y:), where g is the density of Q;

(d) B(y¢; ), the power of the test ¢ against alternative Fy ; and

(e) B (¢; ), the rth derivative wrt § of B(¢; 6).

DEeriNITION 8.1. A level a test ¢o is LMP for testing § = 0 vs. 8 > 0 if, given
any other level a test ¥; there exists A(y1), such that 8(¢o; ) = B(Y1; 0) for all 6
with 0 < 6 < A(%1).

It follows, e.g. from the proof of Theorem 4.1 of Bell and Doksum (1967), that

TueoreM 8.2. Let there exist a > 0 such that for all 6 in (—a, a), all Z in R, and
all level o DF tests

(i) L(6;2) exists and is continuous, and
(i) B (y; 0) ewists, is continuous and can be obtained by differentiating inside
the integral szgn

B(w;0) = [ {122 v ($)IIL(8; ¥ ()12 oy L(6; v(s))] 7} AP (s)

where S 1s the vector (min (X;, Y;); max (X, Y1); min (X;, Y,); max (Xz, Y2);
--+,max (X, , Y,); and

(iii) 7 = 1 be the smallest integer for which L (0; z) is not invariant under S,'.

Then, the LMPDF level o test against the family of alternatives {Q(6; -, -):6 > 0}
is of the form of Theorem 8.1 with t(z) = L™ (0;2).

Of interest at this point are the families of alternatives wrt which a given DF
test is MPDF and LMPDF.

THEOREM 8.3. Let 8 = 0y index a family of distributions with densities
q(6; z, y) exp fa(0)i(x, y) + b(8) + S(x, y, 0)}, with a (8) > 0. Then against
this family of alternatives the tests based on R(i(z)); where t(z) = > v U(zi, ys)
are

(i) MPDF 4f D7~ S(:, yi, ) is invariant under 8'; and are

(i) LMPDF 4f a(6) = 0 and Qi< S(zi, yi, 8) = Si(z, 8) + Sa(z, 6) where
Si(z, 0) is tnvariant under 8’ and S:(z, 8) = o(a(8)).

Unfortunately, the preceding theorem does not give the largest families wrt
which R(t) is MPDF and LMPDF. This and other open problems are mentioned
in the next section.

9. Open problems. There are, of course, many open problems related to the
symmetry hypothesis. The authors have chosen to state several problems which
are more or less closely related to the development above.

(A) Rank sets. Which are the ‘“‘natural” rank sets for the symmetry problem?
Several families of sets are discussed in Section 5 but none seems more desirable
than the others. Does there exist a MP rank test in some reasonable sense?
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(B) Group generating Q(H,). Closely related ot question (a) is: Which group
G of transformations on R,, generates Q(H,) or an appropriately dense subfamily
thereof? H. Rubin conjectured that in general there is difficulty in finding a
transformation which is invertible and which can transform the distribution.

Hy(z,y) = ${F(2)F(y) + G(2)G(y)} into
Hy(z, y) = 3{F(2)G(y) + F(y)G(y)}.

(C) All randomized tests. Theorem 6.1 gives all randomized test functions.
Can all randomized test functions be represented in terms of randomized sta-
tistics?

(D) Optimality for large families of alternatives. Can power bounds, as in
Chapman (1958) or Bell, Moser and Thompson (1966) be found? Are there
minimax tests in the sense of Bell and Doksum (1967) and Doksum (1966)
available? What is known about ARE’s? Very few power results are available
for finite sample size.

(E) Koopman-Pitman-type theory. What is the largest family wrt which a
given DF statistic is MPDF? LMPDEF? In Section 8 the classical Koopman-Pit-
man development is paralleled, but use has not been made, e.g., of all monotone
functions of the statistic. Also, one might consider classes of alternatives for
non-random samples, e.g. as in Bell and Donoghue (1968).
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