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ON SERIAL CORRELATION

By S. James Press
University of Chicago
1. Introduction and summary. Define
(1.1) P=U/V = 2 2 \al/ D iaxd, 1smzsm,

where the z,’s are independent and identically distributed as N (0, 1), and
0 < M=M= - = M\ .Wewil give various representations for the distri-
bution of P, and show how a special case of this distribution is useful for testing
for correlation in a time series. We will also consider independence of the errors
in the normal regression problem. :

Let n be the number of observations, and % the number of coefficient param-
eters in a univariate linear regression model. Take r = n — kand m = r — 1.
Suppose the z.’s are the linear functions of the observations of the dependent
variable obtained by a “Theil transformation” (see Theil [15]). It will be shown
in Section 2 that under these conditions, P is an appropriate test statistic for
independence.

In Section 3, two different characteristic function representations are de-
veloped for P; one involves an infinite series of complex valued gamma func-
tions, while the other involves a doubly infinite series of real valued gamma
functions.

Section 4 discusses the fact that for r = m + 1, P is distributed as a linear
combination of correlated beta variates. An appropriate beta distribution ap-
proximation is given for comparison.

A numerical tabulation of the distribution of P for the case of r = m 4 1
is in preparation. The cdf. of P is found by numerically inverting the character-
istic function of a related linear combination of central chi-square variates.

2. Testing for serial correlation.

2.1 History of the problem. Analysis of the problem associated with serial
correlation has had a long history. For this reason it is appropriate at this point
to review briefly some of the efforts which have preceded this one.

The difficulties (such as inefficient estimators) which can arise as a result of
the presence of serial correlation in a problem were considered at least as early
as 1921 by Yule [21], and more recently (1949) by Cochrane and Orcutt [5].
Proposals for handling the testing problem really began with a series of papers
involving John von Neumann. The series began with a preliminary study in-
volving the need for the work, and examination of moments of an appropriate
test statistic by von Neumann, Kent, Bellinson, and Hart [16] in 1941. That
work was immediately followed by development of appropriate distribution
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theory in von Neumann [17], 1941; and von Neumann [18], 1942. Finally, in
von Neumann and Hart [19], 1942, the pertinent distribution (discussed below)
was tabulated.

Let w = (w1, :-+, w,) be a vector of n observations from some normal
process. Let

W o=n" D w, s =n" 270 (wi — W)
denote the sample mean and variance, respectively. Consider the problem of
testing the hypothesis:

H: all wy’s are mutually independent and homoscedastic, vs. the alternative,
A: the covariance matrix of w is arbitrary (nonsecalar).

These are the only hypotheses considered throughout the present paper. To
test H vs. A, the work of von Neumann suggests use of the statistic
@z = 2217 (win — w))"/ 208 (wi — 0’

where the subscript of @ denotes the number of degrees of freedom of the de-
nominator quadratic form. The rationale is that E(Q.—1) = 2(1 — n™") under
H (or about 2 in large samples) and E(Q,—1) can vary between about 0 and
2, or between 2 and 4, under A, depending upon the actual relationship among
the wy’s. Therefore, an observed value of Q,—; close to 2 militates in favor of H.
Von Neumann derived an expression for the (3(n — 1) — 1) derivative of the
density of @,—1, under H, in the case of n odd, and developed integral rela-
tionships for expressing the (3(n — 1) — 1) derivative, for n even, in terms
of the results for n odd.

Koopmans [9], 1942, considered a related problem and found the density of
Qn—1 in explicit form in terms of an integral.

R. L. Anderson [1], 1942, in his thesis, treated the serial correlation problem
for the special case in which the covariance matrix is circular, and R. L. Ander-
son and T. W. Anderson, in 1950 [2], showed how the distribution of the sample
circular serial correlation coefficient can be used in certain types of regression
problems.

Dixon [6] took up R. L. Anderson’s problem in 1944 and developed the moments
of the circular serial correlation coefficient (in addition to moments of related
serial correlation statistics).

T. W. Anderson [3], 1948, examined the power of tests based on the ratio of
quadratic forms in normal variates against certain alternatives. He showed,
for example, that no test is uniformly most powerful against the alternative that
the errors follow a simple first order autoregressive scheme. ,

In 1940, Mauchly [10] considered the same problem when repeated observa-
tions are available (which is not usually the case in time series analysis).

In 1967, Bloch and Watson [4] studied the posterior distribution of the cell
probabilities in a multinomial distribution. It will be seen in Section 4 that the
distribution of a linear combination of the cell probabilities is related to that of
P, defined in (1.1).
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Moran [11], 1950, considered the special case of serial correlation in a regression
on a single independent variable.

Durbin and Watson in 1950 and 1951 [7], [8], reexamined the serial correla-
tion problem specifically for the case of multiple regression. They treated the
statistic (1950), p. 424.

(2.1) Qn = 277 (wins — wi)*/ 207wl

where now the w;’s are the residuals in a regression (@, is reduced to our canonical
form in Section 2.3). Although they were unable to find exact significance levels
(the principal problem being that the usual residuals are correlated regardless
of whether or not the disturbances in the regression are correlated), they did
find and tabulate bounds for the significance levels which depend upon the
sample size and the number of independent variables in the regression. These
results do not yield positive results in all cases; i.e., sometimes the user of the
test is left in doubt as to whether or not to accept H.

In 1961, Theil and Nagar [14] showed that under certain conditions the
Durbin-Watson procedure could be simplified. However, the problem of treat-
ing the general situation unambiguously remained unsolved.

In 1965, Theil [15] provided the building blocks for another approach towards
resolution of the fundamental difficulty in testing for serial correlation in regres-
sion problems, and it was this work which inspired the present investigation.
The relationship between these earlier efforts and the work of Theil is briefly
summarized below.

2.2 Testing for serial correlation in regression. Let

y=XB+u

denote the model equation for a univariate multiple regression problem involving
an n X 1 vector of dependent variables y, a non-stochastic n X % design matrix
X, ak X 1 vector of parameters 8, and an n X 1 vector of disturbances or errors
u. For inferences about B, it is usually assumed that £(u) = N(0, ¢°I) for I the
identity matrix. Under these conditions it follows that if § is the least squares
estimator, and if

4=y — XB
is the vector of residuals,
E(d) = &M,
where M = I — X(X'X)™X’. Hence the elements of % are generally correlated
(even if E(uu') = o’I).
To eliminate the correlation under H, and thereby simplify the problem of
testing for serial correlation, Theil [15] introduced the (n — k) X 1 vector

x = A*y (see [15] for the computation of 4*), which approximates the last
(n — k) elements of w, and under H has the properties:

E(z) =0, E(zz') = JI.
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Use of the statistic @, , defined in (2.1), with n replaced by (n — k), will
yield a test of H vs. A for the quantities =, -+, 2,—x . However, we were
originally interested in testing H vs. A for the regression disturbances. For-
tunately for n large, and much larger than k, this test is approximately a test
of H (sphericity) vs. A for the regression errors, because then the x vector
approximates the last (n — k) elements of w. However, even for small n, if
the y’s are independent, so are the z;’s. Hence, if the sphericity test for the
z,’s requires rejection of this hypothesis, the hypothesis of sphericity for the
errors, u; , must also be rejected.

2.3 Reduction to canonical form. The @, statistic defined in (2.1) may be
placed in the canonical form given in (1.1). Define

‘e Z?:ll (Wiy1 — wi)2,
U

and assume that the w’s are independent N (0, ¢*). For example, if the w’s are
the result of a Theil transformation on the residuals in a regression, the w;’s will
satisfy this assumption.

Letw = (wi, -+, w), ¥ = (Y1, +** » Yn1), and
—1 1
= o - o0 ),G:(n—1) Xn,
—1 1

where all elements not on the two diagonals depicted are zeros (primes denote
transpose). Since U* = (Gw)'(Gw), if y = Gw, U* = 'y = w'G'Gw = w'Buw,
where B = G'G. Note that |[B| = 0 and rank (B) = n — 1. The square matrix
B:n X nis given by

0 . -1

so that all elements off the main, sub, and super diagonals are zeros. It is well
known [17] that the ordered, nonzero, eigenvalues of B are given by

(2.2) M = 2(1 — cos wkn™Y), k=1,---,n — 1.

Note that the A\;’s are all distinct. Since B is symmetric there exists an orthogonal
matrix T' for which

B=1D0I, TT =1 D= diag(\, M\, ***, Ay, 0).
Therefore, if ' = (z1, -+, %), and z = T'w,
U* = w'Bw = £Dyx = 27" \ad,

where £(z) = N0, ¢*I). If V¥ = > tw’ = ww = 2’z = D2 "2/ it is



192 S. JAMES PRESS

clear that U* = U, V* = V, and
Q.= U"V*=U/V = P.

Moreover, since ¢° may be taken equal to unity without loss of generality (be-
cause P is independent of the units of the z,’s), @, has the canonical form (1.1)
form = n — 1, r = n. Thus, if in a regression, the y,’s are modified according
to a Theil transformation, and the statistic @,_; is computed, its significance can
be tested (test of H vs. 4) by using the distribution of Pform +1=r=n — [k,
with the Ay’s defined by (2.2). Note that in this case (and for all cases in which
m < r),

0<P < Ap.

For m = r, however, \; < P < \,, . Of course, for cases in which the latent roots
are not distinct, the bounds on these inequalities may be achieved.

3. Characteristic function representations for P. In this section we consider
the \/’s as ordered and positive, but otherwise arbitrary. We adopt the canonical
form given in (1.1) and find two distinet characteristic function representations
for the distribution of P.

First note that V is a chi-square variate with » degrees of freedom (d.f.);
i, £(V) = x’(r). Then note that U is a linear combination of chi-square
variates each of which has one d.f.

Define

ak=)\k+1)\1_l, k= 1, e, M — 1,
SO that ay g 1. Then, if U1 = U/)\l ,

2 2 2
Ur=2" 4+ a4+ -+ 4+ s -

Let f(U;) denote the density of U; and let fi.(¢) denote the density of a chi-
square variate with k£ d.f. Then [13], we can write the density of U; as a linear
combination of chi-square densities:

3.1 f(U) = 2% qifmeni(UD),

where the ¢.’s are constants depending upon m and the As. (In the special case
in which the \;’s are given by (2.2), the A\;’s are in turn defined in terms of n.)
The ¢;’s are determined from the identity in w:

(3.2) Zizo kak = 1;:11 la; — (ai - l)w]_éy lwl =1L

An explicit representation (recursive) for the ¢;’s, useful for computational
purposes, was given in [13] as follows. Define

gii=a " BHG+1) - G+ - DEN™A = e,

fore =1,---,m — 1,7 = 0,1 --- . Then the ¢;’s may be computed stepwise
from the relations
(m—: ) j s~
=" " = DielgS ad, =2 ,m- 1,

s
and ¢;” = ¢u,;. From (3.2) it is not hard to see that ¢; = 0, and D0 q = L
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3.1 Single infinite series representation. It is well known in the relation P = U/V
that P and V are statistically independent (see [12], and [17]). The proof follows
immediately after conversion of the z.’s in P to polar coordinates, noting that P
depends only upon the angles (and not the modulus), V depends upon the mod-
ulus only, and that the modulus and angles are independent.

Let P1=U1/V, l71=lD.U1, 17=an, and p1=lnP1.
Then,

(3.3) 171 = p1+ V,

where P; and V are independent. If we denote the characteristic function of a
random variable W by ¢w(t) = E exp (W), it follows that ¢5,(¢) = ¢5,(t)-
$7 (1), or

34) o,(8) = 65,(0)/d3(0).

The characteristic function of V is evaluated simply in terms of the density
of V.

¢7(t) = E(e™) = [§ e Tee VIV,
where ¢ = 27T (47). Simplification gives
(3.5) $7(t) = ¢(2)"T(Gr + 1t).
The characteristic function of U; is evaluated by using (3.1). Thus,
¢,(t) = [7 e 25 qif mans(UL) AU
Since we may interchange order of summation and integration [13],
¢5,(t) = 2imcg; [o €U gy
where ¢; = 278" (1(m 4+ 25)). Simplifying,
(3.6) $5,(t) = 250 ¢,0:(2)* ™ TID (R (m + 25) + 4t).
Substituting (3.5) and (3.6) into (3.4) and combining terms gives
(37) ¢5,0) = [LGN/TGt 4+ )] 27Tl + 3(m + 2)Y/TGG + m).
Let F(x) denote the cdf of P. Then, since
(38) P=U/V = UMV = NP1 = MY,
F(z) =P (P £ a} = Pne™ = 2} = PP, = In o\

Hence, to establish the percentage points of F(z), it is sufficient to evaluate the
cdf of Py .

3.2. Doubly infinite series representation. A doubly infinite series representa-
tion for the characteristic function of P may be obtained by using the moments
of the distribution.

From the independence of P and V (see beginning of Section 3.1), the sth
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moment of P is given by
(3.9) p. = E(P*) = E(U")/E(V*®).
Since U = U\, from (3.1),
EU) =N [3 D im0 g UL - c; U gy,
Since the interchange of summation and integration is justified, we find
(3.10) E(U") = (2\)" i q,T(3(25 + m) + 8)[T(3(2) + m))]™
Since £(V) = »x’(r), the sth moment of V is given by

(3.11) E(V') = 2T(3(s + 1))/T(37).

Substitution of (3.10) and (3.11) into (3.9) gives for the sth moment of P,
(3.12) p. =N 2= i[CGr)/TGr + )IT(3(25 +m) + 8)/T(3(2) + m)],
fors =0,1,2---.

Next recall that P always lies in the finite range (0, A,), and it is sometimes
restricted even further to (A1, A»). Hence, the moments, p, , uniquely determine
the distribution of P.

Let ¢p(t) denote the characteristic function of P. We know in general that
if all the moments of P exist

(3.13) ér(t) = 14 2oy (i) (s)'ps -

Substitution of (3.12) gives the result

(8.14) ¢p(t) = 1 + 2omi D2oimo (iN)'GT(GrT(3(25 + m) + )
[sITGr + )T (F(25 + m)] ™.

This series representation may be used numerically by precomputing the
moments, p,, and then inverting the resulting function, (3.13).

4. Beta variate representations.

4.1 Ezact distribution. Bloch and Watson [4] studied the posterior distribution
of the cell probabilities in a multinomial distribution under uniform prior proba-
bilities. They noticed that an arbitrary linear combination of the cell probabilities
has a posterior distribution of the same form as that of P, defined in (1.1);
1.e., a linear combination of correlated beta variates.

In our notation, let zx = =/ St for k= 1,---, m, and define
2= (a1, ,2m), N = (M, -+, ), for the 2;’s defined in (1.1). It is well
known ([20], pp. 177-182) that the z,’s are identically distributed beta variates
with £ and im d.f., and that z follows a Dirichlet distribution with intraclass

covariance matrix

T = (0’1’]‘) =Var(z) = a'2 o s . P ’
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where ¢° = 2m(m + 1)*(m + 3)™, p = —m ™. The result is that
(4.1) &(P) = e(\2).

4.2. Approximate distribution. Since P is distributed as a linear combination
of beta variates it is natural to approximate its distribution by that of a single
beta variate. Such approximations have been considered by Theil and Nagar
[14], and Bloch and Watson [4]. Since the mean and variance of P are easily
found from (4.1) as

E(P) = 27 (n(m + 1), Var(P) = D7y 2o Nhjois

matching these moments to those of a beta variate on the same range as P gives
the approximate result

L(P) = \B(a, b),
where
a = [E(P)/MJ[(E(P)/Var(P))(An — E(P)) — 1],
b=1[1— E(P)/\I(E(P)/Var(P))(\n — E(P)) — 1)},
which is identical with the result given in [4].

Acknowledgment. I am grateful to Professor H. Theil for suggesting this
problem.
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