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ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES
WITH A GOAL!

By Wiriam D. SuDDERTH
University of California, Berkeley

1. Introduction. A gambler’s problem, as formulated by Dubins and Savage
in (1], consists of a set F' of fortunes, a bounded utility function % on F to the
real numbers, and, for each fin F, a set T'(f) of gambles (finitely additive prob-
ability measures defined on all subsets of F'). A strategy ¢ available in the gam-
bling house I' at the fortune f is a sequence oo, 01, - - - where oo £ T'(f) and, for
n = 1, o, is a gamble-valued function defined on F x F x --- x F(n-factors)
such that o.(fi, -+, fa) € T'(fa) for every partial history (fi, ---, f»). The
strategy ¢ may be regarded as a probability measure defined on the finitary
subsets of the infinite product H = F x F x --- and a.(f1, -+, fa), as the
conditional o-distribution of f.41 given (fi, ---, fa) (Section 2.8 of [1]). A
gambler with fortune f chooses an available strategy ¢ and a stop rule ¢ and
gets a return u(o, t), the expected value of u(f:) under ¢. By U(f) is denoted
the maximum of u(f) and the sup u(e, t) taken over all available ¢ and stop
rules ¢. Strauch has shown in [4] that if a gambling problem is assumed to have a
certain natural Borel measurability structure, then U is measurable with respect
to the completion of any Borel measure on the Borel subsets of F and there exist
good Borel measurable strategies (See also [5] and [6]).

If a gambler using the strategy o is not allowed to terminate play, he receives
u(e) = lim supe.o u(o, t). V(f) is the sup u(c) taken over all strategies o
available at f. If T' is leavable, that is, if the one-point gamble 4(f) is in I'(f)
for all f, then V = U ([1], Corollary 3.3.2, p. 42). If T has' the Borel measur-
ability structure assumed by Strauch and is not leavable, it is not known whether
V is absolutely measurable or if good measurable strategies exist.

In this note, I treat the special case in which the utility function w is the indi-
cator of a single fortune ¢ called the goal. It is seen that (o) may be interpreted
as the “o-probability of visiting ¢ infinitely often” and the questions above are
settled affirmatively.

Unless otherwise indicated, the terminology and notation of this note are
intended to have the same meaning as in [1].

2. Measurable strategies and probability measures on H. Assume F is a Borel
subset of a complete separable metric space and let ® denote the Borel subsets of
F. Let T be a gambling house defined on F such that every gamble available in
T is countably additive when restricted to ®. (Let P be the set of countably
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additive probability measures p on ® and let £ be the smallest o-field of subsets
of P which makes p — p(B) measurable for each B ¢ ®. If, in addition to the
assumptions above, the set {(f, v):v ¢ T(f)} is ® x X-measurable, then T
is called a measurable gambling house [4].)

In this setting a strategy o is said to be measurable if, for every integer n = 1,
on(f1, -+, fn) is a regular conditional probability on (F, ®) given (fi, - , fa).
Let u denote the probability measure induced by ¢ on the Borel subsets of H.
That is, the u-marginal distribution of fi is ¢¢ and the conditional u-distribution
of fayr given (fi, «--, fu) 18 an(fi, -+, fn). (Notice that notation has been
somewhat abused in the above discussion since gambles were tacitly identified
with their restrictions to the Borel sets of F.)

The next theorem and its corollary establish a relation between the measure
o defined on finitary sets and the measure u defined on Borel sets.

TaeoreM 1. Let o be a measurable strategy and let u be the measure induced by o
on the Borel subsets of H. Suppose A and B are subsets of H such that A s finitary,
B is Borel and A 2 B. Then ¢(A) = u(B). (If A C B, then ¢(A) = u(B).)

Proor. The proof is by induction on the structure of A (i.e. the structure of
1,4).

Suppose that A has structure at most 1. Then A = A; x F x F x --- where
Ay is a subset of F. Let m: H — F be the projection map of H onto its first coor-
dinate. Define B = 7(B) x F x F x --- . Then B is measurable with respect
to the completion of the Borel sets under u ([2], p. 391) and B € B C A. Since
B has structure 1 it is also finitary and p(B) £ u(B) = oo(v(B)) = o(B) £
a(A).

Now assume inductively that the theorem is proved for finitary sets with
structure less than o and suppose A has structure «. Let u[fi] denote the measure
induced on the Borel subsets of H by the conditional strategy o[fi]. If A”* and
B’* denote the fi-sections of A and B, then, by induction, u[fi](B*) = o[fi](4).
Also, uffi] is a version of the regular conditional distribution of u given fi . Hence,

w(B) = [ Wlfil(B™) doo(fi)
I olfi1(A™) doo(f1)
= og(A). 0

COROLLARY. If A is both finitary and Borel measurable, then ¢(A) = u(4).

A result similar to this corollary was proved by Raoult in [3] (Theorem 3.3).

Now suppose T is a measurable, gambling house with a goal (i.e. u = 1)
and let B, = [fy = ¢ i.0.] be the event that ¢ is visited infinitely often. Clearly,
B, is not finitary. Nevertheless, as the next theorem suggests, the gambler seeks
strategies which allow him to stay in B, .

TuEOREM 2. Let o and u be as in Theorem 1. Then u(s) = u(B,).

Proor. First we show u(c) = u(B,).

Let ¢ > 0. It suffices to find an integer N such that, for every stop rulet = N,
olfe = gl £ p(By) + e
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68 WILLIAM D. SUDDERTH

Let \ be an integer-valued function defined on H which indicates the last
time the gambler visits g. Specifically, let

Mf1, fa, -++) = largest k such that fx = g if (fi, fo, --) 2B,
= lif(fl’f27"°)8B0~

Choose N sothat yA = N — 1] > 1 — e
Suppose ¢t = N. Set C = {(f1, fo, +--):Tk = N 3f, = g}. Then [f: = g] C
C. So, by Theorem 1,

olfe = g] = n(C)
#(C|Bu(By) +w(C1BonN> N — 1u(B;n A > N — 1)
< w(By) + e

To prove the opposite inequality, let ¢ > 0 and let ¢ be an arbitrary stop rule.
It suffices to find a stop rule ¢ = ¢, such that o[f: = ¢] = u(B,) — e. For k =
1,2, -+, let sz(h) be the time of the kth visit to g along &, if ¢ is visited k-times,
and let si(h) = « otherwise. Then pufsy < © for k=1, 2,-..] = u(B,)
and there exist integers N with Ny < Niy1 and p(D) > u(B;) — ¢, where
D =1{s; £ Nyfork=1,2,--.]. Definety = sy A Ny and set t(h) = min {£(h):
te(h) Z to(h)}. Notice [fe=g] 2[fy, =g for k=1, 2,---] 2 D. So, by
Theorem 1, o[f: = g] = u(D). 0

3. An identity for gambling houses with a goal. In order to visit the goal in-
finitely often, a gambler must first reach the goal and then return infinitely often.
This simple fact suggests the following result.

TrEOREM 3. Let T be a gambling house with a goal g. Then, for every fortune f,

V() = TNV (g).

Proor. Define a (possibly incomplete) stop rule ¢, to be the first time the
gambler reaches g.

Let ¢ > 0. Choose a strategy ¢ at f and a stop rule ¢ so that o[f, = g] > U(f)
— e Then choose a strategy ¢ at g such that u(s’) > V(g) — e Let & be that
strategy which uses ¢ until time ¢, and then uses ¢’. (The strategy & is called the
composition of ¢ with ¢’ at time £, . See [1], p. 22 and [6], section 3.) Recall the

notation for partial histories p:(h) = (f1, +++, fiun). Then
V() =z u(a)
= fu(f‘f[pt,/\t]) do
2 1,20 u(slpy]) do

u(o’ )olt, < 1]
z (V(g) — (U{) — o).

Since e may be chosen arbitrarily small, one of the desired inequalities is proved.
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To prove the other inequality, let ¢ > 0 and choose & at f such that u(s) >
V(f) — e. The strategy ¢ may be chosen in such a manner that the conditional
strategies o[p:,] are a constant strategy o. (If & did not have this property,
we could choose an e-optimal strategy ¢ at g and let ¢ be the composition of &
with ¢ at time ¢, . That ¢ is almost as good a strategy as & can be seen directly
or by an application of Lemma 3.2 of [6].)

It now suffices to find a stop rule Z such that, for any stop rulet = f, u(a,t) <
V(9)U(f) + 2e. Choose a stop rule £ such that, fort = to,u(c’,t) < V(g) + e
Let a = sup 4{t, < {], where the supremum is taken over all stop rules ¢. Then
choose a stop rule ¢ such that &[t, < t'] > o — e. Now define

i(h) = ¢(h) if t,(h) > t'(h)
= t,(h) + to(fe,41, frp42, -+ ) if t,(h) < '(h),
where b = (fi,f2, ---).
If t = 7, then

(5, t) = [u,e0 (o, tlpe,)) do
< Juseru(e, tpe,)) do + ¢
(V(g) + €)alt, ] + «
(V(g) + U + e 0

4. Measurable houses with a goal. The results of this final section are that
for any measurable house with a goal, the function ¥ is measurable with respect
to the completion of any Borel measure and there exist ‘“‘good measurable strate-
gies.”

TaeoreEM 4. Let T' be a measurable house with a goal. Then V is absolutely
measurable.

Proor. The proof is immediate from Theorem 3 and Strauch’s result in [4]
that U is absolutely measurable. []

Asis pointed out in [5] and [6] there are no measurable strategies available in a
measurable house I' unless there is a measurable selection map «:F — P such
that a(f) € T(f) for all f. That is, there must be a regular conditional probabil-
ity distribution on F given F with the additional property of being ‘“available.”
If there is no such measurable selector, we might hope for good strategies which
are available with probability one. A strategy o is essentially available at f if
o€ I'(f) and on(f1, -+, fa) € T(fa) for all n along a set of histories with o-
probability one.

TraeoreEM 5. Let T be a measurable gambling house on F with a goal g and let
e > 0. For every f in F, there is a measurable strategy o essentially available at f
such that u(a) > V(f) — e. If T has a measurable selector a, then o can be chosen
to be available.

Proor. Consider a slightly modified gambling problem with fortunes F' =
Fu g’} where g 2 F. Set T'(f) = T'(f) for f¢ F and I'(¢g") = T'(g). Finally,
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70 WILLIAM D. SUDDERTH

let u' = 1y, . Clearly, V'(¢') = V'(y) = V(g). By Theorem 3, V(g) =
U'(¢")V(g). Hence, U'(¢') = 0 or 1. If U'(¢’) = 0, then V(g) = O and the
theorem is trivial. So assume U’(g’) = 1. Thus there are policies (o, t) available
at ¢’ in I with o[f; = g] arbitrarily near one. But these policies are also available
at g in T'. Moreover, by a remark in [6], ¢ and ¢ may be chosen to be measurable
and ¢ to be available at g until time ¢ (i.e. oo € T'(g) and aa(f1, - -+ , fa) € T(fn)
ift(f17 SRR "') <n)

Choose a sequence e, of positive numbers to satisfy [ 5= (1 — e) > 1 — e
Then choose a sequence of measurable policies (o4 , t.) S0 that o, is available at
g until time ¢, and o,[f;, = g] > 1 — €. . Again by [6], choose a measurable
policy (oo, %) such that oo is available at f until time & and oolf;, = ¢g] > U(f)
— €.

Now we can define the strategy ¢. Roughly, ¢ uses oo until time ¢ , then con-
ditionally uses o3 until time ¢, and so on. More precisely, define a sequence of stop
rules s, . Let so = to and sna(fr, = fou s fogr, o0) = 8a(f1, -+ +) + ta(fopa,
+++). Define ¢ to agree with go until time ¢ . Suppose o has been defined along
each history until time s, . If f,, = ¢, define o[p,,] to agree with ¢,41 until time
tot1 . If fo, # g and T has no measurable selector, let o[p.,] be an arbitrary meas-
urable family which is essentially available. If f;, = ¢ and T has a measurable
selector a, let o[p,,] be that family of strategies which constantly uses the gamble
a(f) whenever the current fortune is f.

Let u be the measure induced by ¢ on the Borel subsets of H. By Theorem 2,

u(o) = u(By)

= Ilv[fs,,, =g¢g,n=0,1, -]
z (U(f) — e)(1 —¢)
z (V(f) — e)(1 — ¢).

Since ¢ was arbitrary, the proof is complete. []
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