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THE SPEED OF MEAN GLIVENKO-CANTELLI CONVERGENCE
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Massachusetts Institute of Technology

Let (8, d) be a separable metric space. Let ®(,S) be the set of all Borel proba-
bility measures on S, andu ¢ ®(S). Let X; , X2, - -+, be independent S-valued
random variables with distribution u. For each x ¢ S let §, be the unit mass at z.
Let u, be the “empirical measure”

(8x, + -+ + 8x,)/n.

Then the Glivenko-Cantelli theorem states that with probability 1, u, — u
weak-star as n — o, i.e. for every bounded continuous real-valued function
fonS,

[ fdun— [ fdu.

(For a fixed f, this is the strong law of large numbers.) In this generality, the
Glivenko-Cantelli theorem apparently is due to Varadarajan [16].

Weak-star convergence in ®(S) is metrizable, by various metrics. In this
paper we consider two such metrics: that of Prokhorov [11], which we call p,
and the “BL* norm” metric 8 (see details in Section 2 below). 8 was apparently
first used by Fortet and Mourier [9], who proved 8(g, , p) — 0 almost surely.

If for some K < « and k > 2, S can be covered by at most K¢ * sets with
diameter =<2e¢ whenever 0 < e < 1, we prove in Section 3 below that for some
M < o, EB(jtn, 1) < Mn™"* for all n. In Section 4 we prove Ep(un , p) <
Mn7V®*P_ Moreover the covering may omit a set of u-measure e (for p) or
é/® (for B). These results are shown to be best possible by certain examples;
for 8, by Lebesgue measure on the unit cube in R%, k = d = 3; and for p, by the
d-fold product of Cantor measure spaces, k& = (d log 2)/log 3. However, for
other measures the convergence may be faster, especially for p.

It is worth noting that the above results are consistent with, but not related
by, the best possible general inequalities between small values of 8 and p, which
are of the form

co(p, »)* S Bn, ») = Cp(n, v)

for some constants ¢, C > 0 and all u, » ¢ ®(8) ([6], latter part of Section 2).
In Section 6 we briefly discuss the “classical’”’ case in which u is Lebesgue
measure on the unit interval [0, 1]. Here both E8(u, , ») and Ep(p, , u) approach
0 at the rate of n %, and this is connected to the central limit theorem. In higher
dimensions, there seems to be no such connection and the convergence is slower.
If & < 3, then for any fixed fe L*(S, u), [ fn®d(ua — ) — 0 in probability as
n — o, s0 our speed of convergence theorems do not seem to be connected to
convergence of a renormalized y, — p in law to any non-zero limit. We shall not
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SPEED OF MEAN GLIVENKO-CANTELLI CONVERGENCE 41

find here the rate of probability 1 convergence (analogous to the law of the
iterated logarithm).

A fundamental problem in statistics is, given X, ---, X, or an empirical
measure v, , t0 test the hypothesis that they arise from a given p, ie. p = ».
In principle, the results of this paper provide such tests. However, the metrics
o and B are not easily computed in practice (by any method known to me).
Another method is to decompose S into subsets S;, say m of them, of equal
w-measure 1/m, and compute S(n, m), defined as

22 | Cn — 1) (85)]-

Tt is easily shown (Proposition 3.1) that this has expectation less than (m/n)?,
and we prove in Section 5 that it is of this order of magnitude with probability
bounded away from O for n = m. These results are used to prove some of those
mentioned previously. The distribution of S(n, m) is independent of u.

If m is fixed and small and n sufficiently large, one can apply a x test, i.e.
consider

25 (un — 1) (8;)°

(ef. [13]). In other cases, perhaps the results of this paper will suggest other,
more suitable tests.

Given u. and », one may also wish to test the hypothesis that u = ». If S has
finite dimension & in our sense (e.g. if it is a compact set with interior in R*)
then one may apply our results to obtain tests involving 8(um , ») and p(um , ¥2),
but a priori we do not know what sets S; have equal u- or »-measure. In such
cases one may apply the Fisher permutation principle ([2], [14], [17]). We shall
further discuss this “two-sample’ problem in this paper.

2. Definitions and preliminaries. Given ¢ > 0 let N(S, ¢) be the minimal
number of sets (possibly + «) in a covering of S by sets of diameter at most 2e.
Then H(S, €), the e-entropy of S, is defined as log N (S, ¢) (Kolmogorov). We
define the entropic dimension of S by

kE(S) = lim sup. ;0 H(S, €)/log (1/¢).

Suppose u ¢ ®(S) and ¢, § > 0. Let N (g, ¢, §) be the minimal number of sets
of diameter <2¢ which cover S except for a set A with u(4) = 6 (cf. Posner et
al. [10]). Clearly N (u, ¢, 6) < N(S, ¢€). Let

N(p,€) = N(u, e,¢),  H(p, e) = log N(u, ¢),
k(u) = Lim supe ;o H(u, €)/log (1/¢).

Let BL(S, d) be the Banach space of all bounded Lipschitzian real-valued
functions f on S with the norm

Ifllzz = [Iflle + IIfllz
sup, [f(x)| + supy [f(y) — f(2)|/d(y, 2).

Ul
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Let ||all5. = sup {| [ fdal:||fllsz < 1}, and B(n, ») = ||u — »|32. Then 8 met-
rizes the weak-star topology on ®(S) [4].
Given F C S and ¢ > 0 let

F={zxeS:d(z,y) < ¢ forsome yekF}.
Then Prokhorov’s metric p is defined by
p(p, v) = inf{e > 0: u(F) £ v(F*) + ¢ for all closed F C S}
= inf {e > 0: »(F) =< u(F*) + ¢ forallclosed F C S}

where u, v € ®(S) ([11], [L5], and Proposition 1 of [6]). Here is a first simple result.

2.1. PropoSITION. Let u ¢ ®(S) and suppose for some ¢ > 0, N(u, €, 3) = ce®
for all small enough ¢ > 0. Then there is a v > 0 and an no such that if v € ®(S)
1s concentrated in n points (e.g. v is a value of pa), n = no, then

Br, v) Z yn "

Proor. Let F have n points, »(F) = 1. Let f(z) = min (1, d(z, y): y e F).
Then || f |5z < 2 and if welet n + 1 = ce *, then [ fd(u —v) > €/2forn large
enough, so

Bu, v) Z H(n + 1)/,

hence the result.
It is not hard to show that the hypothesis of 2.1 holds if p is any absolutely
continuous probability on k-dimensional Euclidean space R".

3. B-convergence. If T is a measurable subset of S, then Eun(T) = p(T) and
(un(T)) = (u(T) — ¥*(T))/n.Let Sj,j =1, - -+ , m, be disjoint measurable
sets with union 7. Summing over j and using the Schwartz inequality we get

3.1. PrROPOSITION. E 2; (un — w)(8)* = w(T) — 225 6°(8))/n < w(T)/n,
EXi | — w) (S| £ (mu(T)/n)’.

Note that if x is nonatomic one can make p(S;)/u(T) small for each j (m
large, u(T) > 0) and then > u*(S;)/u(T) is small.

3.2. THEOREM. Suppose that for some real number k > 2, there is a K <
such that

N(I‘; €, Gk/(k_z)) = Ke—k

whenever 0 < ¢ < 1. Then there isan M = M (k, K) < « such that EB(pa , u) =
Mn ™ for all n.

Proor. For each positive integer r, S is the disjoint union of measurable sets
S:i,j=0,---,m, where m, < K-3**? for j = 1 the diameter of S,; is at
most 377, and u(Sy) < 3FCHR/ED,

Given a positive integer n let e = n~
that 37 < e. Then 3° £ 3/e. Let s be the smallest integer such that 3™ < €
Then 38° < 3¢*™®* ands < ¢.

We define sets Avw,j,J = 1, -+, Me , inductively on u = 0, --- , ¢ — s,

% and let ¢ be the smallest integer such

(k—2) [k
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as follows. Let A;; = S;;. Given the A, ,,;, each one which is not included in
Si—u—1,0 intersects some S; 41,4, ¢ = 1, and we choose such a ¢ = ¢(t — u, 7).
Then we let

Ag_.u_l,z = U {At—u,j: q(t — U, ]) = Z}.
Then for each z, we have for diameters
diam (4 ;y_,.) < 2 max; diam(4.,,;) + 3“7

Thus by induction on %, the diameter of each A,; is at most 3™ and each 4, 4
is the disjoint union of those A,; which it intersects, r = s + 1, - - - , £. Also

UjArj C S0 ) UqA,-_l,q .
Let M, = X7 |(un — u)(4.5)|- Let fe BL(S, d), [fllaz < 1.

Foreachr = s, --- ,tandj = 1, --- , m, we choose if possible z,; £ 4,; and let
f(xrj) = frj. Thenforr =s+ 1, ---,¢,

[fri = fotiaern] < 377
whenever the left side is defined (i.e. 4,; & S,_1,0). Now
| [Fd(n — )| £ (a4 1) (Sw) + | 2274 S5, f(2) — fui + foi d(un — 1) ()]
S (w4 w)(Sw) + 87" + | 270 fei(un — 1) (44)]
< (un + 1) (S0 U Sia) + ¢
+ | 2205 2 iattn=a (Fir — frorg + fird) (un — ) (Ag)|
< (un + #) (S0 U 8ia0) + ¢ + 37'M,
120 fera(n — 1) (Al
Continuing inductively in this fashion from r = ¢ down to r = s we obtain
Blun, w) S e+ Mot 2ies {(sn + 1) (Sn0) + 37MJ.
Thus by Proposition 3.1
EB(un, 1) < €+ (my/n)t + Doi_, {2-37FCIGD _ glor gkt g/, yh
< e (K/n)H3He+ 4 o7[3t-D0tdr _ )/ (36D _ 1y
4 2.3 7HEADIGD iy gklGDy

Factsin the second paragraph of this proof and calculation yield EB(u, ,u) < Me
for some M < o« depending only on k and K, q.ed.

3.3 CoroLLARY. Let (S, d) be compact. Suppose for some k > 2 and K < «,
N(S, ¢) < Ke* whenever 0 < ¢ < 1. Then for any p ¢ ®(8), EB(un, n) =
M(k, K)n™ for all n.

3.4. ProposITION. Suppose S is d-dimensional Euclidean space R’ and
[ |z|* du(z) < o where pe ®(8) and « = dk/(k — d)(k — 2) > 0,d < k.
Then the hypothesis of Theorem 3.2 holds for u and k.



44 R. M. DUDLEY

Proor. Let N = [ [2|* du(x), 0 < ¢ = 1, and B, = {x:]z] £ 7}, |2| =
(z® 4+ -+ + ). Choose r so that

#(Br/2) =1- ek/(k~2) < I‘(Br)

(we may choose the origin so that u(B,) = 0). Then ¢/*?(r/2)* < N, and for
somec < »,r < ce * P for all e. Let ¢ be the (Lebesgue) volume of B; in R®.
We choose a maximal set @ of ¢ points of B, with |z — y| = € for z # y in Q.
Then

gea(e/2) < ca(r + €)%, ¢ = [2(r + €)/d".
B, c U,.q (z + B.), so
Ng, ¢ &%) < g < 221 4 reh)? < 2%(ce™ 4+ 1)? = K™

for some K = K(a, N,d) < «, g.e.d.

It is easy to show that if u is a Gaussian probability on R?, then the hypothesis
of 3.2 holds for any k& > max (d, 2).

Suppose for some K < «, N(S, ¢) < K¢ whenever 0 < ¢ < 1,e.g. Sisa
bounded subset of R®. Then we can apply the method of proof of Theorem 3.2,
letting each S, be empty, eliminating the part of the proof concerning s, and
inducting from r = ¢ down to r = 1. We obtain

Blun, ) < e+ My + D ia37M,,
EB(iin, ) £ e+ ni(ms + 27K%)
< cen (14 logn) forall n,

where ¢ = ¢(m; , K) < .1 do not know whether the logarithmic factor can be
improved or removed.

4. p-convergence. We bound the size of p(un, u) by relating it to sums
i l(un — 1) (8S;)]| for suitable sets S;. We first prove a positive result, then
give examples where it is best possible depending on Theorem 5.1 below.

4.1. THEOREM. For any ¢ > 0,

Ep(un , u) < nH®HH

for n large enough, where k = k(n) as defined in Section 2.

Proor. Given 7 let § = n~ Y * ™9 Then for n large enough, § is the union of
at most 8¢ sets A ; of diameter at most 26 and a set Ao with u(4o) < 8. Now if
F is any measurable set, then

in(F) = p(Ujz{d;A; NF 7= @) 4 64 2isol(un — 1) (4))]
S u(F?) + 64 2 [ — w)(4)],
50 p(un’, 1) < 26 + 2 |(#a — 1)(4;)|. Hence by Proposition 3.1, for n large
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enough
Ep(pn ,p) < 25 + 627 < 35,

The factor of 3 is irrelevant as ¢ | 0, so the proof is complete.

A more precise dimension for u or S yields a more precise result by about the
same proof:

4.2. CoROLLARY. If for some finite k and K, N(u, 8) < K6 ™*for 0 < 6 < 1,
then for some M = M(k,K) < o,

Eo(pn , p) < MnHE

for all n.

Next, we show, conversely, that the above result cannot be improved (except
for finding the least possible constant M) under its hypotheses. It should be
noted, however, that if u is Lebesgue measure on the unit cube in R*, then the
hypothesis of 4.2 holds for the given & but the result is not best possible for k = 1
(see Section 6 below), and I don’t know whether it is best for £ > 1 in these
cases.

Let 8 < R’ be the Cartesian product of d Cantor sets

S =1{Da;/3:a;=0 or 2}.

On §' we put the Cantor measure 4, i.e. the a; are independent and u'(a; = 0)
=3. Then on S8 we have a Cartesian product measure w.Form =1,2, ---,
let Amr,7 =1, -+, 2™ be the subsets of S¢ where a; have given values for each
co-ordinate and j = 1, ---, m. Then p*(An) = 27™ and the distance from
Apr to A, is at least 37" for r 5 s.

4.3. PROPOSITION. We have e-entropic dimensions

k(8% = k(u*) = dlog 2/log 3.

Proor. Let 0 < ¢ < 1/6 and let m be the positive integer such that 3™ ' <
2¢ <3 ™IfA C S%and u*(4) > %, thena covering of A by sets of diameter
< 2emust contain at least 2™ sets, so N (%, ¢) = 2™ H (, €) = (md — 1)
log 2, and (m + 1) log 3 = log (1/2¢), so

H(y', ) 2 (log 2)(dllog 3] log (1/2¢) — d — 1),
d(log 2)/(log 3)™ < k(u®).
Conversely N (S¢, d'e) < g(mina
H(S, d'¢) = (m+ 1) dlog 2 < d(log 2)(1 + log (1/2¢)/log 3),
soletting & = dl¢,
H(S%, 8) = d(log 2)(1 + [log (1/26) + % log d]/log 3),
k(u) = 1(S%) < d(log 2)/(log 3),

and the proof is complete.



46 R. M. DUDLEY

4.4. LeMMa. 2220 |(u — ) (Amr)| = v implies
p(u, v) Z min (v/2,3™™) for u, ve®(S%).

Proor. Given m let F be a maximal union of A, such that (u — »)(Amr)
have the same sign, choosing the sign so that |(g — ua) (F)| = v/2. Then letting
e = 37", either u(F) = un(F*) + v/2 or pa(F) Z u(F*) + v/2, and the Lemma
is proved.

4.5. PrROPOSITION. If u = p* as above, then for some a > 0 we have
have

Pr (p(pn,u) 2 an™/EH0) 2 o

for all large enough n.
Proor. By 4.4 and Theorem 5.1 below, there is a ¢ > 0 such that if 2™ < n,

Pr (p(pn , #) = min (3™, 2™"c/2n}) > c.
Given n, let m be the smallest integer such that < omdl2gm. /9. Then for n
large enough, 2™ < n, Pr(p(pa , u) = 3™™) > ¢, and
n* > gmd/2 mc/6‘2d/2’

so for some constant 8 > 0 '

> (3™8)*?  where k = d log 2/log 3,

Rl 5 gmg 3™ > g e,
Pr(p(un , u) > A% > .

Letting « = min (¢, 8) the proof is finished.

Note that Proposition 4.5 is more special than the corresponding result for
the metric 8 (Proposition 2.1). Thus it appears that more remains to be done for
p than for 8.

6. Sums over small sets. Here we shall see that the last estimate in Proposi-
tion 3.1 is best possible up to a constant factor. Let (S, u) be any nonatomic
probability space andlet S be decomposed into m sets A ; with u(A4;) = 1/m,j =
1, ---,m. Let

S(m,n) = 2.7 [(ua — 1) (4)].

Then S(m, n) is a random variable whose distribution does not depend on p.
5.1. TureoreM. For some ¢ > 0,

Pr(8(m,n) z ¢(m/n)’) 2 ¢

for all integers m and n such that 2 < m < n.

Proor. We can choose ¢ > 0 for any given finite set of values of n and m = 2.
For fixed m, ¢ can be bounded away from 0 for n = m by the central limit theo-
rem. Thus if the Theorem were false, we could choose n; = m; — « such that
for S(m; , n;) the largest possible values c; of ¢ approach 0 as 7 — «.
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If niy/m; £ N < o for infinitely many ¢, we may assume it holds for all 7.
Then it is enough to show that ES(m, n) is bounded away from 0 for m = m;,
n = n; since S(m, n) < 2. Equivalently, we show that for some a > 0,
E |(pn — u)(A1)| = a(mn)™ for all i. We may assume that as { — «, n;/m; —
A < «. Then nu,(A;) converges in law to a Poisson random variable ¢ with
Eo = X ([8], VI.5). Then E |p — \| > Osince A = 1, and nu(A4;) — Nas i — .
Hence

lim inf;» B |n(ﬂn - ﬂ)(Al)[ > 0.
Thus there is a k > 0 such that for all 7,
E|(un — 1) (41)| Z &/n 2 k/(Nmn)*.

This yields the desired conclusion.
Thus we may assume n;/m; — « as ¢ — o. Given n = n; and m = m; large
enough, let ¢ be an integer such that m/4 < q < m/3. Let

B, = U;;iAJ) b, = ”’n(Bt)7 t = 17 4.
Let @ be the event b; = 3. Let Pr, denote conditional probability given &, and
the values of p,(4;),j = 1, -+, ¢t — 1 (a function of these values). For any

such values, the distribution of u,(4.) for Pr, is exactly that of r».(4.)/n where
r = n(1 — b,) and for any measurable set C,

»(C) = u(C ~ B:)/u(8 ~ B.).

On G;,r = n/2.
Now let 7(1,(4,) — »(4,)) = Gy . Gy is approximated in law by a Gaussian
random variable G with mean 0 and variance

0'2 = V(At) - Vz(Ag) g V(At)/2 g 1/27ﬂ.

Specifically, by the Berry-Esséen theorem ([1], [7]) there is an absolute constant

K < o« such that for any real number b,
[Pr(Gw = b) — Pr(G = b)| £ KE|Guf'/d*r

24Kv(A.)/v(A)"

< 24K (m/r)*.

A TIA

Thus for any real number « and { = 0,
Pr([v(4:) —« = ¢) = Pr(8 — 2 < G = B) + &

where 8 = (¢t 4+ k — »(4,)) and 8; >0 as i — » for r = n/2. Now let { =
(mn)~%. Then

Pr(8 — 2¢r' < G < B) = Pr(m'8 — 2(r/n)} = mlG < mlp).

This is the measure of an interval of length < 2 for a Gaussian measure of vari-
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ance = 3. Hence it is less than 1 — 2y for some absolute constant n > 0. Now
Pr(|(un — 1) (40| = ¢/2) = Pri(|n(4)) — nu(A))/r] £ ng/2r)
= Prt(‘”r(At) - Kl = §') SEl1—-—29+4 6

where k = nu(A4.)/r, for any p.(4;),j < t. Thus for 7 large enough, we have for
eacht=1,---,¢

Pri(|(un — w)(A0)| > ¢/2) > 1

for any pa(4;),7 < t, on @;.

We say we have a “success at the tth trial” if [(u, — u)(4.)| > ¢/2 or if
un(B:) > 3. Then the conditional probability of such a success, given any
values of u.(4;),7 < ¢, is at least #. Hence the probability of at least 5¢/2 suc-
cesses in the first ¢ trials is at least what it would be for independent binomial
trials with probability n of success in each trial. By the central limit theorem, this
probability is >4 for m and hence g large enough. Then, since u,(Bg)] = u.(B.),
t=yq

Pr(2 5o [(un — w)(47)] Z ngt/4 or ua(Bo) > 3) > 4.
Now ng¢/4 = ng/4(mn)* = nmi/16n® - u.(B,) > % implies
S(m,n) > % = mt/6n}.
Thus for ¢ large enough
¢i = min(%, 7/16),

a contradiction, and the proof is complete.

6. The classical case. In this section S is the unit interval [0, 1] and u is
Lebesgue measure. We shall see that ES(u, , u) and Ep(u, , u) both approach 0

asn ! for n — oo, while k(u) = k(S) = 1. Thus the rates of convergence n ¥

for 8 and n~**® for p do not apply here.
Defining the distribution functions

Fu(z) = pa([0, 2]), F(z) = z,
we have (F, — F)(0) = (F, — F)(1) = 0. Let p(f) = ||f]lz + |f(0)|. Then
sup{|fof d(un — w)|: p(f) S 1} = sup{|[o'f (z) (Fa — F)(z) da]: sup |f'| < 1}
= [o|(Fa — F)(z)| da.
Now [f(0)| = [Ifll= = p(f) on Ssop(f) = [Ifls.= 2p(f), and
Btn, 1) = [0 |[Fo — F| S 28(ptn, 1).

The functional ®(G) = [¢ |G| is defined and continuous for || - ||, on the space of
functions G' on S continuous except for at most finitely many jumps. Let G,(t) =
n’(F,.(t)\— F(t)). Then ®(G,) is a well-defined random variable for each n. By
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Donsker’s theorem [3] (cf. also [5]), ®(G,) converges in law as n — « to ®(z,)
where {z]} is a certain Gaussian stochastic process with continuous sample func-
tions, and

Pr(®(z;) > 0) = Pr(®(G,) > 0) =
for all n. Thus for some ¢ > 0,
Pr(®(G,) > ¢) > ¢ forall n.

In the converse direction we have the following result, which follows from re-
sults of N.V. Smirnov and specifically from [6a], Lemma, 2 p. 646.

6.1. PROPOSITION. sup, E ||Galle < .

We infer that for some M < o,

M7'n7 < EB(pn, p) < Mn™

for all n.
Now for p, we also connect p(pn , ) t0 ||F» — F||w by the following result.
6.2. ProprosITION. For any v &€ ®(S) with v([0, z]) = G(x),

IG = Fllo/2 < pn, ») = 2||G = Fllo.
Proor. If for some z ¢ S,
(G = F)(2)] 2 2¢ > 0,
then either »([0, z]) = u([0, z]°) + e or

v(fz, 1]) 2 u(le, 1) + «

Hence p(p, ») = ||F — G./2.
Conversely, suppose 0 < ¢ < p(u, v). We choose a closed set K such that

v(K) > u(K*) + e

We may assume that whenever z, y ¢ K and |z — y| < 2¢, we have [z, y] C K.
Then K is a finite union of disjoint closed intervals I; = [b;, ¢;,7 = 1, - -+, m,
where possibly b; = ¢; for some j’s. Now

u(K®) = u(K) + Ne where 2m — 2 < X\ < 2m,
s0
2iavI) > (N4 De+ Xraudy).
Hence for some j,
v(I;) 2 w(I;) + (2m — 1)e/m,  e= (v —p)(I;) < 2|G — Fl.

Letting € T o(u, ») the proof is comg)lete
We infer that n*Ep(uy , u), like n’E||F, — F|. , is bounded and bounded
away from 0 asn — o,
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