NOTE ON SHIFT-INVARIANT SETS

By U. Krengel and L. Sucheston¹

University of Erlangen and Ohio State University, and The Ohio State University

In this note we prove a theorem which implies that shift-invariant sets in a bilateral product space with infinite invariant measure are contained in the remote σ -algebra (also called tail σ -algebra), if the shift is conservative. After completing the paper we noticed that, in a paper as yet unpublished, K. Dugdale obtained the theorem in the case where the remote σ -algebra is trivial; it seems that his method, based on induced transformations, does not yield our result. W. Parry [6] asserts the same special case of the theorem under some assumptions on the measure space. We further show that in the dissipative case it may happen that the remote σ -algebra is trivial and some invariant sets are not; and that it may also happen that all invariant sets are trivial and the remote σ -algebra is not. Our examples involve transient random walks.

1. Let (E_k, \mathfrak{F}_k) , $k = 0, \pm 1, \cdots$, be countably many copies of a measurable space (E_0, \mathfrak{F}_0) and let

$$(\Omega, \alpha) = \prod_{k=-\infty}^{+\infty} (E_k, \mathfrak{F}_k).$$

Let X_k be the mapping assigning to the point $\omega = (\cdots, \omega_{-1}, \omega_0, \omega_1, \cdots) \varepsilon \Omega$ its kth coordinate $\omega_k \varepsilon E_k$. The shift T on Ω is the transformation defined by $X_k(T\omega) = X_{k+1}(\omega)$. The σ -algebra generated by X_m , X_{m+1} , \cdots is denoted by α_m . The (right) remote σ -algebra α_∞ is by definition $\bigcap_{m=0}^{\infty} \alpha_m$. A transformation T on Ω is called invertible iff T is one-to-one, onto and $A \varepsilon \alpha$ implies $T^{-1}A \varepsilon \alpha$, $TA \varepsilon \alpha$. Clearly, the shift is invertible. Let μ be a fixed measure on α ; henceforth all relations are modulo sets of μ measure zero. An invertible transformation T is called measure-preserving iff $A \varepsilon \alpha$ implies $\mu(T^{-1}A) = \mu(A) = \mu(TA)$. The σ -algebra of invariant sets is defined by: $A \varepsilon \sigma$ iff $A \varepsilon \alpha$ and $A \varepsilon \alpha$ in the a-algebra of invariant sets is defined by: a-algebra of invariant sets invariant sets in the invariant sets i

We state our theorem somewhat abstractly, without reference to the shift. To apply the theorem to sequences $(X_n)_{n=-\infty}^{n=+\infty}$, assume that α_0 is generated by X_0, X_1, \cdots .

THEOREM. Let T be an invertible conservative measure-preserving transformation on a measure space (Ω, Ω, μ) and let Ω_0 be a σ -subalgebra such that $T^{-1}\Omega_0 \subset \Omega_0$ and $\bigcup_{k=0}^{\infty} T^k\Omega_0$ generates Ω . Assume that μ restricted to Ω_0 is σ -finite. Then the σ -algebra σ of invariant sets is contained in the remote σ -algebra $\Omega_\infty = \bigcap_{k=0}^{\infty} T^{-k}\Omega_0$, modulo μ -null sets.

Received 10 April 1968.

¹ Research of this author was supported by the National Science Foundation under grant GP 7693.

PROOF. The σ -algebra $T^{-k}\mathfrak{A}_0$ is denoted by \mathfrak{A}_k $(k=0,\pm 1,\cdots)$. Let $A \in \mathcal{S}$ and let $h \in L_1^+$ (the class of integrable non-negative functions) be such that $\{h>0\}=A$. Let $\delta>0$. Since μ is σ -finite on \mathfrak{A}_0 , there exists a set $B \in \mathfrak{A}_0$ with $\mu(B)<\infty$ and $\|h1_{B^c}\|_1<\delta/2$. For sufficiently large n, $h1_B$ differs in L_1 norm by less than $\delta/2$ from some \mathfrak{A}_{-n} measurable function h_δ ; hence $\|h-h_\delta\|_1<\delta$. Therefore one can obtain a sequence of positive numbers k_p and a sequence of functions h_p , each h_p measurable on \mathfrak{A}_{-k_p} , $p=1,2,\cdots$, such that

Let $f \in L_1^+$ be measurable on \mathfrak{C}_0 and strictly positive on Ω . By the ratio ergodic theorem of Stepanoff-Hopf (see [4], p. 49)

$$D_n(h_p, f) = _{\text{def}} \sum_{k=0}^{n-1} h_p \cdot T^k / \sum_{k=0}^{h-1} f \cdot T^k$$

converges as $n \to \infty$ to a finite limit $D(h_p, f)$, measurable on \mathfrak{A}_{-k_p} and invariant under T, therefore measurable on \mathfrak{A}_{∞} . We now apply the corollary on p. 195 of Neveu [5], which remains valid if the operator is induced by a measure-preserving point-transformation on a σ -finite measure space, to the functions $g_p = h - h_p$. It follows that the limit D(h, f) of $D_n(h, f)$ is measurable on \mathfrak{A}_{∞} . Since A is invariant, D(h, f) = 0 on A^c . On the other hand, applying the Stepanoff-Hopf theorem with Ω replaced by A and h and f interchanged, we obtain that D(f, h) is finite on A, hence D(h, f) is positive on A. It follows that $A \in \mathfrak{A}_{\infty}$.

2. We now give an example such that \mathfrak{C}_{∞} is trivial and \mathfrak{I} is not, and an example where the converse is true.

Let (Ω^+, α^+) be the unilateral product space $\prod_{k=0}^{\infty} (E_k, \mathfrak{F}_k)$, where every E_k is the set of all integers and \mathfrak{F}_k is the σ -algebra of its subsets. Let X_0, X_1, \cdots again be the coordinate mappings and define α_{∞}^+ by analogy. Let π be a probability measure on α^+ .

The following lemma is taken from Blackwell and Freedman [1], though not explicitly stated there. For the convenience of the reader we present a short proof here.

LEMMA. If X_0 is an integer-valued random variable and $X_n = X_0 + Y_1 + \cdots + Y_n$ is a sum of X_0 and of n independent identically distributed integer-valued random variables Y_1, \dots, Y_n such that X_0, X_1, \dots is an aperiodic irreducible random walk, then \mathfrak{a}_{∞}^+ is trivial.

PROOF. At first assume $\pi(X_0 = 0) = 1$. The events in \mathfrak{C}_{∞}^+ are invariant under any finite permutation of the Y_n 's and hence by the Hewitt-Savage zero-one law (cf. [2], p. 122), \mathfrak{C}_{∞}^+ is trivial. Now proceed as in [1]: Let J be the set of all integers k such that $\pi(X_0 = k) > 0$. Let $p^{(n)}(i,j)$ be the n-step transition probability from i to j. For $i, j \in J$ there is, by aperiodicity, some integer n such that $p^{(n)}(i,j) > 0$ and $p^{(n)}(j,j) > 0$. If $A \in \mathfrak{C}_{\infty}^+$, then

$$(2.1) \quad \pi(A \mid X_0 = i) = p^{(n)}(i,j)\pi(A \mid X_n = j) + (1 - p^{(n)}(i,j))\pi(A \mid X_n \neq j).$$

If $\pi(A \mid X_0 = i) > 0$, then $\pi(A \mid X_0 = i) = 1$ by the first argument and hence

 $\pi(A \mid X_n = j) = 1$ by (2.1). Since $p^{(n)}(j,j) > 0$, it follows that $\pi(A \mid X_0 = j) > 0$ and hence again by the first argument, $\pi(A \mid X_0 = j) = 1$. Thus $\pi(A \mid X_0 = i) > 0$ for a state i implies that $\pi(A \mid X_0 = j) = 1$ for all states $j \in J$. Therefore \mathfrak{C}_{∞}^+ is trivial.

We now assume that $J=E_0$ and we replace π by an equivalent infinite invariant measure μ . Such a measure may be obtained by dividing π on each set $\{X_0=k\}$ by $\pi(X_0=k)$. μ is now extended to the bilateral product space (Ω, Ω) by stationarity, yielding the Markov measure corresponding to the invariant marginal distribution $\mu(X_0=j)$ for $j \in E_0$, and the transition probabilities of the considered aperiodic random walk. By a theorem of Harris and Robbins [3], the shift T on (Ω, Ω, μ) is dissipative iff the random walk is transient, which we assume. The (right) remote σ -algebra Ω_{∞} clearly is trivial iff Ω_{∞}^{+} is trivial.

If (Ω, α, μ) is thus constructed, then the events $A_k = \{\omega : X_i(\omega) = 0 \text{ for exactly } k \text{ indices } i\}$ constitute a non-trivial partition of the space Ω . Hence \mathfrak{g} is non-trivial, but by the lemma α_{∞} is trivial.

To give the second announced example, consider the deterministic random walk $X_n = X_0 + n$, with $\mu(X_0 = k) = 1$ for all k. μ assigns measure one to every point $\omega = (\dots, \omega_{-1}, \omega_0, \omega_1, \dots)$ such that $\omega_k = \omega_0 + k$ for all k. $\alpha_{\infty} = \alpha$, but β in this case is trivial. (There are related examples at the end of [1].)

REFERENCES

- Blackwell, D. and Freedman, D. (1964). The tail σ-field of a Markov chain and a theorem of Orey. Ann. Math. Statist. 35 1291-1295.
- [2] Feller, W. (1966). An Introduction to Probability Theory and Its Applications, 2. Wiley, New York.
- [3] HARRIS, T. E. and ROBBINS, H. (1953). Ergodic theory of Markov chains admitting an infinite invariant measure. Proc. Nat. Acad. Sci. U.S.A. 39 860-864.
- [4] HOPF, E. (1937). Ergodentheorie. Springer, Berlin. (Reprinted Chalsea, New York 1948.)
- [5] NEVEU, J. (1965). Mathematical Foundations of the Calculus of Probabilities. Holden Day, San Francisco.
- [6] PARRY, W. (1965) Ergodic and spectral analysis of certain infinite measure preserving transformations. Proc. Amer. Math. Soc. 16 960-966.