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NOTE ON SHIFT-INVARIANT SETS

By U. KRENGEL AND L. SUCHESTON!

Unaversity of Erlangen and Ohio State University, and The Ohio State University

In this note we prove a theorem which implies that shift-invariant sets in a
bilateral product space with infinite invariant measure are contained in the
remote o-algebra (also called tail o-algebra), if the shift is conservative. After
completing the paper we noticed that, in a paper as yet unpublished, K. Dugdale
obtained the theorem in the case where the remote o-algebra is trivial; it seems
that his method, based on induced transformations, does not yield our result.
W. Parry [6] asserts the same special case of the theorem under some assump-
tions on the measure space. We further show that in the dissipative case it may
happen that the remote s-algebra is trivial and some invariant sets are not;
and that it may also happen that all invariant sets are trivial and the remote
o-algebra is not. Our examples involve transient random walks.

1. Let (Ex, %), k = 0, =1, - -+, be countably many copies of a measurable
space (Ey, Fo) and let

(Q) @) = ;:-:—00 (Ek ) gk)

Let X be the mapping assigning to the point w = (+++, w1, wo, w1, *++) £Q
its kth coordinate wi ¢ By . The shift T on Q is the transformation defined by
Xi(Tw) = Xiu(w). The o-algebra generated by X,., Xmi1, - -+ is denoted by
Q. . The (right) remote o-algebra Q. is by definition M=o G . A transformation
T on Q is called ¢nvertible iff T is one-to-one, onto and A & @ implies T4 ¢ @,
TA ¢ @. Clearly, the shift is invertible. Let u be a fixed measure on @ ; henceforth
all relations are modulo sets of u measure zero. An invertible transformation T
is called measure-preserving iff A ¢ @ implies u(TA) = p(4) = p(TA).
The o-algebra of invariant sets is defined by: A e 9iff A e @and T4 = A = TA.
A set A ¢ @ is called wandering iff the sets -+, T4, A, TA, -- - are mutually
disjoint. T is called conservative iff every wandering set has measure zero.

We state our theorem somewhat abstractly, without reference to the shift.
To apply the theorem to sequences (X ,,):Z:f; , assume that @ is generated by
Xo, X1, -+ .

TurorEM. Let T be an invertible conservaitive measure-preserving transformation
on a measure space (2, @, u) and let @ be a o-subalgebra such that TGy C Qo and
Ui=o T*@o generates Q. Assume that u restricted to Qo is o-finite. Then the o-algebra
9 of invariant sets is contained in the remote o-algebra G, = Mo T7*®q , modulo
u-null sets.
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Proor. The o-algebra T *@, is denoted by @ (k = 0, =1, ---). Let A ed
and let he Lt (the class of integrable non-negative functions) be such that
{h > 0} = A. Let § > 0. Since p is o-finite on @, there exists a set B &£ @ with
u(B) < o and [[Alge|ly < 8/2. For sufficiently large n, 215 differs in L, norm by
less than §/2 from some G_, measurable function As; hence || — Al < 6.
Therefore one can obtain a sequence of positive numbers %, and a sequence of
functions h,, each A, measurable on @_x,, p = 1,2, - - -, such that

(L1) o=t [y — Al < .

Let f ¢ Iy be measurable on @ and strictly positive on Q. By the ratio ergodic
theorem of Stepanoff-Hopf (see [4], p. 49)

Dy, ) =aet 20 by T/ 2= f- T

converges as n — « to a finite limit D (A, , f), measurable on @_x, and invariant
under 7T, therefore measurable on @, . We now apply the corollary on p. 195 of
Neveu [5], which remains valid if the operator is induced by a measure-preserv-
ing point-transformation on a o¢-finite measure space, to the functions
gp = h — hy. It follows that the limit D (A, f) of D.(h, f) is measurable on Q..
Since 4 is invariant, D(h, f) = 0 on A°. On the other hand, applying the
Stepanoff-Hopf theorem with Q replaced by A and 4 and f interchanged, we
obtain that D(f, 4) is finite on 4, hence D (A, f) is positive on 4. It follows that
A eQyp.

2. We now give an example such that @ is trivial and 4 is not, and an ex-
ample where the converse is true.

Let (27, @) be the unilateral product space | [i=o (Ex, 1), where every B
is the set of all integers and & is the o-algebra of its subsets. Let Xo, X1, ---
again be the coordinate mappings and define @.," by analogy. Let = be a proba-
bility measure on @™

The following lemma is taken from Blackwell and Freedman [1], though not
explicitly stated there. For the convenience of the reader we present a short
proof here.

Lemma. If X, 48 an integer-valued random variable and X, = Xo + Y1 +
«oo + Y. is a sum of Xoand of n independent identically distributed integer-valued
random variables Yy, -+, ¥, such that Xo, X1, -+ is an aperiodic irreducible
random walk, then Q. is trivial.

ProoF. At first assume m(X, = 0) = 1. The events in @, are invariant under
any finite permutation of the ¥,’s and hence by the Hewitt-Savage zero-one
law (cf. [2], p. 122), Q. is trivial. Now proceed as in [1]: Let J be the set of all
integers & such that =(Xo = k) > 0. Let p™ (4, 7) be the n-step transition prob-
ability from ¢ to j. For %, j eJ there is, by aperiodicity, some integer n such that
p™(4,7) > 0and p™(5,7) > 0.If A € G, then

(21) m(4|Xo=1) = p™(G,)7(A] X0 =7) + (1 = p™(1))n(4 ] X0 # 7).
If 7(A | Xo = ©) > 0, then (4 | Xy = ) = 1 by the first argument and hence
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(A | X, =j) = 1by (2.1).Since p™ (4,7) > 0, it follows that (4 | Xo = 7) > 0
and hence again by the first argument, 7(4 | Xo — j) = 1. Thus7(4 | Xo =17) >0
for a state ¢ implies that 7(4 | X, = j) = 1 for all states j ¢J. Therefore Qo'
is trivial.

We now assume that J = E, and we replace = by an equivalent infinite in-
variant measure u. Such a measure may be obtained by dividing = on each set
{Xo = k} by #(Xo = k). u is now extended to the bilateral product space (2, @)
by stationarity, yielding the Markov measure corresponding to the invariant
marginal distribution u(X, = j) for j ¢ Eq, and the transition probabilities of
the considered aperiodic random walk. By a theorem of Harris and Robbins [3],
the shift 7 on (2, @, u) is dissipative iff the random walk is transient, which we
assume. The (right) remote o-algebra Q. clearly is trivial iff @, is trivial.

If (Q, @, u) is thus constructed, then the events 4, = {w:X:(w) = 0 for ex-
actly k indices 7} constitute a non-trivial partition of the space Q. Hence d is
non-trivial, but by the lemma Q. is trivial.

To give the second announced example, consider the deterministic random
walk X, = Xo + n, with u(Xo = k) = 1 for all k. u assigns measure one to
every pointw = (---,w_1,wo, w1, + -+ ) such that wy = wy + k for all k. G, = @,
but g in this case is trivial. (There are related examples at the end of [1].)
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