The Annals of Mathematical Statistics
1969, Vol. 40, No. 2, 456-461

ON THE EXPECTED VALUE OF A STOPPED STOCHASTIC
SEQUENCE!

By Witniam F. Stour aAnp Y. S. CHOW?

Unwversity of Illinois and Purdue University

1. Introduction. Let (2, ¥, P) be a probability space with an integrable stochas-
tic sequence (X, Fn, n = 1) defined on it. By a stochastic sequence is meant
that the F,.’s form an increasing sequence of o-fields in ¥ and that each random
variable X, is ¥, measurable. A random variable ¢ is called a stopping time if
it is positive integer (possibly + «) valued and if the event [f = n] ¢ F, for
each n = 1. If P[t < «] = 1, then ¢ is called a stopping rule. For any se-
quence of random variables (Z,, n = 1) and a stopping time {, we define the
expected value of the stopped sequence by EZ, = f < Z; provided the in-
tegral exists (we permit EZ, = « or EZ, = — ). We let Z* and Z~ denote
respectively the positive and negative parts of a random variable Z, and ®(Z)
denote the o-field generated by a random variable Z (possibly vector valued).
Given a collection of sets G, a set 4 in G is said to be an atom of G if B ¢ G and
B C A implies that P[B] = 0 or P[B] = P[A]. G is said to be non-atomic if it
contains no atoms.

Recently, Dubins and Freedman [4] established that

(1) (Xn,%n,n = 1) a martingale with sup E|X,| = « implies that
there exists a stopping time ¢ such that E|X,| = «.

In [2], this result is extended to the submartingale case. One might suspect
that (1) would hold for some stopping rule or that the hypotheses of (1) would
imply the existence of a stopping time ¢ such that EX,* = . However simple
examples exist in both cases ([4], p. 1505 and [1], p. 270 respectively) showing
that such is not the case. Here we show that results in both of these directions
are possible by certain modifications of the hypotheses of (1). The techniques
developed in [2] and [4] were found to be useful here also. The natural setting
for the results stated below is that of the general stochastic sequence as opposed
to martingales in [4] and submartingales in [2]. As a corollary to the stated results
for general stochastic sequences, it is shown in Corollary 2 that (1) and the cor-
responding result in [2] can be improved in the case where the X.’s are partial
sums of independent random variables.

2. Results. Obviously, a necessary condition for the existence of a stopping
rule ¢ such that E|X,| = « is the existence of an unbounded stopping rule.
The following lemma gives sufficient conditions for the existence of an unbounded
stopping rule.
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LemMA 1. Assume either
(2) Uii5s. non-atomic,
(3) for each A & Usx=iFr such that P[A] > O there exists infinitely many
' n = 1 such that both [+ Xt > 0and [4 X~ > 0,
or
(4) P{E[X.T|Fm] > 0] 0 [E[X," | Fmy) > 0] infinstely often (n = 1)}
= 1 for some sequence (my, k = 1) of distinct positive integers.

Then there exists an unbounded stopping rule s. .

Proor. We show (4) implies (3) implies (2) implies the existence of s.

(4) implies (3): Fix A ¢ Ux=5: such that P[A] > 0. (4) implies by the Borel
Cantelli lemma that

ne P{A n [E[X,"|Fm] > 0] 0 [E[Xs | Fm) >0} =
implying that
P{A n [E[X,"|Fm] > 0] n [E[X,” | Fm] > O} > O infinitely often (n = 1).
But for m; sufficiently large [4 X»™ = [4 E[X." | Fm,) and
[aXs™ = [4EIXs | Fm

for all n = my implying (3).

(3) implies (2): Assume Ux—F: not non-atomic. Then there exists an atom
B of Up%: with P[B] > 0. But there exists an n such that [z X,* > 0 and
[5X~ > 0by (3).Hence 0 < P[Bn (X, > 0)] < P[B] contradicting the as-
sumption that B is an atom of U5 .

(2) implies the existence of s: We proceed by induction. Let By = Q. By hy-
pothesis, there exists disjoint sets Ai; and A such that A4;, U4, =19,
0< P[A1,1] = P[Al,zl < 1, and A1,1 and Al,z & gnl for some n; = 1. Let C; =
A, . Assume that disjoint sets C1, Cs, -+, Cr have been chosen such that
CieFn;, ni T as i T k, and 0 < P[B;) < &* where B; = (UkCy)e. By
hypothesis, there exists disjoint sets Az41,1 and Ax41,2 such that Axs11 U Ariaa
= Bi, 0 < PlAy111] £ PlAks12] < P[Bi), Ak411 and Agpr2 € Fnpar for some
Nppr > Mg . Let Crp = Azpe. Then 0 < P[Biu] = P[Bi] — PlCry] =
P[B:) — P[Bi)/2 = ¥**.

Clearly Cy1 is disjoint from C;, C:z, -+, and Ci. Thus by induction (C:,
k = 1) is a class of disjoint sets and (nz, & = 1) is a strictly increasing se-
quence of positive integers such that Cj ¢ F», and P[Ci] > O for each & = 1,
and P[Uj-Ci] = 1. Setting [s = ni] = C; for all £ = 1 defines an unbounded

stopping rule.

RemARk. Note as the proof shows, that (4), (3), and (2) are progressively
weaker conditions.
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THEOREM 1. If there exists an unbounded stopping rule s and if either
(5) [aXat = 1 infinitely often (n = 1) for each A & UiuFr such that
P[A] >0
or
(6) Supnzi E[Xu' | Fm] = o as. for some strictly increasing sequence of
positive integers (mi, b = 1),

then there exists a stopping rule t such that EX," = .

Proor. Under (5), for each j such that P[s = j] > 0, there exists an integer
m; = j such that f[3.=ﬂ X;',.',. > 1. We define t = m; on [s = j] for each j = 1.
Then Pit< o] =1, [t =nl= Uiufm = n, s = kle %, and EX/ =
> 7 Jomit Xi; Z D2i 1 = . Thus the result holds under (5).

Under (6), for each j such that P[s = j] > 0, on [s = j] we define

t = inf {n = m; | BE[X." | §u;] = 1/P[s = j}}

where mje (my, k= 1) and m; = 7. [t = n] = Uit =n, s =7l and [t =
n, s = jl& Fm; for all j £ n together imply that [t =mn]leF, for all n =
Since P[t < »] = 1 by (6), ¢ is thus a stopping rule.

EXF = 2% Jimn Xt = 205 20005 [tmis e X
= Z;o=1 :'-i f[c=i. t=n] E[Xn+ l ‘ij] = Z:’Ll 1 = o.

Thus the result holds under (6), establishing the theorem.

CoOROLLARY 1. If either (2), (3), or (4) and either (5) or (6) hold then there
exists a stopping rule t such that EX,* = .

Proor. The result is immediate from Lemma 1 and Theorem 1.

COROLLARY 2. Let (Y, k = 1) be an integrable sequence of independent random
variables with a subsequence (Y., , k = 1) of non-degenerate random variables where
e T wask— . LetFo = ® (Y1,Y,, -+ Y,) foralln = 1.

(1) Let X, = > i Yiand sup EX," = . Then there exists a stopping rule ¢
such that EX 5 = .

(ii) Let X = D i Y4 be divergent with EY = 0 for allk = 1. Then there exists
a stopping rule t such that EX,* = «.

(iil) Let Xn = > iy Yi/nand sup EX,* = . Thenthere exists a stopping rule
¢ such that EX," = .

(iv) Let X, = max (Y1, Y2, --+, Ya) — nand sup EX," = «. Then there
exists a stopping rule t such that EX J = .

Proor. In each case ((i)-(iv)), (Xa, Fn,n = 1) is an integrable stochastic
sequence. The existence of the non-degenerate sequence (Ya,,k = 1) implies
U, 5, is non-atomic. For, assume not. Then, there exists a set A atomic in
U=, 5, such that P[4] > 0, A & F, say. Choose nx > n such that Y, is non-
degenerate. Thus there exists an event 41 ¢ ®(Ys,) such that 0 < P[44 < 1.

—y
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But 4 and A4, are independent, implying that 0 < P[4 n 4] < P[A] and thus
contradicting the assumption that A is atomic in Ur=; 5« .

In (i), for n = k, EX.'|%] = E(X. — Xx + X075 =
E[(X, — X))V | %) — X = E(Xo — X0)t — Xi 2 EX," — EXi." — X~
a.s. Hence sup.>1 E[X," | 5] = = a.s. for every k = 1 since sup,»1 EX," =
by hypothesis. Thus (2) and (6) hold and (i) is established by Corollary 1.

In (i), (Xa, Fu, n = 1) is a martingale. Thus X, diverging implies that
sup EX,* = o by the Doob martingale convergence theorem ([3], p. 319). Thus
(ii) follows from (i).

In (iii), for n 2 k, E[X," | %] 2 EX," — kn”(EX:" + Xi7) a.s. Hence
Supns1 E[X.* | %] = o a.s. for every k = 1 since sup EX,* = « by hypothesis.
Thus (2) and (6) hold and (iii) is established by Corollary 1.

In (iv), for n > k, E[X." | %] = E[(max(Yy,Ys, -+, Vo) — )V | &) =
E[(ma,x( Yk+1; Y’C+2 y " Yn) - n)+ | gk] = E(maX(Yk+l ’ Yk+2) ) Yn) - n)+'
Hence sup.s1 E[X." | 5] = « a.s. forevery k = 1since sup EX," = « by hy-
pothesis thereby implying that sup.s: E(max( Y4, Yigs, --+, Ya) —n)* =

o for every k = 1. Thus (2) and (6) hold and (iv) is established by Corollary 1.
The proof of Corollary 2 is complete.

In the following theorem we shall consider two new conditions which we state
now for easy reference:

@) f,, X, = 1 infinitely often (n = 1) for each
A ¢ UpL; % such that P[A] > 0
and
(8) supnzi E[Xs | Fm] = o a.s. for some strictly increasing
sequence of positive integers (my, & > 1).

TrroREM 2. If there exists an unbounded stopping rule s, if either (5) or (6)
holds, and if either (7) or (8) holds, then there exists a stopping rule t such that
EX/ ™ =EX = .

Proor. The details are omitted. Let (my, &k = 1) be the essential range of s
with @' = Ui (s = mau_y) and @ = Ui, (s = ma). Using the idea of the
proof of Theorem 1 we then define ¢ on @' such that EX," = « and ¢ on ©* such
that EX,” = o.

LeMMA 2. Let . be non-atomic for some n = 1 and let A be a subset of F, with
P(A) > 0, and supn>: f,, X" = . Then there exists a set F C A such that
P[A] > P[F] = P[A]/2, F ¢ G for somem = n, [r X" 2 1 andsupas1 [a\r Xn*
= o where ANF = 4 n F°.

Proor. Choose m = n such that [, X,,© = 2. Since F,, is non-atomic by hy-
pothesis there exists disjoint sets B and C' ¢ §,, such that BuC = 4, f s Xnt 2=
1,and [¢X," = 1. Eithersup [ X," = » orsup [¢ X," = . Without loss
of generality we assume sup f 5 Xa.t = . Possibly P[B] > P[A]/2. However,
there exists disjoint sets D and E ¢ F,, such that D uE = B,0 < P[D] £ P[A]/2
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and 0 < P[E] £ P[A]/2 by the non-atomicity of F . Either sup [o Xt =
© Oor sup fg X,T = «. Without loss of generality, we assume sup f p XnT = .
Letting F = A\D it follows that [» X»" = 1,sup [4\r Xa™ =  with P[4] >
P[F] = P[A]/2, establishing the lemma.

In Corollary 1, we needed Ux~; & non-atomic (2) and roughly speaking a local
moment condition ((5) or (6)) in order to conclude that EX ;T = o« for some
stopping rule . The question arises naturally whether the global condition
sup EX," = = is sufficient if we strengthen (1). This yields:

TuroreM 3. If sup EX,." = » and i is non-atomic for some k = 1, then there
exists a stopping rule t such that EX JF = .

Proor. We proceed by induction. By Lemma 2, there exists a subset
Fy of @ such that 1 > P(F)) = %, Fy £ 5, , for someny 2 k, [r, X, " = 1and
sup f}alc X," = . Now assume disjoint sets Fy , Fy, - -, F, andintegers k =
M < Mg -+ < nmsuchthat Fie %, and [, X5, = l,foralll <7< m, 1 >
PlA,1= 1 — 2" where 4,, = (U7 F))°, and supnz: Jam X,.* = » have been
chosen. Note A ,, € Fn,, and P(4,) > 0. By Lemma 2, there exists a subset Foi
of A, such that P[A ] > P[Fm1) 2 PlAw)/2, Fmi1 € Fn,y, fOr somenmis = fm,

pmps Xos = 1 and supaz1 Jupy Xa® = ©.Thenl > P4l = P41 +
P[Fnul 2 P[A,° ]+ PlAn]/22 1 — 1"t Thus by induction forall m = 1, Frn
and n., are well defined with F, & G, [r, Xn, = 1, Fsn F; = & for i #j
and P[U;_; F..] = 1. We define a stopping rule ¢ by [t = nm] = Fn for allm = 1.
EXF =Y [r, X T 2 > mal = o, concluding the proof.

RemARK. Theorem 3 can be proved using other methods, for instance using
the techniques of [4].

Arguing much as in the proof of Theorem 3, we can establish:

TuroreM 4. If sup EX," = sup EX,~ = « and %, is non-atomic for some k =
1, then there exists a stopping rule t such that EX ST =EX, = .

Proor. Omitted.

It seemed plausible that we could deduce the existence of a stopping rule ¢ such
that EX, = « under reasonable hypotheses. However, evenif (¥, ,n = 1) isan
independent sequence of random variables with EY, = 0 for alln = 1, X, =
> Y, limasw EX,t = =, the following example shows that there need not
exist a stopping rule such that EX, = .

ExampLE 1. We choose two valued independent random variables (Y., n =
1) such that EY, = O for alln = 1. Let P[Y, > 0] = 3" and P[Y, < 0]=1-—
1" X, = >pa Ve, 5= ®Y1,Ys, -+, Ya),and ys T o foralln =1,
where (y.*, y.") is the range of Y, . Note that

(9) PXp. | —wforn=N|Xy=clz][ta1—-3%)>0
for every choice of N and ¢ such that P[Xy = ¢] > 0.

Let yim = 2and 4.~ = [ L1 ¢ 42> iyt form = 2. YnT = yn forallm =
1. Let C; = {cij,j = 1} be the range of X for each ¢ = 1. Note that the c¢i;’s
are all distinct and that

(10) IC,‘,"P[X,' = Cij] =1 for all Cij € U;o=1 C;.



EXPECTED VALUE OF STOPPED STOCHASTIC SEQUENCE 461

Further EX,*— « a.s.asn— . Let ¢ be a stoppingrule suchthat EX," = .
There exists infinitely many ¢;; > 0 such that P[X; = ¢;;] > 0. It follows that
there exists infinitely many ¢;; < 0 such that P[X, = ¢;] > 0 by (9)
and Plt < w] = 1. EX," = — D i jeij<0.pix,—ciji>0 Cij PIXi = ¢ij] = o by
(10) and the atomicity of the &,’s. Hence EX,* = « implies that EX,” = o
thereby implying the impossibility of EX, = c for any stopping rule ¢.
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