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1. Introduction. Consider the problem of classifying the iid random sample
X1, -+, X, into either of two populations m; and =, characterized by edf F(z)
and G(z), respectively. It is assumed that F(z) and G(z) are continuous and
satisfy the relation [ (F — G) dF > 0. Further assume that independent refer-
ence random samples Y, .-+, Y, and Z;, -+, Z, are available from = and =,
respectively. A classification procedure based on the use of two Mann-Whitney
12] statistics can be defined as follows: Let

[
(1.1) ton = (mn) ™ 2Ty 2ot [e( Vi — X;) — o(X; — Zi)]

where
1 z>0
o@) = {0 <0

and classify (X1, --+ , Xn) = X,, into = if ¢, > 0 and into m if {;, < 0. In addi-
tion, consider the situation where there is one reference sample Yy, ---, ¥,
available from m; and the observer knows that G(z) = F(x — s) and knows the
value of the translation parameter s > 0. Then let

(1.2)  ten = (mn)7 2 F 2t [o(Yi — X)) — o(X; — Yi— 8)]

and classify X,, into m if ¢, > 0. Hudimoto [8] first proposed a classification rule
similar to that given in (1.1). Gupta [5] gives a classification rule using mag-
nitudes of Mann-Whitney statistics which is applicable to the two-sided problem.

The decision rules based on ¢,, and ¢, have been studied [15], [16] for applica-
tion to signal detection in a communication system. A signal detector samples
the output of a communication channel which contains one of two stationary
stochastic processes, corresponding to the conditions of “noise only” or signal
imbedded in noise. The reference samples are stored in the detector and X, is
obtained by the detector for each bit of information sent. The translation case
using ¢, represents a constant signal level “s’” imbedded in additive noise. The
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value of the signal s is known at the detector. In communication applications the
average error rate is of primary importance. Based on the large-sample probability
of error, it was shown [16] that these fixed-sample size classification procedures
are about as ‘“efficient” as a two-sample Mann-Whitney test but, because of
symmetry in the form of the statistics, are more suitable for applications in which
it is desired to minimize the average error. Also, by choosing equal reference
sample sizes we enhance the symmetry and improve the performance of decision
rule (1.1). For instance, if the a prior: probability of X,, € m is one-half and the
total number of samples is the same, these classification procedures provide
approximately the same average error probability as a two-sample Mann-
Whitney test with a critical region set to minimize the average error.

The assumption N = [ (F — G)dF > 0 or its equivalent P[Z = Y] > 1,
is required since the decision rule is based on the one-sided form of the Mann-
Whitney statistic. The decision procedure (1.1) is not meaningful for N < 0
since the large-sample error probabilities are both equal to or greater than %.

The purpose of this investigation is to extend the decision procedures pre-
viously described so that the maximum probability of misclassification is a
preassigned constant p < %. This is not possible for the fixed sample size pro-
cedure (1.1) since \ is unknown. Both large-sample error probabilities are con-
tinuous monotonically strictly decreasing functions of N for N £ [0, %] and the
errors equal 3 at A = 0. Then for any fixed sample size we can find a sufficiently
small N to make the errors larger than p. Based on the asymptotic normality of
n*[t,m — E(t,,)] and its asymptotic variance, a fixed sample size procedure could
achieve the desired result for large n if the nuisance parameter \/o(¢,,) were
known. Our solution to the problem is based on sequentially estimating this
parameter. The reference samples are obtained sequentially from m; and m. . The
stopping rule is defined by forming a nonparametric estimate of the nuisance
parameter and comparing the estimate to a boundary which depends upon p.
The sample to be classified X, is then taken nonsequentially. The size of this
sample M is a rv since it is taken as a fixed proportion of the reference sample
size N. The random samples of random size are than used in the decision equa-
tions of (1.1) or (1.2). It is shown that the sequential procedure terminates with
probability 1 and is asymptotically efficient in the sence of Chow and Robbins
[4]. In addition, a general upper bound is found for the expected sample size.
The asymptotic distribution of the sequential decision criterion is found as p — 0.
The asymptotic distribution indicates that p represents an approximation to the
maximum error probability for small values of p. It should be emphasized that
except for the bound on the expected sample size the results are asymptotic.

2. Fixed-sample size results. Before we define the sequential procedure, the
following fixed-sample size results (see Appendix A) are required. Let
m = [2rn/(1 — r)] for usein ¢;, and m = [rn/(1 — r)] for use in ¢, with 0 < r < 1.
Then as n — ©, 0ty — B(tw)] and n'[t,, — E({,,)] both have asymptotic non-
degenerate normal distributions for X,, ¢ = and X,, € = . The moments of the
distributions are
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Ei(t;n) = Ei(ten) = N, Estyn) = Eo(tw) = —X\,
(2.1) o (ty) =m0l + 01 — nE — & — W)/
o' (ten) = n ol + ni (1 — ) + N o= N/
where
(2.2) ohh=(1—3N+a—e—r(a—3a+t2\— A1) /6,
(2.3) ol = (1 — 3[)\2 + (e — &) (1 — 2r)])/3r,

and
a=%—[GdF, e=1%—[1—F)dG,

(2.4) A= [(F - @)drF,
E=o—(a+e&) =[F — G dF.

E; and E, represent the expectation given that X,, & m1 and Xy, € 2, respectively.
The notation for the variance is similarly defined. Relations for o2, and o3, can
be obtained from (2.2) and (2.3) by interchanging e and .

Estimators of \, & and e based on the reference samples are required. For
the case where independent reference samples Y, , Z, are available from m and
m , respectively, we form the empirical cdf’s F»(2) based on Y. and G,(x) based
on Z, . The estimators

\ = — _22,7',:1 Z;'Llc(Yi - ZJ'))
(25) &4 =1%— 07 2t i 2 e(Yi — Z)e(Yi — Z4),
£ S S Dol — Vel — T,

are formed by replacing F and G by F, and G, in equations (2.4). The estimator
% is the Mann-Whitney [12] statistic and is [2] the UMV unbiased estimated of \.
Similar estimators can be constructed in an obvious manner for the separate
translation case.

W ol Nl

€ =

3. Sequential procedure and results. Results are obtained [16] for sequential
procedures based both on #,» and Z.v . The separate translation case performs bet-
ter than the general case as is apparent from the variance relations of (2.2) and
(2.3). For the same total number of samples and the same number of reference
samples in each case we have ol — 01 = Oag — O35 = m (& — \*) and by the
Schwarz inequality € = A for all (F, @). The limiting results would then in-
dicate that on the average more samples are required in the general case to meet
the same error p. For brevity, however, we will only consider the procedure
based on ¢,y and in the latter work the subscript g is omatted.

We are interested in the maximum variance or

02()\, €, &) = max [612, 022]
(3.1) =1+ 6\ — 3(1 + )\’
— 3(1 — r)(a + &) + 6(1 — 2r)A]/6r
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where

IIA
p— N

A =max (a,e) if 0<r
=r

IIA

= min (¢, ) if
It can be shown (see Appendix A) that
(32) (24)7" = (1 —3\)/6r =’ (\ @, @) < B(r)(1 —3\') < B(r)
where
B(r) = (1 —1r)/2r if 0<r=<1
— 40/ it o<l

Relation (3.2) is valid if the parameters A\, ¢ and e are replaced by their es-
timates. Then ¢ = (), &, &) and ¢ = o(}\, &, &) are positive and bounded.

In the fixed sample size decision procedure if \, e; and e are known then the
sample size (continuous)

(3.3) n(p) = o’ (@71 — p])*/N'

will cause the maximum of the two approximate large-sample misclassification
errors to be equal to p. The actual sample size used would be [n(p)] which is the
smallest integer equal to or greater than n(p). The function & *(-) represents
the inverse function of ®(z), the standard normal cdf. Relation (3.3) will be
sequentialized (\ and o estimated sequentially) noting that \ & [—1, 1] although
A e (0, 3]

The sequential stopping rule is defined as follows: Take one sample at a time,
from each population m and 7, and stop with the random reference samples

Yi,--,Yx,Z, -+, Zy where N is the first integer n = n, such that

(3.4) nt(A/6) 2 @7(1 — p)

with no = 1, a fixed integer. After the reference samples are obtained, define
arv M = [2rN/(1 — r)] and nonsequentially obtain the sample (Xi, -+, Xu)

= X,, which is to be classified. Form the statistic ¢y , as given in Equation (1.1),
and classify Xy into m if & > 0 and into = if &y < 0. The value p is the prescribed
maximum error probability and satisfies 0 < p < %. The ratio r is that proportion
of the total number of samples which belongs to the group of samples to be
classified. A proper choice for r would depend upon the relative cost of obtaining
reference samples and samples to be classified.

Using the upper bounds on ¢ (3.2), simplified sequential procedures can be
constructed which only require the estimation of A\. The simplified procedures,
however, require more samples to achieve the same error p.

The results can be stated as follows:

(3.5) PIN < o] =1,
(3.6) limp. o N/n(p) =1 as.,
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(3.7) E(N/n(p)) = 6rB(r)(max ([ (p)]; no)/7 (p) + QIpD),
where
Qlp] = [(p)(gn — DI/A(p) + a/{g2(1 — exp(—al(g — 1)/q))},
gn= 1+ 1/g+ 2/¢H},
(3.8) g =2B(r)(1 = 3\ (1 — p)I,
2N(1 — 3\,

a =
a(p) = g»/a,

(3.9) limp.o E(N/n(p)) = 1,

(3.10) limpo P} (p) (ty — \) < 2] = ®(2/01) if Xmem,

(3.11) limp.o P} (p) (ty + N\) < 2] = ®(x/0z) if Xnem.

Applying the asymptotic distributions of (3.10) and (3.11), for small values of
p, to the sequential dexicion procedure leads to the result that the maximum
of the two misclassification errors is equal to p for all N & (0, 3].

The first term (within the parenthesis) in the upper bound on the expected
sample size, relation (3.7), would be equal to one in most applications. The term
Q[p] is a positive monotonically increasing function of . As an example of the
magnitude of Q[p], if r = § and p = .005 we get Q[p] = 1.35 for N [0, %], and
Qlp] = 16.1 for X £ [0, §]. Relation (3.9) indicates that the sequential procedure
is asymptotically efficient. This interpretation follows from the fact that if the
maximum error is equal to p and E(N) = n(p), we do as well, on the average,
not knowing N\, ¢ and e as would be possible if these parameters were known
and a fixed-sample size procedure were used.

4. Proof of the sequential results. A sequence of sequential procedures is
constructed by considering a sequence of decreasing prescribed error bounds
{pu}. Let u be an index for the sequence, i.e., w = 1, 2, 3, --- and the sequence
{p.} be such that limu.. p. = 0. Then {n(p.)} as given by (3.3), or {n.} for
brevity, is an increasing sequence of positive numbers and limy,e 7. = «. For
each p., the stopping rule of (3.4) generates the rv N, . We then have a sequence
of rv’s {N,} corresponding to the sequence {p.}.

TaeorREM 1. If N > 0, then P[N, < ] = 1.

Proor. If follows from Sen [13] that A — X\ a.s. Also, the uniform (on the
reals) a.s. convergence of empirical cdf’s and the triangle law insure that & — &
a.s., & — e a.s. and by continuity

(4.1) \é — N as.

From (3.4)

(42) P[N, = o] = P{n}(\/6) < @[l — pJ for all n = no},
but (4.1) implies that (4.2) is zero if X > 0, which completes the proof.
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THEOREM 2. limy.o Nu/n. = 1 a.s.
Proor. From stopping rule (3.4) and the lower bound of (3.2), it follows
that

N.z (7L — p)’/6r
which implies
(4.3) limy,e Ny = ©  as.

Then following a procedure similar to that used by Chow and Robbins [14],
Lemma 1, we get limuye (7,/N,)? = 1 a.s. which implies the theorem.
The following lemma is useful in obtaining the results concerning E(N./n.) .
LEmmaA 1. Let

(4.4) S(a,b) = b7 Xieexp {—a((b + j)! — )7
with a and b positive. Then
(4.5) 8(a, b) = Su(a, b) = b B ((b + d)} — b))
+ 57 (1 — exp (—a(l — (@/b 4+ 1)™H)™

is a valid upper bound for any value of d & (0, ). In (4.5) the brackets have the
same meaning as stated with respect to [n(p)]. The ming {Sy(a, b)} occurs when
d is chosen as the solution of cosh (9) = (a — g¢)°/(2ab) + 1 where
g = a(l — (d/b + 1)), The solution for 2b/a > lisd = 1/a + 2(b/a)}. Using
this value of d in (4.4) gives

(4.6) S(a, b) < Su(a,b) = 0((ab)™?) as ab— .

Proor. Let C(4,b) = ((b+J ) — b%)? and consider j a continuous variable.
The curve of C(j, b) vsj is positive and concave upward. Draw a tangent to the
curve at the point j = d. The equation of the tangent is

T(j,b,d) = (1 — (d/b+ 1)) — (b + a)} — bh))
and it follows that C(j, b) = C'(j, b) where
(4.7) C'(j,b) =0 for 0 =7 < [B'((b+ d)! —bh)]
= T(j,b,d) for jz B((b+d)— b))
Then
S(a,b) < Su(a, b) = b7 Xieexp {—al’(j, b))}
and from (4.7)
(4.8) Su(a,b) = bBH® 4+ d)F — b)] + b7 eexp {—a(l — (d/b+ 1)7)i}

where the index has been translated in obtaining the second term of (4.8).
The remaining series is geometric so that (4.5) follows directly. The approximate
solution for d is obtained by using the first two terms of the Maclaurin expansion
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for cosh (g) when 2b/a >> 1. Letting d = 1/a + 2(b/a)! in (4.5) yields a com-
plicated expression which for (ab)? > 2 reduces to Su(a, b) = 2(ab)™* +
(3/2)(ab)™ + %(ab)™* which implies (4.6).
THEOREM 3. An upper bound on E(N./n.) is given by (3.7) and (3.8) and in
addition
limysw B(Ny/ny,) = 1.

Proor. Consider a different sequential stopping rule based on the upper
bound of (3.2). Let

(4.9) i = B(r)(®7[1 — p])’/D*(\)
where
D(\) = 2/(1 — 3%}

and N, be the first integer n = no such that

(4.10) »D(X) = D).
Then from (3.2) it follows that N, < N, for every u and
(4.11) Nu/tu £ (fiu/1) (Nu/7u) < 6rB(r) (Nou/).

We have E(Nu/fiu) = no/fiu + (1/7.) D meny P [N > n] and it follows easily
that

(4.12) E(N./f,) £ max ([7%]; m0) /Tou + Ql[pu]
where
(4.13) Q'pu] = (1/7) 2 neti1 PIN. > n).

For a fixed integer n, if inequality (4.10) is satisfied it follows that the sequential
procedure must have terminated in at most » samples. We then have

(4.14) PIN. £ n] = P[n'D(}) = #.'D(\)]

or

(4.15)  P[N, > n] £ P[D(\) — D(X) > DOV — @) /4.
By the mean value theorem

(4.16) D(\) — D) = k()N —\) if A= N,

where

k(\) = maxogiacs {dD(M)/dN =i} = D'(N)/N.
Since (1 — 3%2)* > 0 for all Ae[—4, 4], D(X) can be replaced by X in (4.10)
without effecting the rv N, . This was taken into account in obtaining (4.16)
and k(). Since D(N\) is monotonic strictly increasing it follows from (4.15)
and (4.16) that

(417) PN, > n] <= PN — A > DOV@ — ab)/ak\)] for n = 7.
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From Hoeffding’s [7] bound on 2-sample U-statistics we have
(4.18) P\ — A = h] < exp (—2nk*) forh = 0.

When (4.17) and (4.18) are used in conjunction with (4.13) and a shift is
made in the summing index, we get

(4.19) Q'lp.] = Qlp. = Su(a, b)
where Sy(a, b) is defined in Lemma 1, Equation (4.4), and
a = 2D*O\)/EE(\) = 28%(1 — 3\, b= ,.

The bound of (3.8) is obtained by using (4.11) and by setting d = 1/a +
2(b/ a)* in (4.5). This gives a good bound in the region of interest since b =
will normally be large. From (4.6), Q[p.] = O[(a#i.)” % so that limy.e Q[p.) = O
which in conjunction with (4.12) implies that

(4.20) lim SUpysw B(NW/%,) = 1

From the proof of Theorem 2 it is clear that N./Ai, — 1 a.s. and from Loéve [11],
Section 11.4A, this implies that lim inf,... E(N,/7.) = 1 so that from (4.20),
liMmusw E(Nw/f,) = 1 and the family (N./7iu: 0 < p. < %) is uniformly in-
tegrable. It follows from (4.11) that N./n, is also uniformly integrable so that
from Theorem (2), limy.e BE(Ny/n,) = 1 which completes the proof.

TaEOREM 4. In the limit as u — «, the distribution of nd(ty, — \) s N(0, o1’)
if X, € m1, and the distribution of n. (tN,, 4+ 2\) s N (O, o2 ) ifXneme.

Proor. From Section 2 we have that as n — », ni(t, — \) is N(O, o1%) if
X,. e m and n} (¢, + \) is N(0, o5°) if X,, € m and from Theorem 2, (N,/n,) — 1
as u — . Theorem 4 then follows from Anscombe [1], Theorem 1, if the statistic
t, satisfies condition (C2) of reference [1]. This condition can be stated as
follows: Given any small pos1t1ve 61 and 8, , there is a large v and small posmve
8; such that for any n > v, P{n} |ty — &, < & simultaneously for all integers n'
such that [n’ — n| < &n} > 1 — 5.

The statistic ¢, is a special case of a simplified form of generalized U-statistic
[10] which can be written as,

(4.21) Un = (m’lml)_l 211";1 Z;';l legl o(Xi, Yi, Zr)

where m = [ein], m = [en], and 0 < ¢1,2 < . In (4.21), the three samples have
arbitrary cdf’s but we assume E[p(X, ¥, Z)] = 6. We will show that if
Elo(X, Y, Z) — 6]' < o, then U, satisfies condition (C2). Since for ¢, ,
o(X, Y, Z) is bounded this latter condition is automatically satisfied and this
will complete the proof.

Let ¢1(z) = Elo(z, Y, 2)], e2:(y) = Elo(X, y, Z)], and ¢3(2) = Ele(X, Y, 2)]
and form

(4.22) Um(l) = m.-l Z §01(Xi)y Un(z) = n—l Z ‘P2(Yi)7
UP =m™ > es(Z)
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and
(423) dp = 0} (U, — 0) — W (Un® — 0) + n}(U® — 0) + 22 (UL — 0)).

It follows from the statistics of (4.22) and results of Anscombe [1], that if
dr» — 0 as.,asn — o, then U, satisfies condition (C2). In proving asymptotic
normality of U-statistics it has been shown [6], [10] that d, — 0 in probability
asn — o if Elp(X, Y, Z) — 6 < «. By a similar but lengthy procedure it
can be shown [16] that if E[o(X, Y, Z) — 6]* < « then E[d,]] = O(n™*) < .
From Loéve [11] this latter result implies that d, — 0 a.s., asn — .

6. Acknowledgment. The authors are grateful to the referee for making some
helpful suggestions, and in particular for suggesting a method of estimating all
three of the parameters instead of only estimating \.

APPENDIX A

Moments for Fized-Sample Size Statistics

The statistic ¢;, of (1.1) can be generalized slightly by letting the reference
samples from the two populations be of different size. Let Y1, -+, Y, and
Zy, +++ , Zn, be independent random samples from m; and -, , respectively. Then

ty = (mmy)™ D7 D24 e(¥i — X))
(A1) — (mma) ™ 27 2o (X — Zi)
= U]_ - U2

where ¢(z) is defined in (1.1). The moments of ¢, follow directly from Mann
and Whitney [12] once we have the correlation coefficient p(Uy, Us). It is then
only necessary to find

(A2) E(UUs) = (mmgm®)™ 2 Ble(Ys — X;)e(X s — Z4)].
If X,, e m , we have Y, and X; ~ F(z), Z, ~ G(z) so that
Ei[e(Y: — X;)e(X v — Z,)] = P[Y;> X PIXv > Z,] =} [GdF, (j#F),
Ei[e(Ys — X;)e(X; — Z,)] = PIY: > X;,X; > Z)]
= [P[Y: > z)|P[Z, < xj]dF (z;)
= [ (1 — F)GdF

and
Ex(UUs) = (m — 1)(2m)™ [ GdF +m™ [ (1 — F)G dF,

which leads to
(A3) Pl(Ul ) U2)

1 — 60\ — &)lnin’

(m+n1+ Dim + ne + 1 — 122%(m + ny — 1)
+ 1200 — e)(ng — 1) 4+ 120\ — e)(m — 1)]t
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where \, ¢, and e are defined in Section 2. The coefficient p2(U;, Us) can be
obtained from (A3) by interchanging ¢ and e . If we let A\ = ¢ = & =
O (F(z) = G(x)), Equation (A3) reduces to a result of Whitney [14].

Asymptotic normality follows from the fact that ¢, is a generalized U-statistic
[10]. From Lehmann [9], the terms of O (m™) in ¢’(U;) and ¢°(U,) cannot both
be simultaneously zero. It then follows, from (A1), that the limiting distribution
is nondegenerate if p;(U; , Us) and p( Uy, U,) are nonpositive. This is the case
since, we shall show in the next paragraph that N — e, = &. Results for ¢, can
be obtained in a similar manner.

From the Schwarz inequality, [ (F — G)*dF = [[ (F — @) dF} and clearly
G® < Gand (1 — F)* £ 1 — F. Using these inequalities in relations (2.4) yields,

(A4) a+ e <2\—\
(A5) A—1<g,<1

By replacing F and G byF, and @, , respectively we obtain the same relations
for ), & and & . Birnbaum and Klose [3] give stronger bounds on the parameters
but their results cannot be used since F, and G, do not satisfy the assumptions of
(3l.

The bounds on ¢’()\, €, €) given in (3.2) can now be obtained. Note that
min (e, &) = (¢ + €)/2 = max (&, €), so that from (3.1) we have
6ra"(\, &1, &) = 1 + 6rh — 3(1 + )\’ — 3r(e + &) and using (A4) gives the
lower bound of (3.2). From (A5), e + ¢ = 2\ — 3 and 4 = min (¢, &) =
N—2for:i <r<1.From (A4),e, = 2\ — N — 150 that 4 = max (g, ) <
O\ — N — min (g,w) = A — N 4+ 2for0 < r < L. Using these relations in
(3.1) gives the upper bound of (3.2).
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