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MARTINGALE EXTENSIONS OF A THEOREM OF
MARCINKIEWICZ AND ZYGMUND!

By Y. S. Crow

Purdue University

1. Introduction. Suppose that (d,, » = 1) is an orthonormal sequence of
independent random variables and (a,, n = 1) is a sequence of real numbers.
Kac and Steinhaus [4] prove that if d,? are uniformly integrable and Y a. d,
converges a.s., then Z an. < . Marcinkiewicz and Zygmund [5] improve this
result by replacing the uniform integrability of d.’ by E |d,| = & > 0 for every n.
Recently Gundy [3] has extended the latter to martingales as follows: Let
(2w =dy+ -+ 4+ du,Fn,n = 1) be a martingale with E(d,’ | F,1) = 1 a.s. and
E(|dn| |Fn1) = 6 a.s. for some number § = 0, and let (¢n, For,n = 1) be a
stochastic sequence, i.e., ¢, are §,_; measurable random variables. Then except on
anull set, 2 on < ®, 2 o ds’ < » and > onda converges are equivalent.

In [6] (also in [7], p. 123), Zygmund proves the following summability result:
Let d, be independent, identically distributed random variables with
Pld; = +1] = % and let (@mn, m = 1, n = 1) be a double sequence of real
numbers such that iMm.c tn. = an , finite, for each n. If Y i Gmi di = T a..
and P[T,, converges] > 0, then D a. < .

In Section 3, we shall give a new proof of Gundy’s theorem and improve it
slightly. In Section 4, Marcinkiewicz and Zygmund’s theorem is extended to a
summability result, which includes Zygmund’s theorem as a special case.

2. Notation and lemmas. Let (2, F, P) be a probability space, (F,,n = 1) be
a sequence of o-fields with §, C F,41 C F and (x,, #» = 1) be a sequence of ran-
dom variables. If §; C &, C - - - and x, is F,-measurable for each n, the sequence
(Zn,Fn,n = 1) is said to be a stochastic sequence. We always put F = {&, Q}.
For a set A, the indicator function of A is denoted by I(A4), and the inte-
gral f,, z dP is shortened as f,, el (tpo=d + -+ +du,Fn,n =1)is a mar-
tingale, the sequence (d,, F.,n = 1) is called a martingale difference sequence.

LemMa 1. Let d = 0 be a random variable and G C & be ao-field. Putm = E(d|g)
andv = B (d*| Q). If \ = 04s a G-measurable random variable and Plm < «] = 1,

then
(1) vP(d > M |g) = N(m — 2\),
(2) E(@IN < 1]|Q) = (m — M)? on [m = M.
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Proor. To prove (1), we can assume that X > 0.
m = E(d|g) < N + E(dI[w < d < v/N|G) + E(dI[d > v/N]|Q)
= 20 4 vP(d > W |G)/A,
which yields (1). Since E(dI[\d = 1]|g) < ME(d’I[Md = 1]|G) £ M,
E(&IN < 1]|Q) = E*(dINd < 1]|Q) = (m — M) on [m = M.

From Lemma 1, immediately follows:
Lemma 1'. Under the conditions of Lemma 1,4 P[Bw = m < «] = 1 for some
constant N > 0, then

1 P(d>w|g) = N,
and if ¢ = 0 is a G-measurable random variable,
(2" E(dIled < 1]|Q) = (3N — o0)%® on [3\ = o).

Lemma 2. Let (d., F., n = 1) be a non-negative stochastic sequence such that
there exists a constant X > 0 satisfying

(3) © > E(dn|Fn1) = Nn, where v, = E(d,}|Fns),
form = 1, then
(4) Plsupv, = o, supd, < »] = 0.

Proor. Put A = [sup d. < K] for K > 0. By Lévy’s martingale version (see
[2], p. 324) of Borel-Cantelli lemma, Y, P(d, = K |F,1) < « on A. By (1),
for almost all w € 4, M, (w) = K for all large n. Hence sup v, < « on A. Letting
K — «, we obtain (4).

LeMMA 3. Let (¢n , Fua ,n = 1) be a stochastic sequence and let (e, , Fn,n = 1)
be a martingale difference sequence with Ee, < w. Put d, = ¢,
v, = go,,E%(e,.zlfF,,_l) ond xz, = dy + -+ 4+ d.. For constants K > 0and M > 0,
lett = inf {n ||z, > K or |[vaa| > M}. Then forj = 1,

(5) (B + K)’ = 2 [uen &’U[ld] < K — 2K7'I[|di| = K?).
Proor. Since E d’I[t = k] = Ev’I[t = k] < M?, D 1 duI[t = k] is a martingale
and
EX a4t = k) = EQ i ddlt = k))? = Baliney < K'+ Jre<i Qe d, + d)
= (K2 + K)2 + f[tgj,w,lgﬂ] (296t_1 d: + dt2)
S (K + K+ (1 + 2K 220 fuzhianzan

which yields (5).
LemMA 4. Let d, = 0 be a sequence of random variables and for some constant
A> 0,

(6) w > Edy, = 3\u,, where u, = E'd.2
forn = 1. If sup u, = o, then sup P[d, > K] = \* for every constant K > 0.
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Proor. Putting § = {&, @} in Lemma 1’, we have P[d, > M,] = N forn = 1.
Fork = 1,2, ---, choose n;, such that u,, = k. Then for any constant K > 0
and \k = K,

sup Pld, > K] = Plds, > K] = Pldu, > Nkl = Pldy, > Min] = N4

LemMma 5. (Burkholder [1], Lemma 4). To each 8 > 0 corresponds an o > 0 with
the following property: If (xn = dy + -+« + du, T, n = 1) is a martingale and
w > E|di| = 6B dforn = 1, then E |x.| = aF'z,”.

3. A new proof of Gundy’s theorem.

THEOREM 1. Let (¢n , Fn1 ,n = 1) be a stochastic sequence and (e, Fn,n = 1)
be a martingale difference sequence with Ee.' < . Put dy = ¢nen, 0n =
loul B (e | Fnn), and @p = dy + -+ + dn . If there exists a constant X > 0 such
that for n = 1 and all large K > 0,

(1) E(&[|ds| < K| Faaa) = BN — 0, K D% on [3\ = 0K,

then except on a null set, the following statements are equivalent:

(8) sup |z < ©,  supv. < oo,
9) 2 (A’ ') < o,
(10) dodt< o,  supv, < ®,
(11) T, converges, sup v, < ©,
(12) Dol < .

Proor. We shall prove that (i)(8) implies (9) and that (ii) (10) implies (11).
That (9) implies (10) and (12) and that (11) implies (8) are obvious. In ([2],
p. 323), Doob proved that (12) implies (11).

(i) For M > 0, choose K > 0 such that K\* = 4 and 2K°\ = M. Define
t = inf {n||z,] > K or v,41 > M}. Then by Lemma 3,

(K* 4+ K)* 2 24 fuen (ld] < K7 — 2K I[|di] 2 K7)) di”.
On the set [t = k], 3\ — 9K > = 3\ — MK * = \. Hence by (7),
(13) (K*+ K)*

> > f[tgk] (\F — 2K Yok = N f[tgk] /2 = N > f[tgk] di’/2.
Therefore D, (v.) + d.) < ® on [t = »] = [sup |z.| = K, sup v, < M]. Letting
K — » and then M — o, we obtain that > (v + d) < ® on

[sup |2.| < ®, supv, < «].
(ii) For M > 0, choose K > 0 such that 2K\ = M. Define

t=inf{n| 2 rdi > K or v.: > M}
Then forj = 1,
Bt = k] = 2 AE &M > k) + 21 EdIt = k]

< K+ K*+ D IE&I]t =k, |di| 2 K]

I
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Hence by (7),
K+ Kz2YIEQIE =k |dl < K] 2 2IEURE = k(3N — wK )"
On the set [t = k], 3\ — 0K ' = 3\ — MK ' = \. Therefore
K+ K =z N2IEUt 2 ko),
D EItz Kd’) = 2 EIl 2 k') < .

Since Y_i1I[t = k] di is a martingale, > I[t = k] di converges a.s. Thus z, con-
vergesonft = «] = > d < K, supv, < M). Letting K — o and then M — «,
we have that z, converges on [ d,’ < »,sup s, < o]. The proof is completed.

TuEOREM 1. Let (¢n, Fu1,n = 1) be a stochastic sequence and, (e, ,F,,n = 1)
be a martingale difference sequence with Ee,’ < o and u, = Eie,’ | Foon). If there
exists a constant N > 0 such that forn = 1,

() E(leal |Faa) Z 3\,

then except on a null set, sup |2 v oxer| < ®©, D oness < ©, D @nen converges
and Y o u.’ < o are all equivalent.

Proor. Put d, = ¢uen and v, = |on|E*(ex’ | Fu1). Then (7') implies that
E(|da| | Fo) = 3M\0,. Since Plv, < »] = 1, from Lemma 1’, we have that (7)
holds and from Lemma 2, sup v, < < if sup |d,| < . Thus Theorem 1" follows
from Theorem 1.

When %, = 1 a.s. for n = 1, the equivalence of > ete < o, > onen cOn-
verges, and > .2 < » under the conditions of Theorem 1’ has been established
by Gundy [3] by a different method.

TrEOREM 2. Let (d,, Fn, n = 1) be a martingale difference sequence with
Ed? < «© andv, = E%(dflifn_l). Form = 1, let (empn, Fna,n = 1) be a sto-
chastic sequence such that for each n = 1,

I

Pllimy, ¢m,n = ¢, finite] = 1.
Put Sm,n = >t om, 1di . If there exists a constant 1 > X\ > 0 such that for n = 1,
(14) E(|dy| | Fnma) = 3N0a,

then Y onva’ < © on the set [SUPm.n |Smn| < ©].

Proor. For M > 0, choose K = M such that K’\ = max (4, M). Define
t = tn = inf {n||sSna| > K O |omaitVan] > M}. By Lemma 1’ and (13), for
j = 17 27 )

(15) 2K + K)* = N2l [itnzn omave’.
Put A = [SUPm.n |Sminl < M, SUDm,n |@m,as| < M]. Then
2K 4 K)? = N D [ 4 omivi.

By Fatou lemma, 2(K* + K}z N\ Z;’;lz{f oiv.’. Hence Y f N A
and D ¢nvs’ < o on A.Since M is arbitrary, D ¢, v,* < © on [SUDm.u [Sm.a| < @,
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SUPm.» |[@m,atn| < ©]. Now let 7, = SUpm |@m,q|- Since Pllo,| < ©] =1, (4, Fa ,
n = 1) is a stochastic sequence. By (14), E(n,|da| | Fa1) = 3N, for n = 1.
By Lemma 2, P[SUp, 7.0, = o, SUP, Malds] < ] = 0. Hence Supm,n [@m,nvn|
= SUPufan < ® ON [SUPnMa|da] < o). Therefore 2 ¢, v," < © 0N [SUPm,» [Sm.nl
< o]

4. Some summability results. In this section, we shall assume that am,. is a
double sequence of real numbers with lim,, a.,» = @, for each n. For a stochastic
sequence (dy ,Fn,n = 1), We put Sp,n = Z;Ll Om e O

TueoreMm 3. Let (d,, F., n = 1) be a martingale difference sequence with
E d,} = 1 and for some constant X > 0,

(16) E|d,| 2z 3, ‘ (n = 1).
(1) If for a fixedm = 1,
(17) limg.e P[|Sm.»| > K] = 0 unif. in n,

then D w10t < ®, il Sy = Sn a.s. and in Ly, and for some a > 0, independ-
ent of m, Elsn| = aB’s,’.
(i) If (17) holds for every m = 1, and

(18) limg.,e Pllsn] > K] = 0 unif. in m,
then D a,. < . In particular, doal < o, if
(19) limgaw PllSnq] > K] = 0 unif.in m and n.

(iii) If B(ds|Fna) = 1 for n = 1 and if for some constants N > 0,7 > 0 and
K >0,

(21) SUPm,n |am,nl < oo, inf,, P[sup, |3m,nl < K] =z 9,
then D a," < .

Proor. (i) By Lemma 5 and (16), there exists « > 0, independent of m,
such that

(22) Elsm,nl = aE%s,z,,,n.

By Lemma 4, if sup, Esh,. = ©, then limg,sup, Pllsn. = K] = N, which
contradicts (17). Therefore sup, Ess . = > amg < o, liM, Sy = Sm a.s.
and in L., and by (22), Els,| = aFis,>.

(ii) By (i), for each m = 1, lim, S,» = Sn a.8. and in Ly and Els,| = alls,’.
By Lemma 4, if sup, Es,” = , then limy., sup, P[|s.| = K] > 0, which con-
tradicts (18). Hence sup, Es; = SUpn Dor aka < . By Fatou lemma,
Zanz < .

(iii) Put supm,» |am,»] = M and choose K = M such that K\ = max (4, M).
Define ¢ = t,, = inf {n||sn,.] > K}. Since [vu@n,n] = |ama] £ M = K, by (15)
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and (21), we have
2(K: 4+ K)N\7?

v

Zir:lf[tmgk] any = Zi=l ap i Pltn, = ]
= ZZ:I ak, xPlsup, [Smn] = K] 2 9 Z£=larzn.k-
By Fatou lemma,
2(K* + K)N 2 92 da.
Hence 2 a,” < w, and the proof is completed.
From Theorem 3(ii), immediately follows:

CoROLLARY 1. Let a, be a sequence of real numbers and (x, = aady + -+ +
n O, Fr,m = 1) be a martingale such that for some constant N > 0,

(23) Ed:=1, Eld]=\

(i) If Plsup, |2.] < ] = 1 or (ii) ., converges in distribution for some sub
sequence, then Za,f < o (and x, converges a.s. and in Ly).

Corollary 1(i) reduces Gundy’s local condition: E(d,’|F,—1) = 1 and
E(|d4|| Fa1) = N to the global condition (23), when the stochastic sequence
(¢n , Fna,n = 1) is replaced by a sequence of constants. When d,, are independ-
ent random variables, Corollary 1(i) reduces to a result of Marcinkiewicz and
and Zygmund [5].

Corollary 1(ii) is interesting in comparison with the following well known
result: Let d,, be independent random variables. If Y, d,, converges in distribution,
then Y d, converges a.s.

TaEOREM 4. Let d, be a sequence of independent random variables such that for
some constant N > 0 and for every n = 1,

(24) Ed,=0, Ed’=1, E|d]=)
(25) PlliMysew Smn = Sm] = 1,
(26) P[Supnm |sm| < ] > 0.

Then Y a.’ < «,if |a.] < o« for each n.

Proor. Since lim, @n,n = a, finite, SUpPn |[am.n] < o« for n = 1, and the set
[SUpm [$m] < o] is a tail event. By zero-one law, P[supm[sm| < «] = 1. Let
d*, &%, - - - be random variables such that d; and d;* have the same distribution
and that dy, di*, d», &b*, - - - are independent. Put e, = (d. — d,*)27%. Then
Ee, = 0, Ee,) = 1,2'Ele,| = 2E(d, — d.*)I[dn = 0,ds” < 0] = E|d,| = \. There-
fore, we can assume that d, is symmetric for each n. By Lévy’s inequality (see
(2], p. 106),

P[sup, |sm.a| > K] < 2 P[[s,| = K] < 2 P[supn[s»| = K].

Since P[supy [sm| < ©] = 1, limy.e P[sup, [Sm..] = K] = 0 uniformly in m.
Therefore _ a, < © by Theorem 3(ii).
When P[d, = =+1] = 1, Theorem 4 is due to Zygmund ([6], also [7] p. 123).
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