MARTINGALE EXTENSIONS OF A THEOREM OF MARCINKIEWICZ AND ZYGMUND¹

By Y. S. Chow

Purdue University

1. Introduction. Suppose that $(d_n, n \ge 1)$ is an orthonormal sequence of independent random variables and $(a_n, n \ge 1)$ is a sequence of real numbers. Kac and Steinhaus [4] prove that if d_n^2 are uniformly integrable and $\sum a_n d_n$ converges a.s., then $\sum a_n^2 < \infty$. Marcinkiewicz and Zygmund [5] improve this result by replacing the uniform integrability of d_n^2 by $E |d_n| \ge \delta > 0$ for every n. Recently Gundy [3] has extended the latter to martingales as follows: Let $(x_n = d_1 + \cdots + d_n, \mathfrak{F}_n, n \ge 1)$ be a martingale with $E(d_n^2 | \mathfrak{F}_{n-1}) = 1$ a.s. and $E(|d_n| | \mathfrak{F}_{n-1}) \ge \delta$ a.s. for some number $\delta \ge 0$, and let $(\varphi_n, \mathfrak{F}_{n-1}, n \ge 1)$ be a stochastic sequence, i.e., φ_n are \mathfrak{F}_{n-1} measurable random variables. Then except on a null set, $\sum \varphi_n^2 < \infty$, $\sum \varphi_n^2 d_n^2 < \infty$ and $\sum \varphi_n d_n$ converges are equivalent.

In [6] (also in [7], p. 123), Zygmund proves the following summability result: Let d_n be independent, identically distributed random variables with $P[d_1 = \pm 1] = \frac{1}{2}$ and let $(a_{m,n}, m \ge 1, n \ge 1)$ be a double sequence of real numbers such that $\lim_{m\to\infty} a_{m,n} = a_n$, finite, for each n. If $\sum_{k=1}^{\infty} a_{m,k} d_k = T_m$ a.s. and $P[T_m \text{ converges}] > 0$, then $\sum a_n^2 < \infty$.

In Section 3, we shall give a new proof of Gundy's theorem and improve it slightly. In Section 4, Marcinkiewicz and Zygmund's theorem is extended to a summability result, which includes Zygmund's theorem as a special case.

2. Notation and lemmas. Let $(\Omega, \mathfrak{F}, P)$ be a probability space, $(\mathfrak{F}_n, n \geq 1)$ be a sequence of σ -fields with $\mathfrak{F}_n \subset \mathfrak{F}_{n+1} \subset \mathfrak{F}$ and $(x_n, n \geq 1)$ be a sequence of random variables. If $\mathfrak{F}_1 \subset \mathfrak{F}_2 \subset \cdots$ and x_n is \mathfrak{F}_n -measurable for each n, the sequence $(x_n, \mathfrak{F}_n, n \geq 1)$ is said to be a stochastic sequence. We always put $\mathfrak{F}_0 = \{\emptyset, \Omega\}$. For a set A, the indicator function of A is denoted by I(A), and the integral $\int_A x \, dP$ is shortened as $\int_A x$. If $(x_n = d_1 + \cdots + d_n, \mathfrak{F}_n, n \geq 1)$ is a martingale, the sequence $(d_n, \mathfrak{F}_n, n \geq 1)$ is called a martingale difference sequence.

Lemma 1. Let $d \ge 0$ be a random variable and $\mathfrak{G} \subset \mathfrak{F}$ be a σ -field. Put $m = E(d \mid \mathfrak{G})$ and $v = E^{\frac{1}{2}}(d^2 \mid \mathfrak{G})$. If $\lambda \ge 0$ is a \mathfrak{G} -measurable random variable and $P[m < \infty] = 1$, then

(1)
$$vP(d > \lambda v \mid \S) \ge \lambda (m - 2\lambda v),$$

(2)
$$E(d^2I[\lambda d < 1]| \mathcal{G}) \ge (m - \lambda v^2)^2 \quad \text{on} \quad [m \ge \lambda v^2].$$

Received 23 April 1968.

¹ This research was supported by the National Science Foundation under Grant GP-06073.

Proof. To prove (1), we can assume that $\lambda > 0$.

$$m = E(d \mid \S) \le \lambda v + E(dI[\lambda v < d \le v/\lambda] \mid \S) + E(dI[d > v/\lambda] \mid \S)$$

$$\le 2\lambda v + vP(d > \lambda v \mid \S)/\lambda,$$

which yields (1). Since $E(dI[\lambda d \ge 1]|g) \le \lambda E(d^2I[\lambda d \ge 1]|g) \le \lambda v^2$,

$$E(d^2I[\lambda d < 1]| \mathcal{G}) \ge E^2(dI[\lambda d < 1]| \mathcal{G}) \ge (m - \lambda v^2)^2$$
 on $[m \ge \lambda v^2]$.

From Lemma 1, immediately follows:

Lemma 1'. Under the conditions of Lemma 1, if $P[3\lambda v \leq m < \infty] = 1$ for some constant $\lambda > 0$, then

(1)
$$P(d > \lambda v \mid \mathfrak{P}) \ge \lambda^2,$$

and if $\varphi \geq 0$ is a G-measurable random variable,

(2')
$$E(d^2I[\varphi d < 1]| \mathcal{G}) \ge (3\lambda - \varphi v)^2 v^2 \quad on \quad [3\lambda \ge \varphi v].$$

Lemma 2. Let $(d_n, \mathfrak{F}_n, n \geq 1)$ be a non-negative stochastic sequence such that there exists a constant $\lambda > 0$ satisfying

for $n \geq 1$, then

$$(4) P[\sup v_n = \infty, \sup d_n < \infty] = 0.$$

PROOF. Put $A = [\sup d_n < K]$ for K > 0. By Lévy's martingale version (see [2], p. 324) of Borel-Cantelli lemma, $\sum P(d_n \ge K \mid \mathfrak{F}_{n-1}) < \infty$ on A. By (1'), for almost all $\omega \in A$, $\lambda v_n(\omega) \le K$ for all large n. Hence $\sup v_n < \infty$ on A. Letting $K \to \infty$, we obtain (4).

LEMMA 3. Let $(\varphi_n, \mathfrak{F}_{n-1}, n \geq 1)$ be a stochastic sequence and let $(e_n, \mathfrak{F}_n, n \geq 1)$ be a martingale difference sequence with $Ee_n^2 < \infty$. Put $d_n = \varphi_n e_n$, $v_n = \varphi_n E^{\frac{1}{2}}(e_n^2 \mid \mathfrak{F}_{n-1})$ and $x_n = d_1 + \cdots + d_n$. For constants K > 0 and M > 0, let $t = \inf\{n \mid |x_n| > K \text{ or } |v_{n+1}| > M\}$. Then for $j \geq 1$,

(5)
$$(K^2 + K)^2 \ge \sum_{1}^{j} \int_{[t \ge k]} d_k^2 (I[|d_k| < K^2] - 2K^{-1}I[|d_k| \ge K^2]).$$

PROOF. Since $E d_k^2 I[t \ge k] = E v_k^2 I[t \ge k] \le M^2$, $\sum_{i=1}^{j} d_k I[t \ge k]$ is a martingale and

$$E \sum_{1}^{j} d_{k}^{2} I[t \ge k] = E(\sum_{1}^{j} d_{k} I[t \ge k])^{2} = Ex_{\min(t,j)}^{2} \le K^{2} + \int_{[t \le j]} (2x_{t-1} d_{t} + d_{t}^{2})$$

$$\le (K^{2} + K)^{2} + \int_{[t \le j, |d_{t}| \ge K^{2}]} (2x_{t-1} d_{t} + d_{t}^{2})$$

$$\le (K^{2} + K)^{2} + (1 + 2K^{-1}) \sum_{1}^{j} \int_{[t \ge k, |d_{k}| \ge K^{2}]} d_{k}^{2},$$

which yields (5).

Lemma 4. Let $d_n \geq 0$ be a sequence of random variables and for some constant $\lambda > 0$,

for $n \ge 1$. If $\sup u_n = \infty$, then $\sup P[d_n > K] \ge \lambda^2$ for every constant K > 0.

PROOF. Putting $\mathfrak{G} = \{\emptyset, \Omega\}$ in Lemma 1', we have $P[d_n > \lambda u_n] \geq \lambda^2$ for $n \geq 1$. For $k = 1, 2, \dots$, choose n_k such that $u_{n_k} \geq k$. Then for any constant K > 0 and $\lambda k \geq K$,

$$\sup P[d_n > K] \ge P[d_{n_k} > K] \ge P[d_{n_k} > \lambda k] \ge P[d_{n_k} > \lambda u_{n_k}] \ge \lambda^2.$$

LEMMA 5. (Burkholder [1], Lemma 4). To each $\delta > 0$ corresponds an $\alpha > 0$ with the following property: If $(x_n = d_1 + \cdots + d_n, \mathfrak{F}_n, n \geq 1)$ is a martingale and $\infty > E |d_k| \geq \delta E^{\frac{1}{2}} d_k^2$ for $n \geq 1$, then $E |x_n| \geq \alpha E^{\frac{1}{2}} x_n^2$.

3. A new proof of Gundy's theorem.

THEOREM 1. Let $(\varphi_n, \mathfrak{F}_{n-1}, n \geq 1)$ be a stochastic sequence and $(e_n, \mathfrak{F}_n, n \geq 1)$ be a martingale difference sequence with $Ee_n^2 < \infty$. Put $d_n = \varphi_n e_n$, $v_n = |\varphi_n| E^{\frac{1}{2}}(e_n^2 \mid \mathfrak{F}_{n-1})$, and $x_n = d_1 + \cdots + d_n$. If there exists a constant $\lambda > 0$ such that for $n \geq 1$ and all large K > 0,

(7)
$$E(d_n^2 I[|d_n| < K]| \mathfrak{F}_{n-1}) \ge (3\lambda - v_n K^{-1})^2 v_n^2$$
 on $[3\lambda \ge v_n K^{-1}]$,

then except on a null set, the following statements are equivalent:

(8)
$$\sup |x_n| < \infty, \quad \sup v_n < \infty,$$

$$(9) \qquad \sum (d_n^2 + v_n^2) < \infty,$$

(10)
$$\sum d_n^2 < \infty, \quad \sup v_n < \infty,$$

$$(11) x_n converges, \sup v_n < \infty,$$

PROOF. We shall prove that (i)(8) implies (9) and that (ii)(10) implies (11). That (9) implies (10) and (12) and that (11) implies (8) are obvious. In ([2], p. 323), Doob proved that (12) implies (11).

(i) For M > 0, choose K > 0 such that $K\lambda^2 \ge 4$ and $2K^2\lambda \ge M$. Define $t = \inf\{n \mid |x_n| > K \text{ or } v_{n+1} > M\}$. Then by Lemma 3,

$$(K^2 + K)^2 \ge \sum_{1}^{j} \int_{[t \ge k]} (I[|d_k| < K^2] - 2K^{-1}I[|d_k| \ge K^2]) d_k^2.$$

On the set $[t \ge k]$, $3\lambda - v_k K^{-2} \ge 3\lambda - MK^{-2} \ge \lambda$. Hence by (7),

(13)
$$(K^2 + K)^2$$

$$\geq \sum_{1}^{j} \int_{[t \geq k]} (\lambda^{2} - 2K^{-1}) v_{k}^{2} \geq \lambda^{2} \sum_{1}^{j} \int_{[t \geq k]} v_{k}^{2} / 2 = \lambda^{2} \sum_{1}^{j} \int_{[t \geq k]} d_{k}^{2} / 2.$$

Therefore $\sum (v_n^2 + d_n^2) < \infty$ on $[t = \infty] = [\sup |x_n| \le K, \sup v_n \le M]$. Letting $K \to \infty$ and then $M \to \infty$, we obtain that $\sum (v_n^2 + d_n^2) < \infty$ on $[\sup |x_n| < \infty, \sup v_n < \infty]$.

(ii) For M > 0, choose K > 0 such that $2K\lambda \ge M$. Define

$$t = \inf \{ n \mid \sum_{1}^{n} d_k^2 > K \text{ or } v_{n+1} > M \}.$$

Then for $j \geq 1$,

$$\sum_{1}^{j} E d_{k}^{2} I[t \ge k] = \sum_{1}^{j} E d_{k}^{2} I[t > k] + \sum_{1}^{j} E d_{k}^{2} I[t = k]$$

$$\le K + K^{2} + \sum_{1}^{j} E d_{k}^{2} I[t = k, |d_{k}| \ge K].$$

Hence by (7),

 $K^2 + K \ge \sum_{1}^{j} E d_k^2 I[t \ge k, |d_k| < K] \ge \sum_{1}^{j} E(I[t \ge k] v_k^2 (3\lambda - v_k K^{-1})^2.$

On the set $[t \ge k]$, $3\lambda - v_k K^{-1} \ge 3\lambda - MK^{-1} \ge \lambda$. Therefore

$$K^{2} + K \geq \lambda^{2} \sum_{1}^{j} E(I[t \geq k]v_{k}^{2}),$$

$$\sum E(I[t \ge k] \ d_k^{\ 2}) \ = \ \sum E(I[t \ge k] v_k^{\ 2}) \ < \ \infty \, .$$

Since $\sum_{1}^{d} I[t \ge k] d_k$ is a martingale, $\sum_{n} I[t \ge k] d_k$ converges a.s. Thus x_n converges on $[t = \infty] = [\sum_{n} d_k^2 \le K$, $\sup_{n} v_n \le M$]. Letting $K \to \infty$ and then $M \to \infty$, we have that x_n converges on $[\sum_{n} d_n^2 < \infty$, $\sup_{n} v_n < \infty$]. The proof is completed.

THEOREM 1'. Let $(\varphi_n, \mathfrak{F}_{n-1}, n \geq 1)$ be a stochastic sequence and $(e_n, \mathfrak{F}_n, n \geq 1)$ be a martingale difference sequence with $Ee_n^2 < \infty$ and $u_n = E^{\frac{1}{2}}(e_n^2 \mid \mathfrak{F}_{n-1})$. If there exists a constant $\lambda > 0$ such that for $n \geq 1$,

$$(7') E(|e_n| \mid \mathfrak{F}_{n-1}) \geq 3\lambda u_n,$$

then except on a null set, $\sup |\sum_{1}^{n} \varphi_{k} e_{k}| < \infty$, $\sum \varphi_{n}^{2} e_{n}^{2} < \infty$, $\sum \varphi_{n} e_{n}$ converges and $\sum \varphi_{n}^{2} u_{n}^{2} < \infty$ are all equivalent.

PROOF. Put $d_n = \varphi_n e_n$ and $v_n = |\varphi_n| E^{\frac{1}{2}}(e_n^2 | \mathfrak{F}_{n-1})$. Then (7') implies that $E(|d_n| | \mathfrak{F}_{n-1}) \geq 3\lambda v_n$. Since $P[v_n < \infty] = 1$, from Lemma 1', we have that (7) holds and from Lemma 2, sup $v_n < \infty$ if sup $|d_n| < \infty$. Thus Theorem 1' follows from Theorem 1.

When $u_n = 1$ a.s. for $n \ge 1$, the equivalence of $\sum \varphi_n^2 e_n^2 < \infty$, $\sum \varphi_n e_n$ converges, and $\sum \varphi_n^2 < \infty$ under the conditions of Theorem 1' has been established by Gundy [3] by a different method.

THEOREM 2. Let $(d_n, \mathfrak{F}_n, n \geq 1)$ be a martingale difference sequence with $E d_n^2 < \infty$ and $v_n = E^{\frac{1}{2}}(d_n^2 \mid \mathfrak{F}_{n-1})$. For $m \geq 1$, let $(\varphi_{m,n}, \mathfrak{F}_{n-1}, n \geq 1)$ be a stochastic sequence such that for each $n \geq 1$,

$$P[\lim_{m} \varphi_{m,n} = \varphi_n \text{ finite}] = 1.$$

Put $s_{m,n} = \sum_{k=1}^n \varphi_{m,k} d_k$. If there exists a constant $1 > \lambda > 0$ such that for $n \ge 1$,

$$(14) E(|d_n| \mid \mathfrak{F}_{n-1}) \geq 3\lambda v_n,$$

then $\sum \varphi_n^2 v_n^2 < \infty$ on the set $[\sup_{m,n} |s_{m,n}| < \infty]$.

PROOF. For M > 0, choose $K \ge M$ such that $K^2 \lambda \ge \max(4, M)$. Define $t = t_m = \inf\{n \mid |s_{m,n}| > K \text{ or } |\varphi_{m,n+1}v_{n+1}| > M\}$. By Lemma 1' and (13), for $j = 1, 2, \dots$,

(15)
$$2(K^2 + K)^2 \ge \lambda^2 \sum_{k=1}^{j} \int_{[t_m \ge k]} \varphi_{m,k}^2 v_k^2.$$

Put $A = [\sup_{m,n} |s_{m,n}| < M, \sup_{m,n} |\varphi_{m,n}v_n| < M]$. Then

$$2(K^2 + K)^2 \ge \lambda^2 \sum_{k=1}^{j} \int_{A} \varphi_{m,k}^2 v_k^2$$
.

By Fatou lemma, $2(K^2+K)^2 \ge \lambda^2 \sum_{k=1}^j \int_A \varphi_k^2 v_k^2$. Hence $\sum \int_A \varphi_n^2 \boldsymbol{v_n}^2 < \infty$ and $\sum \varphi_n^2 v_n^2 < \infty$ on A. Since M is arbitrary, $\sum \varphi_n^2 v_n^2 < \infty$ on $[\sup_{m,n} |s_{m,n}| < \infty$,

 $\sup_{m,n} |\varphi_{m,n}v_n| < \infty]. \text{ Now let } \eta_n = \sup_m |\varphi_{m,n}|. \text{ Since } P[|\varphi_n| < \infty] = 1, \ (\eta_n, \mathfrak{F}_{n-1}, n \ge 1) \text{ is a stochastic sequence. By (14), } E(\eta_n|d_n| \mid \mathfrak{F}_{n-1}) \ge 3\lambda \eta_n v_n \text{ for } n \ge 1.$ By Lemma 2, $P[\sup_n \eta_n v_n = \infty, \sup_n \eta_n |d_n| < \infty] = 0$. Hence $\sup_{m,n} |\varphi_{m,n}v_n| = \sup_n \eta_n v_n < \infty$ on $[\sup_n \eta_n |d_n| < \infty]$. Therefore $\sum \varphi_n^2 v_n^2 < \infty$ on $[\sup_{m,n} |s_{m,n}| < \infty]$.

4. Some summability results. In this section, we shall assume that $a_{m,n}$ is a double sequence of real numbers with $\lim_{m} a_{m,n} = a_n$ for each n. For a stochastic sequence $(d_n, \mathfrak{F}_n, n \geq 1)$, we put $s_{m,n} = \sum_{k=1}^{n} a_{m,k} d_k$.

THEOREM 3. Let $(d_n, \mathfrak{F}_n, n \geq 1)$ be a martingale difference sequence with $E d_n^2 = 1$ and for some constant $\lambda > 0$,

(16)
$$E|d_n| \ge 3 \lambda, \qquad (n \ge 1).$$

(i) If for a fixed $m \ge 1$,

(17)
$$\lim_{K\to\infty} P[|s_{m,n}| > K] = 0 \quad \text{unif. in} \quad n,$$

then $\sum_{n=1}^{\infty} a_{m,n}^2 < \infty$, $\lim_n s_{m,n} = s_m$ a.s. and in L_2 , and for some $\alpha > 0$, independent of m, $E|s_m| \ge \alpha E^{\frac{1}{2}} s_m^{2}$.

(ii) If (17) holds for every $m \ge 1$, and

(18)
$$\lim_{K\to\infty} P[|s_m| > K] = 0 \quad \text{unif. in} \quad m,$$

then $\sum a_n^2 < \infty$. In particular, $\sum a_n^2 < \infty$, if

(19)
$$\lim_{K\to\infty} P[|s_{m,n}| > K] = 0 \quad \text{unif. in} \quad m \quad and \quad n.$$

(iii) If $E(d_n^2 \mid \mathfrak{F}_{n-1}) = 1$ for $n \ge 1$ and if for some constants $\lambda > 0$, $\eta > 0$ and K > 0,

$$(20) E(|d_n| \mid \mathfrak{F}_{n-1}) \ge 3\lambda,$$

(21)
$$\sup_{m,n} |a_{m,n}| < \infty, \quad \inf_{m} P[\sup_{n} |s_{m,n}| \leq K] \geq \eta,$$

then $\sum a_n^2 < \infty$.

PROOF. (i) By Lemma 5 and (16), there exists $\alpha > 0$, independent of m, such that

$$(22) E|s_{m,n}| \ge \alpha E^{\frac{1}{2}} s_{m,n}^2.$$

By Lemma 4, if $\sup_n Es_{m,n}^2 = \infty$, then $\lim_{k\to\infty} \sup_n P[|s_{m,n}| \ge K] \ge \lambda^2$, which contradicts (17). Therefore $\sup_n Es_{m,n}^2 = \sum_{n=1}^\infty a_{m,n}^2 < \infty$, $\lim_n s_{m,n} = s_m$ a.s. and in L_2 , and by (22), $E|s_m| \ge \alpha E^{\frac{1}{2}}s_m^2$.

(ii) By (i), for each $m \ge 1$, $\lim_n s_{m,n} = s_m$ a.s. and in L_2 and $E|s_m| \ge \alpha E^{\frac{1}{2}} s_m^2$. By Lemma 4, if $\sup_m E s_m^2 = \infty$, then $\lim_{k\to\infty} \sup_m P[|s_m| \ge K] > 0$, which contradicts (18). Hence $\sup_m E s_2^m = \sup_m \sum_{n=1}^{\infty} a_{m,n}^2 < \infty$. By Fatou lemma, $\sum a_n^2 < \infty$.

(iii) Put $\sup_{m,n} |a_{m,n}| = M$ and choose $K \ge M$ such that $K^2 \lambda \ge \max(4, M)$. Define $t = t_m = \inf\{n \mid |s_{m,n}| > K\}$. Since $|v_n a_{m,n}| = |a_{m,n}| \le M \le K$, by (15)

and (21), we have

$$2(K^{2} + K)^{2}\lambda^{-2} \geq \sum_{k=1}^{j} \int_{[t_{m} \geq k]} a_{m,k}^{2} \geq \sum_{k=1}^{j} a_{m,k}^{2} P[t_{m} = \infty]$$

$$\geq \sum_{k=1}^{h} a_{m,k}^{2} P[\sup_{n} |s_{m,n}| \leq K] \geq \eta \sum_{k=1}^{j} a_{m,k}^{2}.$$

Y. S. CHOW

By Fatou lemma,

$$2(K^{2} + K)^{2} \lambda^{-2} \ge \eta \sum_{1}^{j} a_{n}^{2}$$

Hence $\sum a_n^2 < \infty$, and the proof is completed.

From Theorem 3(ii), immediately follows:

COROLLARY 1. Let a_n be a sequence of real numbers and $(x_n = a_1 d_1 + \cdots + a_n d_n, \mathfrak{F}_n, n \geq 1)$ be a martingale such that for some constant $\lambda > 0$,

$$(23) Ed_n^2 = 1, E|d_n| \ge \lambda.$$

(i) If $P[\sup_n |x_n| < \infty] = 1$ or (ii) x_{n_k} converges in distribution for some subsequence, then $\sum a_n^2 < \infty$ (and x_n converges a.s. and in L_2).

Corollary 1(i) reduces Gundy's local condition: $E(d_n^2 | \mathfrak{F}_{n-1}) = 1$ and $E(|d_n| | \mathfrak{F}_{n-1}) \ge \lambda$ to the global condition (23), when the stochastic sequence $(\varphi_n, \mathfrak{F}_{n-1}, n \ge 1)$ is replaced by a sequence of constants. When d_n are independent random variables, Corollary 1(i) reduces to a result of Marcinkiewicz and and Zygmund [5].

Corollary 1(ii) is interesting in comparison with the following well known result: Let d_n be independent random variables. If $\sum d_n$ converges in distribution, then $\sum d_n$ converges a.s.

THEOREM 4. Let d_n be a sequence of independent random variables such that for some constant $\lambda > 0$ and for every $n \ge 1$,

(24)
$$E d_n = 0, \quad E d_n^2 = 1, \quad E|d_n| \ge \lambda,$$

(25)
$$P[\lim_{n\to\infty} s_{m,n} = s_m] = 1,$$

$$(26) P[\sup_{m} |s_{m}| < \infty] > 0.$$

Then $\sum a_n^2 < \infty$, if $|a_n| < \infty$ for each n.

PROOF. Since $\lim_m a_{m,n} = a_n$ finite, $\sup_m |a_{m,n}| < \infty$ for $n \ge 1$, and the set $[\sup_m |s_m| < \infty]$ is a tail event. By zero-one law, $P[\sup_m |s_m| < \infty] = 1$. Let d_1^*, d_2^*, \cdots be random variables such that d_j and d_j^* have the same distribution and that $d_1, d_1^*, d_2, d_2^*, \cdots$ are independent. Put $e_n = (d_n - d_n^*)2^{-\frac{1}{2}}$. Then $Ee_n = 0$, $Ee_n^2 = 1$, $2^{\frac{1}{2}}E|e_n| \ge 2E(d_n - d_n^*)I[d_n \ge 0, d_n^* < 0] \ge E|d_n| \ge \lambda$. Therefore, we can assume that d_n is symmetric for each n. By Lévy's inequality (see [2], p. 106),

$$P[\sup_{n} |s_{m,n}| > K] \le 2 P[|s_{m}| \ge K] \le 2 P[\sup_{m} |s_{m}| \ge K].$$

Since $P[\sup_m |s_m| < \infty] = 1$, $\lim_{k\to\infty} P[\sup_n |s_{m,n}| \ge K] = 0$ uniformly in m. Therefore $\sum_{i=1}^{n} a_n^2 < \infty$ by Theorem 3(ii).

When $P[d_n = \pm 1] = 1$, Theorem 4 is due to Zygmund ([6], also [7] p. 123).

REFERENCES

- [1] Burkholder, D. L. (1968). Independent sequences with the Stein property. Ann. Math. Statist. 39 1282-1288.
- [2] Doob, J. L. (1953). Stochastic Processes. Wiley, New York.
- [3] Gundy, R. F. (1967). The martingale version of a theorem of Marcinkiewicz and Zygmund. Ann. Math. Statist. 38 725-734.
- [4] Kac, M. and Steinhaus, H. (1936). Sur les fonctions indépendants II. Studia Math. 6
 50-66
- [5] MARCINKIEWICZ, J. AND ZYGMUND, A. (1937). Sur les fonctions indépendants. Fund. Math. 29 60-90.
- [6] ZYGMUND, A. (1930). On the convergence of lacunary trigonometric series. Fund. Math. 16 90-107.
- [7] Zygmund, A. (1935). Trigonometrical Series. Warszawa-Lwów.