NOTES

AN L^p -CONVERGENCE THEOREM

By S. D. CHATTERJI

Battelle Institute, Geneva

Recently Pyke and Root [4] strengthened a theorem of Marcinkiewicz proving that if f_n is a sequence of independent, identically distributed rv's with $\int |f_1|^p < \infty$, $0 and <math>\int f_1 = 0$ if $1 \le p < 2$ then $n^{-1/p} \{f_1 + \cdots + f_n\} \to 0$ a.s. and in L^p . The strengthening consisted in proving L^p -convergence. The purpose of this paper is to prove a similarly strengthened version of a theorem for martingales which is a generalization of the above-mentioned Marcinkiewicz's theorem. The a.s. convergence version of this theorem is in Loève [2], pp. 387. Our theorem contains that of Pyke and Root and is proved by using a tightened form of Minkowski's inequality due to Esseen and Von Bahr [1] which is stated as Lemma 1 and proved in a simple direct way.

LEMMA 1. If $E(f_j|f_1 + \cdots + f_{j-1}) = 0$ (in particular if f_j is a martingale-difference sequence) for $2 \leq j \leq n$ and $f_j \in L^p$, $1 \leq p \leq 2$ then

$$\int |f_1 + \cdots + f_n|^p \le \alpha \sum_{j=1}^n \int |f_j|^p$$

where $\alpha \leq 2^{2-p} < 2$. (The actual value of α will be immaterial in the proof of the theorem.)

The cases p=1, 2 being trivial, consider $1 . Here use the elementary inequality <math>|a+b|^p \le |a|^p + p|a|^{p-1} \cdot s(a)b + \alpha|b|^p$ for real numbers a, b (s(a) = sign of a). This inequality follows easily from the fact that

$$\alpha = \sup_{x} \{|1 + x|^{p} - 1 - px\}/|x|^{p}$$

is finite. An elementary but tedious argument shows that $\alpha \leq 2^{2^{-p}} < 2$. Note also that $\alpha > 1$. Integrating the inequality we get $\int |f_1 + f_2|^p \leq \int |f_1|^p + \alpha \int |f_2|^p$. Now apply induction.

THEOREM. Let f_n , $n \ge 1$, and f be measurable functions such that either $f \in L^p$, $0 , <math>p \ne 1$ and $P(|f_n| \ge x) \le P(|f| \ge x)$, $0 \le x < \infty$ or $f \in L^1$ and $P(|f_n| \ge x|f_1 \cdots f_{n-1}) \le P(|f| \ge x|f_1 \cdots f_{n-1})$ a.s. Then

$$\lim_{n} n^{-1/p} \sum_{k=1}^{n} (f_k - \alpha_k) = 0 \quad \text{a.s.} \quad and \ in \ L^p$$

where $\alpha_k = 0$ if $0 and <math>\alpha_k = E(f_k | f_1 \cdots f_{k-1})$ if $1 \leq p < 2$.

PROOF. The condition $P(|f_n| \ge x) \le P(|f| \ge x)$ with $f \in L^p$ implies that $f_n \in L^p$, $\sup_n \int |f_n|^p \le \int |f|^p$ and

(a)
$$\sum_{n=1}^{\infty} P(A_n) < \infty \text{ where } A_n = \{ |f_n| \ge n^{1/p} \};$$

Received 7 August 1968.

(b)
$$\sum_{n} n^{-1/p} \int_{B_n} |f_n| < \infty$$
 for $0 , $B_n = \{|f_n| < n^{1/p}\}$, $\sum_{n} n^{-1/p} \int_{A_n} |f_n| < \infty$ for $1 , $\lim_{n \to \infty} \int_{A_n} |f_n| = 0$ for $p = 1$;$$

(c)
$$\sum_{n} n^{-2/p} \int_{B_n} |f_n|^2 < \infty$$
.

The proof of (a)-(c) is standard (cf. [3], pp. 154) and depends only on the stochastic domination of |f| on $|f_n|$. Put $g_n = f_n \cdot 1_{B_n}$, $h_n = f_n - g_n$. Consider first the case 0 . In the identity

$$\sum n^{-1/p} f_n = \sum n^{-1/p} (g_n - \beta_n) + \sum n^{-1/p} h_n + \sum n^{-1/p} \beta_n$$

where $\beta_n = E(g_n | f_1 \cdots f_{n-1})$, the first term on the right hand side converges a.s. and in L^2 (and hence in L^p , p < 2) because of (c) and a martingale theorem. The second term converges a.s. since by (a) $h_n = 0$ for n sufficiently large a.s. The third term converges a.s. and in L^1 (and hence in L^p , p < 1) because

$$\sum n^{-1/p} \int |\beta_n| \le \sum n^{-1/p} \int |g_n| = \sum n^{-1/p} \int_{B_n} |f_n| < \infty \quad \text{by (b)}.$$

Using now the identity

$$n^{-1/p} \sum_{1}^{n} f_{k} = n^{-1/p} \sum_{1}^{n} (g_{k} - \beta_{k}) + n^{-1/p} \sum_{1}^{n} h_{k} + n^{-1/p} \sum_{1}^{n} \beta_{k}$$

and the so-called Kronecker's lemma we see that the proof will be complete if we can show that the second term on the right converges in L^p i.e.

$$n^{-1} \int \left| \sum_{1}^{n} h_{k} \right|^{p} \to 0$$
 as $n \to \infty$.

But for 0

i.e.

$$n^{-1} \int |\sum_{1}^{n} h_{k}|^{p} \le n^{-1} \sum_{1}^{n} \int |h_{k}|^{p} \to 0$$
 as $n \to \infty$

since $\lim_{k\to\infty} \int |h_k|^p = \lim_{k\to\infty} \int_{A_k} |f_k|^p \le \lim_{k\to\infty} \int_{\{|f|\ge k^{1/p}\}} |f|^p = 0$. Consider now the case 1 . In the identity

$$\sum_{n} n^{-1/p} (f_n - \alpha_n) = \sum_{n} n^{-1/p} (g_n - \beta_n) + \sum_{n} n^{-1/p} (h_n + \beta_n - \alpha_n)$$

the first term on the right converges a.s. and in L^2 as before and the second converges a.s. and in L^1 since $\beta_n - \alpha_n = E(-h_n | f_1 \cdots f_{n-1})$ and

$$\sum n^{-1/p} \int |h_n + \beta_n - \alpha_n| \le 2 \sum n^{-1/p} \int |h_n| = 2 \sum n^{-1/p} \int_{A_n} |f_n| < \infty$$

by (b). Arguing as before the proof will be completed by showing that

$$n^{-1/p} \sum_{1}^{n} (h_k + \beta_k - \alpha_k) \to 0$$
 in L^p
 $n^{-1} \int \left| \sum_{1}^{n} (h_k + \beta_k - \alpha_k) \right|^p \to 0$ as $n \to \infty$.

Here we use the Esseen-Von Bahr inequality of Lemma 1 which we can since

 $h_k + \beta_k - \alpha_k$ is a martingale-difference sequence. So

$$n^{-1} \int |\sum_{1}^{n} (h_{k} + \beta_{k} - \alpha_{k})|^{p} \leq 2n^{-1} \sum_{1}^{n} \int |h_{k} + \beta_{k} - \alpha_{k}|^{p}$$

$$\leq 2^{p} n^{-1} \sum_{1}^{n} \{ \int |h_{k}|^{p} + \int |\beta_{k} - \alpha_{k}|^{p} \}$$

$$\leq 2^{p+1} n^{-1} \sum_{1}^{n} \int |h_{k}|^{p} \to 0$$

as $n \to \infty$ since $\lim_{k \to \infty} \int |h_k|^p \le \lim_{k \to \infty} \int_{\{|f| \ge k^{1/p}\}} |f|^p = 0$.

The proof for p = 1 is as before except for one small detail. In the identity

$$n^{-1}\sum_{1}^{n} (f_{k} - \alpha_{k}) = n^{-1}\sum_{1}^{n} (g_{k} - \beta_{k}) + n^{-1}\sum_{1}^{n} (h_{k} + \beta_{k} - \alpha_{k})$$

the first term on the right converges a.s. and in L^2 to 0 as before and the second converges to 0 in L^1 since $\int |h_k + \beta_k - \alpha_k| \le 2 \int |h_k| \to 0$ by (b). We simply have to ensure the a.s. convergence of the second term. Since $h_k \to 0$ a.s. by (a), it will be enough to show that $\lim (\beta_k - \alpha_k) = 0$ a.s. It is here that we use the stronger hypothesis made for the case p = 1. We shall show that if

$$\delta_k = E(|h_k| | f_1 \cdots f_{k-1})$$

then $\delta_k \to 0$ a.s. which is certainly sufficient. A simple calculation shows that

$$\delta_k \leq 2 E(X_k | f_1 \cdots f_{k-1})$$

where $X_k = |f| \cdot 1_{\{|f| \ge k\}}$. Using the fact that $X_{n+1} \le X_n$ we see that $E(X_k | f_1 \dots f_{k-1})$ is a positive super-martingale. Indeed

$$E(X_n | f_1 \cdots f_{n-1}) \ge E(X_{n+1} | f_1 \cdots f_{n-1})$$

$$= E(E(X_{n+1} | f_1 \cdots f_n) | f_1 \cdots f_{n-1})$$

Since every positive super-martingale converges a.s. $\lim_{k\to\infty} E(X_k | f_1 \cdots f_{k-1}) = X$ exists a.s. But $\int X \leq \lim_{k\to\infty} \int X_k = \lim_{k\to\infty} \int_{\{|f| \geq k\}} |f| = 0$ so that X being non-negative must be zero a.s. Hence $\lim \delta_k = 0$ a.s. The theorem is thus completely proved.

REFERENCES

- [1] Esseen, C., and Von Bahr, B. (1965). Inequalities for the rth absolute moment of a sum of random variables, $1 \le r \le 2$. Ann. Math. Statist. 36 299-303.
- [2] Loève, M. (1955). Probability Theory, (First Edition). Van Nostrand, New York.
- [3] Neveu, J. (1965). Mathematical Foundations of the Calculus of Probability. Holden-Day, Inc., San Francisco.
- [4] PYKE, R., and Root, D. (1968). On convergence in r-mean of normalized partial sums. Ann. Math. Statist. 39 379-381.