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ON LIMITING DISTRIBUTIONS FOR SUMS OF A RANDOM NUMBER
OF INDEPENDENT RANDOM VECTORS!

By LeoN JAY GLESER

The Johns Hopkins University

1. Introduction. Consider a sequence of p X 1 random (column) vectors
{ya},n = 1,2, --- . Suppose that there exists a sequence {B,} of real p X p non-
singular matrices and a proper p-variate distribution function 7 (y) such that

(1.1) limpse £ (Bn_lyn) =& (:1/* )s

where y* is a p X 1 random vector having the distribution function F (y). (The
notation £(y*) denotes the law or distribution of y*. Limu.e £(Z,) = £(Z)
means that Z, converges in law (converges weakly) to Z. The notation
£(9(0, ¢’I)) used later is short for the law of a multivariate normal random
variable with mean vector 0 and covariance matrix o°I.) Suppose further that we
have an infinite sequence {v,},n = 1,2, -+, of positive integer-valued random
variables, and a sequence {k,} of positive integers such that

(1.2) liMpsw ko = ©,  pliMpse kn vn = 1.
We are interested in conditions under which
(1.3) limye £ (Beyys,) = £@*).

In the scalar case (p = 1), Anscombe [2] found a sufficient condition for (1.3)
to hold. One extension of that theorem (Theorem 1 of [2]) to the vector case
(p > 1) is the following.

TurorReM 1.1. If the sequences {y.}, { Ba}, {va}, and {k,} satisfy (1.1) and (1.2),
then for (1.3) to hold, it is sufficient that for given ¢ > 0,1 > 0, there exists a positive
integer mo and a positive number ¢ such that for all n = no,

e < e >1—n.

(1.4) P{maxn’:[n——n'[<cn “Bnﬁl (yn - yn')

Here, for ap X lvector Z = (Zi,Zs, -+ , Z,)', the notation || Z|); represents the
Ly norm of Z, i.e., | Z|ls = (Z'Z)}. The notation || Z ||« s used to represent the L.,
norm of Z, i.e., || Z]|o = maxi<;<p |Zj].

Note. We note that nothing is supposed concerning the dependence of », on
the random vectors ¥ .

Theorem 1.1 is proven in Section 2. The proof closely resembles that given by
Anscombe [2] in the scalar case, and consequently is only briefly sketched.
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For the scalar case, Anscombe [2] conjectured that condition (1.4) is both
necessary and sufficient (given the truth of (1.1) and (1.2)) for (1.3) to hold.
When ¥, is the sum 7o 2; of independent (scalar) random variables :,
Mogyorédi [5] found a condition equivalent to (1.4) (but more easily verified)
which is both necessary and sufficient for (1.3). One extension of his result to the
vector case is the following theorem, which is the major result of this paper.

TrEOREM 1.2. If {y.}, {B.} {va}, {ka} satisfy (1.1) and (1.2),%f yn = D im i,
n = 1,2 -, 1s the sum of the independent random vectors z; , 7 = 1,2, -+,
and if the random variables || B, ‘xi||2 are infinitesimal, k = 1,2, -+- , n (c.f. [4]),
then (1.3) holds if and only if

(15) lim5_>o lim SUPg->w )\kn)\[_kl,,,(l.{-a)] = 1,
where [a] denotes the integer part of the real number a and
(1.6) M. = min root of (B,B. ).

Mogyorédi [5] remarks that (1.5) is satisfied when A, = n*L(n), @ > 0, where
for all ¢ > 0,
limyaw L([en])/L(n) = 1.

In Section 3, we present the proof of Theorem 1.2. This vector extension of
Mogyorédi’s theorem [5] provides a convenient and less restrictive proof of a
recent result of A. Albert [1]. This application of Theorem 1.2 appears in Section
4,

2. Proof of Theorem 1.1. Given ¢ > 0,7 > 0, let no and ¢ satisfy (1.4), and
let no also be large enough so that for any r for which k, > n,,

(2.1) P{lyy — k| < cks} > 1 — 9.

Such a choice is clearly possible since {k,} and {»,} satisfy (1.2). For fixed r
satisfying k., > no, let & denote the event

E:ly, — k| <ck: and [|Bi) (g, — %,)]|e < €

and let S(n), 8’ (n), and T denote the events

S(M): MaXyr:jn'—nj<en | Bn " Wnr — yn)ll2 < ¢

S’ (n): MaXprijni—ni<on || Bn W — Ya)llo < €

T: v, — k| < ck, .
Then 8 = S(k,) < 8" (k) = &, and
PE)zZ P nT)=Pl)— Pl nT)
2 P(S') — P(T°) z P(S) — P(T°),

where T° denotes the complement of 7. Consequently, we conclude from (1.4)
and (2.1) that

(2.2) PE)>1— 2.
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Define the events

D = {B;y,, componentwise < y},
F = {1B} W, — vo)lle < ¢,

= {B% ys, componentwise < y + €l},
R~ = {Bi}y, componentwise < y — el},

where 1’ = (1, 1, - -+, 1). Noting that E = T n F and that D is the union of
D n E and D n E°, we find that

P(D)<P(DnE)+PE)<POnF)+PE)SPR)+PE),
and
PD)zP(DnF)zZPR nF)zP[R")— P(F;) = P(R)— PE).
Consequently, from (2.2) and the definitions of Rt and R™:
P{B3'ys, componentwise < y — el} — 29 = P(D)
< P{B:'ys, componentwise < y + el} -+ 2n.

Thus, if y is a continuity point of F (y), convergence at y (and thus the result
(1.3)) follows from the fact that p-variate cumulative distribution functions are
componentwise monotonic and almost everywhere continuous. 0

8. Proof of Theorem 1.2. The necessity of (1.1) and (1.5) for (1.3) can be
shown by setting B, = \.I and then mimicking the proof [5] of Mogyorédi for
the scalar case. To show the sufficiency of (1.1) and (1.5) for (1.3), we only
need show that (1.5) implies (1.4), for then our result is a corollary of Theorem

1.1.
Let yn = 2 -1 i . Now

M8X s jw—ni<en | Bn @ — Yn)ll2
é maX(n’:|n'—n|<cn) “Z/n’ - yn”2)\ max(n’ |n'—n|<cn) max15¢<pp |yn 'y T Z/ml)\
< maXi<i<p MAX@ :|n'—nl<en) P IZk=1 Tri — D k=1 xkil?\n ,

where Yuri, Yni, Tui denote the sth component of ., yn , and xy , respectively.
Let S = S(n) denote the set where maXy::jn'—ni<en || Bn "y — yn)ll2 < ¢, and let

S'i = Sz(n) = {malxn’:ln'—n|<cn p%IZI?;I Tri — Zk=l xkil)\n < é}.
Then P(S) = P(N%1 8:) = 1 — 2% P(S¢). In proving the scalar version of
Theorem 1.2, Mogyorédi [5] showed that (1.5) was sufficient for showing that
given ¢ > 0 and 7 = n/p, there is a ¢; and a no; such that for any n = no:,
P >1—1
where
Si* = Si* (’ﬂ) = {maxn':ln’—-n]<c,~n p%IZI?a;l Lps — Zl,c;l xkil)\n_ <e
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Set ¢ = mim<i<p ¢; > 0 and ny = maxi<i<, Noi , and it follows that
PS)=Pl*>1—7"=1—-n .
Thus forn = no, ¢ = min<i<p ¢\
PE)z1—20MPE)z1—php)=1—n,
so that (1.2) holds. This proves the theorem.
ReMARK. It is worth noting the fact that (in the context of Theorem 1.2) not
only do (1.1) and (1.5) together imply (1.4), but also (1.1) and (1.4) imply

(1.5). The proof of the latter assertion closely parallels that of Mogyorédi [5]
for the scalar case.

4. An application of Theorem 1.2. Consider a sequence {u.} of independent
random variables (scalars) satisfying
U; = B,g(i) + e; )

B afixed p X 1vector, ¢ a known p X 1 vector, e; a random observation obeying
distribution function H (¢) with mean 0 and finite variance ¢*, 0 < ¢ < . Let
Gn = (g(l)) 9(2): ] g(n)): p X n,

=p,p~+ 1, -+, and assume that rank G, = p. Define T} = GG, and let
= (min root T,”). Finally, let
L,=T.,6G = @& .,% -, L")
where 1,"”: p X 1 is the ¢th column of L, . The customary estimator of 8 based
on 7 observations on the u; is
Bn) = (G,6.))'Gau(n) = T, 'Lau(n)

where u(n) = (w1, uz, -+, u,) is the observed sample. Gleser [3] has proved
the following corollary to a theorem in [4], p. 103.
TuEOREM 4.1. If

4.1) limse MaXi <icnigi<p [1n] = 0

=t=nl=l=

where 1$); is the jth component of 1,"”, then

(4.2) limp.w £ (T, B(n) — B) = £((0, ’I)).
ReMaRK. It may be of practical use to point out that (4.1) is equivalent to
.1y i maxiziza 07 (626G ) g = 0.

This can be seen from the fact that
p_lln(z)ll @ < (max1<.1$:ﬂ ll(t) |) ln(i),ln(i)7

and 1,"'L,Y = ¢ (G.G.) 9",
Now, consider a sequence of positive integer-valued random variables {r.},
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n=1,2, - ,such that plimy... n ', = 1. From Theorem 1.2, we can prove the

following result.
Tueorem 4.2. If (4.1) holds, then

4.3) limso im SUPnsw AAinassn = 1,
18 necessary and sufficient for
(44) limpw £ (Ta(B(a) — B)) = £(90(0, a°1)).
Proor. Set 2, = €9, By = Ty, vs = va, and k, = n in Theorem 1.2. Then
T.(B(n) — B) = T 2ia i,
$0 if Yn = D_i=1 x:, we have
T,(B(n) — 8) = T Yn.

Our problem is now in the form of Theorem 1.2, and (4.4) follows as a direct con-
sequence of (4.3), Theorem 4.1, and Theorem 1.2.
Theorem 4.2 was implicitly proved by Albert [1] under the conditions:

4.5) limpse tr (G.G.))™" = 0,
(4.6) limn-»o maXi<i<a (g(i),g‘i)) tr (GnGn, )_1 = 0,
4.7) lim Sups-~ (max root GG INTE<

(4.8) Timsao Hm SUPmaw [tr (GrasanGaason)tr (GuGx)]™ — 1] = 0.
Since
g (GG ) g = g tr (GaG)T

it follows that (4.6) implies (4.1)’, and thus (4.6) implies (4.1). Now, Albert’s
proof [1] of (4.4) takes no cognizance of the special nature of his stopping rule
va . Thus, since given (4.1), (4.3) is necessary and sufficient for (4.4), we can
expect that Albert’s conditions [(4.5) through (4.8)] imply (4.3). To demon-
strate that this assertion is correct, we first prove the following lemma.

LeEmMA 4.3. Assume that A: s X s is positive semi-definite and that B: s X s is
either positive semi-definite or negative semi-definite (A = 0, B =2 0 or B = 0).
For any matriz C, let Amax (C') = maximum root C and Amin (C') = minimum root C.
Then

4.9) Amin(A + B) < Amm(4) + |tr B].
Proor. Let ws :s X 1 be such that |[wal: = 1 and wi'Aws = Amin (4). Then
Aain (4 + B) = minjuy,1 @ (4 + B)w
(4.10) < wi (4 + B)wa = Main(4) + wa'Bwy
< Main(4) + [wa'Bwa.
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Since all of the roots of B have the same sign, and since (wa'w. W= |walls = 1,
it follows that |wa'Bw.| < |tr B|. This fact, with (4.10), proves (4.9).
Let n* = [n(1 + 8)]. Applying Lemma 4.3 with 4 = GuGov, B = G,G.' —

GroGr (GG, — GoeGos is 20 if n* < m, and is <0 if n* = n), we find that
4.11) A S A%t (GuGy — GusGrn)]
and thus

@12) AN S 1 4 [ (tr GG ) (b GuGan)™ = 1] (tr GaeGoe)N3E

From (4.12), it is clear that (4.7) and (4.8) imply (4.3).
The following example (due to M. S. Srivastava) demonstrates that 4.5)
through (4.8) are not equivalent to (4.1) and (4.3). Consider

1 11 1
G, = .
1 2 3 n

1 i(n 4+ 1)
GG =n , )
in+1) ¥n+1)2n+1)

(\ax (Ga G NIGAGAT
> (tr (G.G.))VHIG.G T = @' + 3n + TV @ — 1)7,
so that (4.7) is violated. On the other hand, it is not hard to show that G, satisfies
(4.1), and since
12\ = n{2n? + 3n + 7 — [(@n® + 30 + 7)" — 120> 4 12J},
it is straightforward to show that \, satisfies 4.3).
It may be of interest to note that (4.1) and (4.3) are satisfied for general

. . . . —l ;7
polynomial regression over the integers (i.e., where u, = >3 s8; + es), and
even for such extreme cases as when

us=ﬁl+ﬁ2t8, 8=1,2,"’,

Then

and
max (GG )N

for a known constant ¢ > 1.

Conditions (4.1) and (4.3) are the most general conditions under which (4.4)
can hold as long as no attention is paid to any special features of thestopping
rule », used. Since the stopping rules considered in Albert’s paper (and also in
Gleser [3]) are of a particular form, it is possible that in such a special context,
condition (4.3) can be further relaxed.

As a final remark, we note that if

u® = gg? + B9,

8 a fixed ¢ X p matrix, ¢ a known p X 1 vector, {E“)} a sequence of iid random
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g X 1 vectors drawn from a distribution H (E') with mean vector 0 and covariance
matrix =, 0 < min root £ £ max root T < o, the following theorem can be
proved concerning the classical estimator

B(n) = UG (G.G.))™"

where G, = (4, @, -+, ™) is as before, and U, = @, u®, -+, u™):
g X n.

TrEOREM 44. With {v,} and \. defined as before, then if (4.1) and (4.3) hold,
(4.13) limg.e £((G.0. )@ (0) —8) = (W)

where the p columns of W are independent, identically distributed as g-variate
70, ).
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