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1. Introduction. Let {X,:t = 0} be a separable stochastic process and

Z (@) = sup [X::0 = s £ ¢t]. In a previous paper [7] this author extended the
results of Baxter [1] by characterizing the distribution of Z (¢) for a large class of
Markov and semi-Markov processes with denumerable state spaces. These
results were obtained by considering the time and place of the first jump.

The purpose of this paper is to extend the results of [7] to Markov and semi-
Markov processes whose sample paths are step functions and whose state space
may be an arbitrary subset of the real numbers. In order to do this we have de-
fined semi-Markov jump processes in Section 2. These processes are a generaliza-
tion of Markov jump processes as described in [4], p. 316, and semi-Markov
processes as defined in [5] and [8]. Theorem 2.1 shows that these processes may
also be analyzed by considering the time and place of the first jump.

In Section 3, the distribution of Z (¢) for a large classof semi-Markov jump
processes is characterized by a recurrence relation involving operators. In the
case where the process is homogeneous in space, an analog of Spitzer’s identity
(see [6]) is proved. In Section 4, an example is presented which shows how the
recurrence relation can be used to guess the double transform of Z (¢) for processes

which are homogeneous in space.

2. Semi-Markov jump processes. In this section we present the definition
of a semi-Markov jump process and investigate briefly some of its properties.

Let {X::t = 0} be aseparable stochastic process with random variables, X,
defined on the probability space (2, @, P), and having their range in R, the real
numbers. Define

Y. =t if X,=2X, forall 0 <s =1t
=t—sup[s:0 =s = ;X # X4 otherwise,

and
a;=inf[s>t;Xs;éXt] fOI' téO.

For convenience of notation let & = ay.
Let RT = [0, ©); ®(R) and & (R™) denote the s-algebras of Borel subsets of R

and R™ respectively. Define a two-dimensional process { (X;, Y.):t = 0}; the
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state space of this process is a subset of R x R". If I is a member of
®(R) x ®(R"), then for (z,y)inR x R*,let P, [ (X, Y;) ¢ II] be a version of
the conditional probability P[(X:, Y;) e II|(Xo, Yo) = (z, y)].

We say that {X.:t = 0} is a semi-Markov jump process if the two-dimensonal
process { (X;, Y:):t = 0} has right-continuous sample paths, is a strong Markov
process with stationary transition probabilities, and

P,0 <a< 0] =1

for all z in R.

The intent of the condition on « is to guarantee that (with probability 1) the
process remains a positive length of timein each state it enters (the finiteness of
« is not essential, and with appropriate modifications « could be allowed to be
infinite ). .

We wish to guarantee that « is a stopping time of the { (X, Y:)} process so
that we may apply the strong Markov property to «. In order to assure that a is a
stopping time, it is necessary to guarantee that for each ¢, X,, # X, i.e., that
jump points cannot accumulate from the right to a point at which no jump occurs.
It is for this reason that we require the {Y;} process to be right continuous. The
{X,} process then moves strictly by jumps with a; the time to the first jump
following time ¢ and X,, the state to which the process jumps.

Since a is a stopping time and {X} is right continuous, X. is a random variable,
and we may define a functiongon R x B x R* by

Q(x7 Y, t) = Pz,O{Xa =y and o = t}
Note that

Q(CL', Y, t) = f(—w,u) f[O,t] c(x, 2 ds)k (CL‘, dz)
where ¢(z, 2, s) = Poola < s|Xa =2] and k(z,2) = P, X. = 2.
Define

a(x, t) = limy.e q(z, ¥, t).

The condition that a be positive and finite may be expressed as a(z, 0) = 0 and
a(x,t) — last— o forall zin .

The right-continuity of {(X:, Y:)} implies that it is a measurable process;
thus for a fixed set II the transition functions are Borel measurable.

If the state space of a semi-Markov jump process is countable, then the process
becomes a special case of a semi-Markov process as defined in [5] and [8]. In this
case the functions ¢(4, 7, - ) — ¢(4,5 — 1, - ) become the functions @:; (- ) of [5]. If
c(x, y, t)=1-— e—“Y(Z)t(O <y@)< » ), then ¢ (z, y, t)=(1— e—‘y(z)t)k(x’ Y)s
and the semi-Markov jump process becomes a Markov jump process as described
in [4], page 316.

In this paper we take the point of view that the functions @ and ¢ are known and
that the distributions of functionals are to be solved in terms of them. For con-
venience, let P;(x, T') = P, o[X:eT]forzin R and T in ® (R ). Then
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THEOREM 2.1. For a semi-M arkov jump process,
21) P T) = (1 = a@ tNLT) + [z [0 P D, 2, ds)k(z, de)

where I,(T') = 1 4f x e T and 0 otherwrse.
Proor. When & = s, then Y, = Y, = 0 and X,

X, . Thus
szo[XtS F; a =< t]

(2.2) = fm[o',] P.oX:eT| X, = z;0 = 8]P,o[Xoedz, aeds]
= [z [10.61 PenolX s € Tle (x, 2, ds)k (z, dz)

the last line following from the strong Markov property applied to «. Also,

(2.3) P.oX:eT;a> 18 = (1 — alz, t))(T).

Combining (2.2) and (2.3) we have (2.1) and the theorem is proved.

We now discuss conditions under which Equation (2.1) uniquely determines
the transition probabilities of a semi-Markov jump process.

For each z and T, define

PO, T) = (1 —a, t)()
and forn = 0,

P, T) = P, T) + [z [10.a P2, T)elz, 2, ds)k (x, dz).

Then in the manner of [4], one may show that P, (z, T') = limp.e P (z, T)
exists and is the minimal non-negative solution of (2.1). Also, if P, (z, R) = 1,
then P, (z, - ) is the unique probability measure on @ satisfying (2.1). From the
definition of P,"” (z, T') one can see that it gives the probability of going from
 to T in time ¢ with only finitely many jumps. Thus P,*” (z, R) = 1 corresponds
to the situation where the process can make only a finite number of jumps inany
finite interval [0, £]. Finally, observe that if there is a unique substochastic solu-
tion, then P,*” (z, R) = 1.

3. The distribution of the supremum functional. In this section there is given
an operator-theoretic characterization of the distribution of the supremum for a
wide class of semi-Markov jump processes. The development of this section is
modeled after that in [1]. Below we state, without proof, some properties of
operators defined by measures.

Let L. be the Banach space of bounded Borel measurable functions, f, defined
on R with norm [|f|| = sup. |f(z)|. Let v be a real-valued function of two real
variables. Let the variation of v (z, - ) be denoted by Var (v(z, -)),

Suppose v satisfies the following conditions:

(1) for each y, v (-, y) is a Borel measurable function,
(38.1) (i) foreachz,Var (v(z,-)) < « andw(z, -)is right continuous,
(iii) mMaxX_wesco Var vz, -)) < «,
(iv) for each z, lim,, v (z, y) = O.
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Then we may define an operator V from L, to L. by

(3.2) (V) (@) = [2f @ (=, dy)
with norm ||[V|| = max_w<<wo Var (v(z, -)). We call v the kernel of the oper-
ator V.

If V1 and V, are bounded operators of the form (3.2), with kernels v; and v, ,
then V1V is an operator of the form (8.2) with kernel v given by

v(z,y) = fR 2 (2, y)o1 (, de).

We now define an operator, ¢, on operators.

DErintTionN 3.1. If v is a function of two real variables then define »” by
V(z,y) =0ify < zand v"(z,y) = v(z,y)ify = z.

DeriniTION 3.2. If V is an operator of the form (3.2) with kernel », then define
V7 to be the operator with kernel +”.

Let V' = V — V7, then both V” and V" are operators of the form (3.2). Let I
be the identity operator, V;, % = 1, 2, -- - , be operators of the form (3.2), and
a and B be real numbers. Then ¢ and 7 have the following properties:

@) =1 (ii) I =0.

(iii) Wy =V © (i) vy =V

(V) (V{Vza)a = V{Vza. (Vl) (V 1TV2T)T = V{Vz‘r.
(3.3) (vii) IVl = [[Vall. (viii) VY]l = 2|Vl

(ix) (@Vi+ B8V2) = aVy’ + BVy.
(x) If the partial sums of the series Vi + Vo + V3 + - - - forma
Cauchy sequence in the operator norm, then 7' = V; 4 V,
+ Vs--- is an operator of the form (8.2). Moreover,
Vi + Vo + --- and Vi' 4+ V3 converge in the operator
norm. AISO, T” = Vlv + Vza + .-+ and TT = V1r + VzT
4o
xi) If V = Vi + V, where Vy = Vy" and V, = Vy, then
V1 = V” and Vz = VT.
Properties (i)-(xi) say that any operator V of the form (3.2) can be split uniquely
into the sum of two operators V° and V" each of which is an element in a proper
subspace of the Banach algebra of bounded linear operators from L., into L., .
Let Z(¢t) = sup [X(s):0 = s < fland f(, z, y) = P..[Z(t) < y]. Notice that
for a fixed = and y, f is a decreasing function of . Let d(x, y) denote the kernel of
the identity operator, I. The following theorem is one of the main results of this
paper and is an analog of Theorem 3.1 in [7]. The theorem is in the form of a
recurrence relation satisfied by f and involving the functions a and ¢ defined in
Section 2.
TurorREM 3.1. Consider a semi-Markvv jump process tn which f(-, -, y) s Borel
measurable for each y in R. Then for all t = 0,

+ [fR f[o,t]f(z, Y, t— S)C (x: 2, dS)k (x’ dz)]cr'
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Proor. Fory < z, f(z, y, t) = 0. Suppose y = . Then
PodZ(t) Syl =PeolZ(t) =y and a>f+ PoolZ(t) £y and a =<1
Now,
PoolZ(t) =y and o> =1—a(x,t),
and recalling that « = s implies that Y, = 0 and X, = X, , we have
P.oZ(t) =y and « = 1]
= [pot0,0 PolZ (t) £ y| Xo = 2; & = 8Py o[Xa € dz, a € ds]
= [z 0.0 fGy, t — s)c(x, 2, ds)k(z, dz)
where the last line follows from the strong Markov property applied to «. Thus
fory = z,
f@y,t)=1—at)+ [z [0afyt— s,z ds)k(, dz).
By checking the definition of the operator o, we see that for each ¢ = 0,
J@ oy, t) =d@y)(1 —alz, ) + e Joafe v, t — e, 2 ds)k(x, &),

and the theorem is proved.
It is convenient to recast Theorem 3.1 in terms of Laplace transforms. Since

f(z,y, +) is right-continuous and monotone decreasing, it is uniquely determined

by its Laplace transform.
For each t = 0, let V (¢) be an operator of the form (3.2) with kernel v (-, -, ¢)

satisfying (3.1) and such that |V ()| < C for all ¢ = 0. If for each z and y,
v(z, ¥, - ) is a bounded Borel measurable function, then let

0@,y N) = [rme v(x,y,t)dt.

If V (\) is the operator of the form (3.2) with kernel function 4 (-, -, \), then
one can easily show that for A > 0, [V (A\)|| < C/A. To do this it is sufficient to
consider operators with kernels such that v (z, -, t) is a non-decreasing function
for each ¢ and ¢ = 0. Under these conditions, we have for each z and A > 0,

Var (0(x, -, A)) = limye 8(z, ¥, \) = limye [0, e Moz, y, t) dt
= f[o,w) e—.Xt(limy-»oov(x, y, 1)) dt < f[o,w) eMNCdt = C/\.

It follows that [V (V)| = C/\.
Let

F@yN) = Jume (@, 9, t) di,
Q(.’B, Y, >‘) = f[0,°°) e—MQ(x’ Y, dt)’
d($, )\) = f[o,w) e_)"a(x, dt).

By the above discussion f (-, -, ) is a kernel function, and it is easy to verify that
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q(-, -, \) is one also. For each t = 0, let F (), #(\), Q(¢), and Q (\) be the oper-
ators with kernel functions f(-, -, ¢), f(-, -, N\), ¢(-, -, ), and §(-, -, \) re-
spectively. Denote by A (\) and B (\) the operators with kernel functions defined
by d(z, y)d(z, ) and d(z, y) (1 — d(z, \))/\ respectively. Finally, let K be the
operator with kernel k.

Let us note for use in the proof of the corollaries below that

i@y N) = [cwm é(@ 2 Nk, dz)
where
e, 2, N) = [0y € e (x, 2, dE).
CoroLLARY 3.1. Under the hypotheses of Theorem 3.1

(35) FN) =B +[QOVFMNI-
If, in addition, a is stochastically independent of X, , then
(36) F(\) = BO\) + [AWKF(W)).

Proor. Fory = 2
J@yt) =1—a@t) + [z [oafE vt — )z ds)k(, de),
and
F,,N) = [ = d@ NN + [ef@ y, Ni(, 2 \) d(z, de).

Since f(z, y, t) = 0 for y < z, we may write for all z and ¥y

F@ y ) = d@, )l = d@, )N + [[=] Gy, i, 2, Nk (=, d2)]'.
Thus

FQ\) =B + [QMZ Q)T

Suppose that « is independent of X, , then for each  and T, ¢(z, -, T') is
constant, and one may easily verify that

9@, Y t) = [cwm [0 a @, ds)k(z, dz).
It then follows that Q(\) = A (\)K and that
F(\) = BQ\) + [AQMKF M)

This finishes the proof of the corollary.

Corollary 3.1 gives a recurrence relation which is satisfied by #(\), and the
next theorem gives a condition under which # () is the unique bounded solution
of (3.5).

TueoreEM 3.2. Suppose that the hypotheses of Theorem 3.1 are satisfied. If for
some N, ||@(No)|| < 1, then for all N > o, Equation (3.5) has a unique bounded
solution.

Proor. Let 7 (\) be a bounded solution of (3.5). Iterating (3.5) n times one
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obtains
F(\) = Fo\) + Fi(\) + -+« + Fa(\) + L.(V)
where
Fo(\) = B(\),
Faa(\) = (QM)F.(N)) for n 20,
and

L.\ = (@) (- (QO)F(N))T ).
n+1 times.

By properties (3.3),

IA

2. = 1QM)I" IBM,
and
L] = 1O )™ 12 (M)

Since [|[B(\)|| < o, [[FQ)|| < e, and |[Q(\)]| < 1for X > Ag, we have that the
series Dm0 F (\) converges in the strong operator sense and ||[L,(\)|| — 0 as
n — . Thus

FQ\) = D 0F.(\)

is the unique bounded solution of Equation (3.5).

CoROLLARY 3.2. If the hypotheses of Theorem 3.1 hold and if o is stochastically
independent of X., then |A(\)|| < 1 for some \o implies (3.6) has a unique
bounded solution for A> N

Proor. Since Q(\) = A (\)K and ||K|| < 1, we have that |[Q(\)|| < A,
and the corollary follows from Theorem 3.2.

Let us return to the discussion in Section 2 and define p(z, y, %)
P,(xz, (—»,y)). Note that p (z, y, - ) is right-continuous and therefore uniquely
determined by its Laplace transform. Let

P@ Y N) = fowme 'y, t) dt
and P (\) be the operator with kernel # (-, -, \). Equation (2.1) becomes

(3.7) P(\) = B(\) + QM)PQ).

The conditions of Theorem 3.2 or Corollary 3.2 guarantee that (3.7) has a
unique bounded solution and thus that (2.1) has a unique substochastic solution.
From the discussion in Section 2, we can now say that the conditions of Theorem
3.2 or Corollary 3.2 imply that the semi-Markov jump process makes only a finite
number of jumps in any finite interval of time.

In the case that the process is homogeneous in space (i.e., ¢(z, ¥, t) = q(y — =, t),
a(z,t) =a()and k(x,y) = k(y — x)), we may avoid operators and use Fourier
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transforms. Let
wO,)) = [re™f(dy, ),
£0,0) = [re™(dy, ),
and
0®) = [ze™k(dy).
Note that if
¥(0) = [ze™dG(y)
for some right continuous distribution function @, then
¥ 0) = e € dG(y) + G(0).

TurorEM 3.3. If a semi-Markov jump process is homogeneous in space and satis-
fies the conditions of Theorem 3.1, then for X > 0, u(8, \) is the unique bounded
solution of

(3.8) pO2) =[(1 —a\))/N + (O, NEG, N)).
In fact, ’
(3.9) p@® N) =[(1 — a(\))/Nexp[—log (1 — £, N))’].

Proor. The proof that u (8, \) is the unique bounded solution of (3.8) may be ac-
complished in a manner similar to that in Theorems 3.1 and 3.2. To show (3.9)
we use a Wiener-Hopf type factorization. For A > 0, let

L(0> >‘) = IOg (1 - 5(0, >‘))'
Rewrite equation (3.8) as
[k (0, N) exp (L0, )" = [0, ML — £0, MII' = [QA — a())/N.

One may easily verify that exp (L0, \)) = exp (L, \)") exp (L(0, \)"), that
[exp (L6, N))]” = exp (L6, \)"), and that [exp (L0, X)")]” = 1. Then one can
see that u(9,\) = exp (—L(0,\)")is a bounded (and hence the unique bounded )
solution of (3.8). This finishes the proof.

Writing equation (3.7) as

p®N) =[A — d0)/Nexp Qe [ (0, NIE™),

one can see that (3.9) is an analog of Spitzer’s identity (see [6]).
CoroLLARY 3.3. If the conditions of Theorem 3.3 are satisfied and if a s sto-
chastically independent of X. , then u (8, N) s the unique bounded solution of

(810)  w(®,N) =[A —aM))/N+ @ Ne®)dN))’,
and may be written as
811)  w(@O,)N) =[@ — a())/Nexp (—log (1 — ¢(8)a(A))").
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Proor. We need only note that if the distribution of « is stochastically inde-
pendent of X, , then £(8, \) = ¢(6)d(\) and the corollary follows directly from
Theorem 3.3.

4. Examples. In this section we present a generalization of Example 2 in 2.

Let {¥.},n = 1, be a sequence of independent random variables each having
distribution Pr{Y, = k} = &, k = 0, =1, &2, --- such that p; = 0 for
k=234, - and p; > 0. Let N (t) be the number of renewals having occurred
over (0, t] in a renewal process with renewal distribution function a(). It is
assumed that a renewal has occurred at time 0. Let Yo = 0, then X (¢) = S rR Y,
is a Markov jump process which is homogeneous in space and for which £(6, \) =
4 (\)e (8). In the terminology of Corollary 3.3,

a0\ = Jom e a(d);
and
0(8) = 2i—ape .
For X > 0, let p(\) be the unique positive solution of
1/60) = Sis ps™
Then one may check that ’
p(\, 0) = ! a- e_”o‘)) Z:;o kPN Fiko

is a bounded solution of (3.10) and thus that u (8, \) is the double transform of
F(y,t) = Pr{supogs<e X (8) = 9}

We present two special cases in which one may invert u (6, \) to find f (y, t)
explicitly. The first case is that of coin tossing at random times. This is well
known and has been obtained previously by other methods (e.g., see [2]). In
our terminology we have Pr {Y, = 1} = Pr{Y, = —1} = 3anda(t) =1 — e,
Also,

p(A) = cosh™ (1/¢(\)) = cosh™ (( + 8)/8).
So the Laplace transform of f(n, - ) is
)\—l (1 _ e—p()\)) Z;:=0 e—kp()\) — )\—1 _ )\—le—(n+l)P()\)
= 2T =TI+ B)/8) — (N +8)/8) = DT
Thus we obtain
Pr{supo<s<: X(s) S m} =1 — (n+ 1) foe s 141(Bs) ds

where I, is the nth order modified Bessel function of the first kind.

The second case is the same as the first except that a (¢) is a gamma distribution
function with density gt /xt. Then p(\) = cosh™ (A + B8)/8 1), and
the Laplace transform of f(n, - ) is

A= AT+ B8)/8) = (VBT
= T NT[@VB) + 1 — (((2MB) + 1) — 1)
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Thus
Pr{supics<: X(s) = n} =1 — 3(n + 1) [6 e Iyt (Bs/2) ds.
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