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HYPOTHESIS TESTING WITH FINITE STATISTICS

By Tuomas M. Cover'

Stanford University

0. Summary. Let X;, X,, --- be a sequence of independent identically dis-
tributed random variables drawn according to a probability measure @. The two-
hypothesis testing problem Ho:® = ® vs. Hi:® = @ is investigated under the
constraint that the data must be summarized after each observation by an
m-valued statistic T, € {1, 2, - - - , m}, where T, is updated according to the rule
Twsr = fo(Tyn, Xpnp1). An algorithm with a four-valued statistic is described
which achieves a limiting probability of error zero under either hypothesis. It is
also demonstrated that a four-valued statistic is sufficient to resolve composite
hypothesis testing problems which may be reduced to the form Ho:p > po vs.
Hy:p < powhere X1, Xz, - - is a Bernoulli sequence with bias p.

1. Introduction and discussion of sufficient statistics. Let X;, X,, --- be a
sequence of independent identically distributed random variables (iid rv’s)
drawn according to some unknown measure ®. Throughout this paper we shall be
interested in the hypothesis test Ho:® = ® vs. H1:® = ®: . For a given deci-
sion procedure, which assigns each possible observation (x1, 2, -, Z.),
n=20,12 -, to Hyor H, we may define a, = Pr {Decide H, | Ho} and
B. = Pr{Decide H, | Hi}. Thus a. and 8. are the probabilities of error of each
kind, based on the first n observations, for the given decision procedure.

It is well known that the standard likelihood-ratio decision procedure results
in a, — 0 and 8, — 0 exponentially in n, with rates which depend on an informa-
tion distance between @ and @; . To apply this procedure at time n requires a
memory capacity sufficient to store the observations x1, 2, - -+, 2. . Observe
that even in the simplest case the memory must grow indefinitely with time. Any
truncation of memory to the last k observations, for example—as in the most
familiar definition of finite memory (see [9], [10])—will preclude the conver-
gence of a, and B, to 0, except in the singular case.

This paper is devoted to the hypothesis-testing problem under the constraint
that the data be summarized after each observation by an m-valued statistic
T,e{1,2, ---,m}, where T, is updated according to an algorithm of the general
form Twi1 = fu(T» , Xuni1). The two-hypothesis testing problem, under the further
constraint that f, be independent of n, has been solved and is currently being
submitted for publication [8]. Before proceeding to an analysis of this algorithm,
we wish to discuss alternative formulations of a ‘“reasonable’” memory constraint
for hypothesis testing problems.
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It has been frequently observed that the data may be reduced by a sufficient
statistic without loss of information. For example, X, = (1/n) > 7~ X; is a
sufficient statistic for testing the mean of a normal distribution. However, while
it is true the mapping corresponding to a sufficient statistic is many-to-one, and
is in this sense data reducing, it is generally not true that the cardinality of the
required memory is reduced. For example, in the case of the univariate normal,
the mapping from (21,22, - - - ,Zs) € R" to &, € R leaves the memory requirement
uncountably infinite. A possible alternative information lossless mapping from
R™ to R is given by the simple trick of interleaving the digits in the decimal ex-
pansions of 1 , 23, - - - , and &, to form a single real number. This mapping is not
continuous. However, even the nice continuity properties of the usual minimal
sufficient statistic may be duplicated. The work of Denny [5] establishes the
existence of a 1-1 uniformly continuous map of R" into R, excluding a set of
Lebesgue measure zero. Clearly, then, if one can store one real number, one may
store any finite number of real numbers. We conclude that the statistic &, has
not decreased the memory requirement at all.

Particular attention ([6], [11], [1]) has been paid to the existence of finite-
dimensional sufficient statistics (such as &, for the normal). Here, by implication,
it would seem that the memory is bounded in some sense by the dimension of the
minimal sufficient statistic. Again, from the standpoint of memory capacity,
there is no resultant saving in memory. The previously mentioned interleaving
decimal expansion yields a mapping of an arbitrary number of univariate observa-
tions into a 1-dimensional sufficient statistic, thus accomplishing the same task as
the perhaps nonexistent finite-dimensional sufficient statistic.

A first step toward defining a statistic with a realistic memory constraint might
be to consider rounding off the statistic at each stage. Hopefully, the infinite-
accuracy theory would apply directly, and a, , 8, would still tend to 0, although
at slower rates. Even this is not the case, as the following simple example will
show: Let X1, X;, -+ be iid rv’s drawn according to a normal N (u, ¢°) dis-
tribution with unknown mean x and known variance o*. We wish to test u = 1 vs.

u = —1. Observe that the new statistic Z,.1 may be expressed in terms of the
old statistic £, and the current observation , in the form
1.1) Tprr = NEn/ (0 + 1) + T/ (n + 1).

Suppose now that &, may be recalled only up to some roundoff error. Let [Z.] de-
note the sequentially rounded off version of Z,. Rounding off at each stage
results in the algorithm

(1.2) [EBnn] = [p[Za]/ (@ + 1) + @na/ (0 + 1)].

To what random variable does [£,]converge? The best hope is that [Z,] — [u] wpl.
Thus the decision procedure that decides x = =1 accordingly as [£.] 2 0 would
result in ay, , 8, — 0. Instead, the worst possible situation occurs. As we show
elsewhere, [Z,] converges wpl to a random variable which has strictly positive
probability mass on each of the countably infinite number of lattice roundoff
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values. In particular, there is positive mass on both sides of the origin;conse-
quently, a, , 8. converge to nonzero limits. So the first realistic approximation to
the data reduction problem will not resolve the hypotheses. This is true despite
the fact that we have used a reasonable procedure and a countably infinite
memory. From this example it may be seen that hypothesis testing problem must
be approached from first principles.

To our surprise, we find that this same problem may be solved with a two-
state memory. Consider the sequence of statistics {7,}7, T e { —1, 1}, defined
recursively by

T. =1, T, > (26° log n)%,
(1.3) = —1, T, < — (20% log n)F,

T, otherwise

Ty arbitrary ¢ { —1, 1}.

These thresholds are suggested by the fact (see, for example, [2], [7]) that, for
Xy, Xo, -+ iid ~ N(u, 0°), max {Xy, Xs, -+, X} — (2°logn)f — u, in
probability. It may be shown that Y Pr{X, > (20°logn)}} = « or < » ac-
cordingly as u > 0 or u < 0. Consequently, by the Borel zero-one law
X, > (26°log n)! infinitely often wpl for u > 0 and finitely often wpl for u < O.
A corresponding statement holds for X, < — (2¢° log n)!. Therefore T, — 1 or
—1 accordingly as p > 0 or p < 0. We have thus furnished an example of a
2-state memory which resolves the composite hypothesis testing problem x4 > 0
vs. u < 0 with probabilities of error e, , 8, — 0. This example will be generalized
to arbitrary distributions in Section 2.

To summarize our point of view, we admit the utility of sufficient statistics in
computation, but doubt their utility in the problem of memory reduction. First,
for multivariate data, there exist trivial data preserving mappings into the unit
interval. Denny’s work provides uniformly continuous such mappings. Second,
the straightforward sequential rounding off of sufficient statistics generally fails
to yield a, , 8, — 0. Thus a memory constraint requires a more careful approach
than the simple rounding off of sufficient statistics. Third, we might add that the
existence of a finite dimensional sufficient statistic is destroyed by a slight dis-
tortion of the distributions in the family (without greatly affecting the resolving
power of the old statistic). In this sense, the existence of a finite-dimensional
sufficient statistic is a “measure-zero’” phenomenon, not to be taken too seriously.

In the next sections we shall provide the beginnings of a theory of hypothesis
testing with finite statistics in which the hypotheses are resolved despite non-
trivial data reduction at each stage. Specifically we shall demonstrate the exist-
ence of a four-valued (and in some cases two-valued) sequentially updated
statistic achieving &, — 0 and 8, — 0. Sole concern will be with the algorithm

(14) Tn+1 = fn (Tn ) xn+1)7
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where the memory (or statistic) T', takes values in the set {1, 2, - - - , m}. Thus
the new value of T depends explicitly only on the old value of T, the current ob-
servation and the number of trials. Discussion of the naturalness of this formula-
tion will be delayed until Section 4.

2. Learning in the unbounded likelihood ratio case. Let X;, X;, --- be a
sequence of iid rv’s drawn according to a probability measure ®. Consider the
hypothesis test Ho:® = ® vs. Hi:® = @ . Let ® and @ possess probability
densities fo and fi respectively with respect to a measure u. There is no loss in
generality in this assumption since one can take u = ® + @ . Define the likeli-
hood ratio I(z) = fi(x)/fo(x). Let us consider f; and f, such that / is unbounded
above and unbounded away from zero, with probability one, under each hy-
pothesis. We shall refer to this as the unbounded likelihood ratio case.

TuroreMm 1. In the unbounded likelihood ratio case, there exist sequences of
thresholds {1,}, {1.} such that the algorithm

T, =1, I(z,) > 1,
-1, lxn) < o,

(2.1)
= T,1, otherwise

results in T» — 1 wpl under Hy and T, — —1 wpl under Hy . Thus a, — 0 and
Bn — 0 with a 2-state memory, under either hypothesis, i.e., with probability one,
only a finite number of mistakes will be made by { T} .

Proor. Let Gy (1) and Gy (1) be the distribution functions of ! under hypotheses
H, and H, respectively. Since [ (z) = fi(z)/fo(2), it follows that dGi (1) = [ dGo(l).
Hence

(2.2) Gi() = [Sae () = [e1 dGe(l') < 1Go(1).
We wish to demonstrate a sequence of thresholds {l,} such that
(2:3) 21 Gil) < o,

w1 Go(ln) = =,

for it would then follow by the Borel zero-one law that transitions would be made
to the —1 state infinitely often wpl under Ho but only finitely often under H; .
The following is a simple construction of a suitable sequence {l,}. Let

(24) (b = {b, b, b, b, b, b, b,
" "

where

2.5) 0<l, = @)

and

(2.6) Gi(l) = G
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Such a sequence may always be chosen because ! is not bounded away from zero,
by hypothesis. Let », be the integer satisfying

(27) ”nGl (ln) = (%)n < 2VnG1 (ln).
Then
(2.8) S G) = ZvGila) £ 2L G =1< .

On the other hand, from Egs. (2.2) and (2.7)
2 Go(ln) = X vaGo(la)
(2.9) 2 D valn 'Gi(ln)
z 2 @)L
P 00:

Thus the existence of a sequence {1} satisfying Eq. (2.3) has been established.
We note in passing that Eq. (2.8) implies that the expected number of transitions
to T = —+1 is less than 1 under Ho. We may choose this expected number as
small as desired by appropriate choices of {l.}, {l.}.

A precisely parallel argument establishes the existence of a sequence of upper
thresholds {I,} such that

I\

20— G) =

Z (1 - Go(zn)) < o,

Therefore, under Hy, 1(X,) > I, i.0., while (X,) < l. only finitely often.
Consequently 7', — 1 wpl. Similarly, under Hy, T» — —1 wpl. Thus a, — 0,
B» — 0, as desired.

(210)  and

3. The bounded likelihood ratio case. There are certain heuristic considera-
tions which make it appear unlikely that learning is possible in the bounded
likelihood ratio case. In the Bayesian formulation, for example, where prior
probabilities are associated with the two hypotheses, the rule which stores the
Bayes decision at each stage will not learn. Eventually the posterior probabilities
will be such that no single observation will yield a change in the decision.

Fortunately, experiments of arbitrarily large information may be compounded
from experiments of bounded information by the artifice of looking for sequences
of events before changing the state of the memory. (This point of view yields
some interesting comments [3] on the 2-armed bandit problem with finite
memory [9].)

Consider the basic problem of testing the hypothesis that a coin with bias p
has bias p > po vs. p < po . Note that the general two-hypothesis testing problem
with { X} iid may be put in this framework under the correspondence

X, =1, I(XH) =1
=0, IX)<1
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and
po=3@Pr{X;=1|H} + Pr{X; = 1|Hp}).

TarorEM 2. Let Xy, Xo, -+ be a sequence of iid Bernoulli rv’s with
Pr{X; = 1} = p. There exists an algorithm with a 4-state memory for which the
hypothesis p > po vs. p < po 18 resolved with limiting probability of error zero under
either hypothesis.

Proor. We shall exhibit one such scheme. Let the memory consist of the pair
(T, Q) where T and @ both take values in {0, 1}. Thus the memory has 4 states
(or 2 bits). In the proposed scheme T will keep track of the currently favored
hypothesis and @ will keep track of the successfulness of the current run test.

Consider two sequences {s;}1 and {r:}7 of positive integers. Divide the sequence
of observations into blocks Si, Ri, Sz, Rz, - -+ with the first s; observations
being denoted by S;, the next r, by R, , etc. We shall always know where we are
in which block from the knowledge of the sample number n. An S; block will be
considered a success if all s; observations result in 1’s, while an E; block will be
considered a success if all r; observations result in 0’s.

At the beginning of an S; block, set @ = 1 (success) if the initial observation
is a 1. Subsequently, in that block, let

3.1) Q. =0, X, =0,
= Qn—l, Xn = 1.

Similarly, for an R; block, set @ = 1 if the initial observation is a 0. Subsequently,
in that block, let

(8.2) Q. =0, X, =1,
= Qn—l 5 Xn = 0.

Thus R; checks for r; consecutive 1’s and S; checks for s; consecutive 0’s; and
Q. = 1 at the end of the block if and only if the desired run has occurred.
The currently favored hypothesis 7' is updated by the rule

T, =1, Q. =1, ne Ny,
(3.3) = 0, Qn = 1, n€N2,
= Tha, otherwise,

where Ny = {s1,81 + 1+ 82, ---}and No = {ss +r,s0 + 71+ s+ 12, -+ -},
Thus changes in T occur only at the ends of test blocks.

Under this rule, the transition probabilities are Pr (T, = 1| Tha = 0) = p**
at the end of an S; block and Pr (T, = 0| T»— = 1) = ¢’ at the end of an R;
block. It follows, by the independence of the blocks and the zero-one law, that
T,— 1 wplif

2Pt =
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(3.4) and

24 < .

Similarly, T — 0 wpl if

2 <
3.5) and

2¢ = =.

That is, T, will be wrong only a finite number of times wpl.

Thus the compound hypothesis test p > po versus p < po is resolved by this
scheme if we can demonstrate sequences of integers {s;}7, {r:7 such that (3.4)
holds for p > po and (3.5) holds for p < po . To accomplish this we shall let s; be
the integer defined by

IOgﬂo (1/2) =< lngo (1/7') + 1’

3.6) or,for 0 <p <1,

1 /3 ; 1 1/9)+1
P 0gpy(1/2) = ph >p 0gpy(1/7) .

Consequently
3.7) 1/0)% =z 9 > p(1/2)7, where a = log,, p.

Now, for0 < p, po < 1, @ = log,, pis > or =1 accordingly asp < poorp = po.
Thus Y p* = o forp = po;and Y p** < e forp < po . Similarly, by selecting
the integer 7; to satisfy log,, (1/7) < r; < loge, (1/¢) + 1, we may conclude that
> ¢ < w,forp > po;and Y, ¢° = o, forp < po. Thus (34) and (3.5) are
satisfied and the theorem is proved.

This test actually resolves the compound hypothesis testing problem ® ¢ F vs.
® ¢ ¥, when there exists a set S in the space of outcomes of X such that

infeeg, ®(S) > supges, ®(S). (Define the new random variable X; = {(1), § z 2 g}

and apply Theorem 2 to {X.}.)

ExamMPLE 1. Let X1, X», -+ beiid real valued normal random variables with

2 2
mean zero and unknown variance o°. Let X; = (1)’ )}?2 z Zz. Note that
b 1 =
Pr{X: = 1|6"} =28(c/o). Let po = 2®(c/c). Then the 4-state test described in
this section will test o® > ¢* versus ¢” < ¢?, with limiting probability of error zero.
In the final analysis, we are testing the hypothesis Pr {X & S} > po vs.
Pr{XeS} < po.
1 ) X i z [

Exampig 2. In the univariate case, let X; = {O, X:<c

tion resolves F (¢c) 2 po, where F is the unknown cdf of X. If po = 1, this provides
a nonparametric finite-memory test of whether or not the median is greater than c.

. The test in this sec-

4. Concluding remarks. Now that it has been shown that the two-hypothesis
testing problem may be resolved with a four-state memory, we wish to re-
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investigate the naturalness of the algorithm T,y1 = fu(Tr, Xat1). Note that f, is
specified independently of the data and that T, ¢ {1, 2, 3, 4} is a finite statistic
sequentially summarizing the past observations. However, the dependence of
f» on n requires external specification of n if the algorithm is to be considered to
have truly finite memory. It is clear that requiring f, to be independent of n will
preclude a, — 0, 8, — 0 except in the singular case. Thus, requiring the proba-
bility of error to approach zero requires an ‘“‘infinite” algorithm. The variation
of f, with n is a natural way to meet this requirement. The algorithm has been
factored into two parts—that dealing with the data is finite, while the part con-
cerned with the data processing is unbounded. In contrast, in the theory of
computation, Turing machines have an essentially infinite memory (an infinite
tape) with finite computation (i.e., an f, which is independent of n).

Fortunately, time-independent algorithms of the form Tp11 = f(TW, Xuy1)
have an interesting theory of their own. The determination of all e-admissible
time-independent finite-memory algorithms for the two-hypothesis testing prob-
lems will be given in [8]. Solutions of some problems in the sequential design of
experiments under the finite memory constraints of this paper and [8] may be
found in [3] and [4].
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