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ABSTRACTS OF PAPERS

(Abstracts of papers to be presented at the Annual meeting, New York, New York,
August 19-22, 1969. Additional abstracts will appear in future issues.)

10. Modification of Levene’s comparison of variances to remove p. PETER
NeMmEeNYI, Virginia State College.

To test for inequality of variances, Levene {-tests or ANOVA-tests samples of absolute
deviations |#; — Z|, |2 — &, ---, |®x — F|, or transforms of these. [Levene, H. (1960).
Robust tests for equality of variances. Contributions to Probability and Statistics (I. Olkin
et al eds.) 278-292.] The robust quality of ¢ is relied on to neutralize the correlations (—1/
(n — 1)) between n deviations (z; — %), but does not quite. To get rid of the correlations,
it is proposed to use n — 1 orthogonal contrasts, for example z; + n7%2; — (1 + n~#)E_1,
(G =2, ---,n), instead of the n deviations. The samples of contrasts may be compared by
t, F or nonparametric tests, and confidence intervals can be obtained. (Received 14 April
1969.)

11. Unbiased coin tossing with a biased coin. WassiLy HorrrpinGg and GORDON
Smvmons, University of North Carolina.

Procedures are exhibited and analyzed for converting a sequence X;, X», -+ of iid
Bernoulli variables with mean p into a (sequence of iid) Bernoulli variable (s) with mean %.
von Neumann (1951) has suggested the procedure: Sample X , X», - - - sequentially in pairs
and stop the first time 2m for which Xem # Xsm—1 . Then Z = X, is a Bernoulli variable with
mean %. His procedure is a special case within the class of “even procedures” (relatable to
tests of Neyman structure) which are investigated by the authors. The best even procedure
(in the sense that no other even procedure stop as soon as and sometime sooner than this
one) is definable in terms of S, = D1 X;: Sample X1 , X: , +++ sequentially until time N for
which the binomial coefficient (ngN) s even. Set Z = Sy-1 modulo 2. A better (noneven) pro-
cedure is found that has an expected sample size which is less than 4% larger than a theo-
retical lower bound at each value of p £ (0, 1). (Received 15 April 1969.)

12. Analysis of factorial arrangements in unbalanced block designs. B.
KurksiaN and R. C. Wooparr, Headquarters Army Materiel Command
and Harry Diamond Laboratories.

The unified theory of Kurkjian and Zelen (Biometrika 1963) for the analysis of factorial
arrangements, as applied to balanced block designs, is extended to include the general case
of unbalanced designs. Included are situations involving missing treatments, unequal num-
ber of treatments per plot per block and fractional factorial designs. The computations are
programmed for an IBM 7094 computer. The Gauss-Markoff estimates for the treatment
effects, as well as the usual quantities associated with the analysis of variance, are pre-
sented. Where appropriate, aliases of each treatment effect are provided as printer output.
Confounded treatment effects are also identified. (Received 17 April 1969.)

13. Rank tests invariant only under linear transformations. RosBerT L.
OBENCHAIN, University of North Carolina.

Nonparametric procedures appropriate for data measured on at least an ordinal scale
utilize ranks invariant with respect to monotonically increasing transformations. By re-
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stricting attention to data measured on at least an interval scale and to procedures invari-
ant only under the group of translations and nonsingular linear transformations, the
univariate concept of rank order is generalized and extended to several dimensions as fol-
lows: Suppose p = 1 variables are observed on individuals in random samples from ¢ = 1
populations. It is shown that the maximal invariant under the above group of transforma-
tions can be viewed as a scatter of points in Euclidean space of p or fewer dimensions. The
concept of “difference ranks” of the distances between pairs of individuals in the combined
sample is introduced and is shown to imply the ordinary ranks of univariate data. The
assignment of general “linearly invariant rank scores” which preserve the dimensionality
of the data is considered ; conditional tests based on these scores are robust in small samples
but are not asymptotically distribution-free because they can be asymptotically most
powerful invariant. Use of polar coordinates leads to the conecept of “radius rank” and a
strictly distribution-free test with some power for detecting differences in dispersion.
(Received 17 April 1969.)

14. Canonical analysis of several sets of variables. Joxn R. KerTENRING, Uni-
versity of North Carolina.

Five different techniques for the canonical analysis of several sets of variables are in-
vestigated. Each is such that it reduces to Hotelling’s classical canonical analysis procedure
when the number of sets is only two. A second important common feature is that each calls
for the selection of (a number of stages of) canonical variables or linear composites (sub-
ject to appropriate restrictions), one from each set, according to a criterion of optimizing
some function of their correlation matrix, R = ((rs;)). The criteria considered are the fol-
lowing: (i) maximize I3r;; [Horst, Paul. (1961). Psychometrika 26 129-149]; (ii) maximize
the largest eigenvalue of R [Horst, Paul. (1961). J. of Clinical Psychology (monograph
supplement) 14 331-347]; (iii) maximize ZZr}; ; (iv) minimize the smallest eigenvalue of R;
(v) minimize [R| [Steel, Robert G. D. (1951). Ann. Math. Statist. 22 456-460]. Models of the
general prineipal component type are constructed for each of the five methods. The models®
serve to motivate and to interrelate the methods, as well as to reveal the types of effects
which can be detected. (Received 24 April 1969.)

15. Asymptotic density of eigenvalues for a Gaussian ensemble of matrices.
W. H. Ouson and V. R. Rao UrpuLuri, Oak Ridge Associated Universi-
ties and Oak Ridge National Laboratory.

On a probability space (2, &, P) let A, = (ai;){ j=1 be a random matrix such that: (i)
ay = aj; a.8.; (i) a4, 17 j, is normal with mean 0 and variance 1, and a;; is normal with
mean 0 and variance %: (iii) {as;, ¢ < j} is independent. Let B, = $n~t 4, and denote by
Ain, A2n, *** , Ann the eigenvalues of B, . Let W, (z) be the empirical distribution function
of Min , Aen, *** 5 Aan , 1.€., Wo(x) = Ny(z)/n where N,(z) = the number of Ain , Aon, =+ ° ,
Ana less than z. We shall prove that E (W, (x)) converges to W (x) as n approaches infinity
where W (x) is the distribution function with the semi-circle density, w(z) = 2771(1 — x?)3,
lz] £ 1, w(x) = 0, |z| > 1. Mehta [Random Matrices, Academic Press (1967)] outlines a
proof in terms of convergence of density functions which are marginals of the joint density
function of (A\1n ,Aen , *** , Aan). A corresponding theorem where the elements of the matrix
take the values +1 and —1 with probabilities 3 and % respectively for off-diagonal elements
and take the value 0 with probability 1 for diagonal elements was proved by Wigner [Ann.
Math. 62 (1955) 548-564]. We shall make use of the combinatorial argument of Wigner’s
paper, and the method outlined in the general case by Arnold [J. Math. Anal. Appl. 20
(1967) 262-268]. (Received 18 April 1969.)
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16. Moment inequalities for the maximum cumulative sum. R. J. SERFLING,
Florida State University.

Let {X,} be a collection of random variables, not necessarily independent or identically
distributed. Assume E (X;) = 0.Let Sa.n = Xop1+ ** + Xoynand M,,, = max {[Seal, -+ ,
|8a.nl}. Let r = 2. Bounds on the rth moment of M,,, are deduced purely from assumed
bounds on the rth moment of |S;.s|. The Rademacher-Mensov inequality, which pertains to
the case of r = 2 and orthogonal X/’s, is generalized to allow r = 2 and other types of de-
pendent X’s. For the case of r > 2, a further result is obtained which is considerably more
useful for asymptotic applications of such inequalities. Applications to probability in-
equalities and to the tightness of sequences of random functions are considered. (Received
23 April 1969.)

17. A unified difference-equation approach to the study of problems in queues
and in dams in discrete time. TomAs GArza-HerNANDEZ. El Colegio de
México.

A usual approach to the description of random walk processes is through the use of sto-
chastic difference equations relating the states of the process in successive points in time.
It is shown how to extend this treatment to other features of interest in the random walk,
such as first-return times and limiting distributions. The present-day availability of meth-
ods of solution for a wide class of difference equations with strong boundary conditions opens
the way to a unified approach to a number of problems in applied fields such as the theories
of queues and dams. A systematic description of this approach is given in problems such as
queue-length, busy period, and time-to-emptiness (in a dam), apart from the well-known
ones of waiting time and storage content, and its relationship to other methods is discussed.
Finally, some indications are given for obtaining explicit results in a number of particular
cases. (Received 25 April 1969.) »

19. Ladder phenomena for processes with stationary independent increments
(preliminary report). M. Rusinovitca, Cornell University.

Let {X:; ¢ = 0} be a separable process with stationary independent increments. Let
& = {E(); t > 0} where E(t) = {0:X;(0) = Xs(w); 0 = s S t} and &* = {E*(t); t > 0}
where E* (1) = {0:X:(w) < Xs(w);0 < s =< t}.8 and &* are called the ascending and descend-
ing ladder phenomena for X; . These are regenerative phenomena in the sense of Kingman
[Z. Wahrscheinlichkeitsth. 2 (1964) 180-224]. Conditions for & and &* to be standard or stable
are given and their local time and limiting properties are characterized. It is found that
there are three cases: (i) both & and &* are standard. (ii) one, say &, is standard and the
other (&*) is degenerate (that is Pr{E*(t{)} = 0 identically) and (iii) both & and &* are
degenerate. It is shown that (i) is equivalent to the statement that both phenomena are
stable, which is true iff X; is a compound Poisson process. Ladder epochs as first passage
times are introduced for processes X; in cases (i) and (ii) and their behavior is characterized
using the ladder phenomena. Finally, the connection between ladder epochs and the supre-
mum functional of X; is used to obtain limit theorems for the latter. (Received 1 May 1969.)

20. Certain properties of the positive Poisson distribution and the second type
Stirling distribution. J. C. Amusa, Portland State University. (By title)

The problem of estimating the parameter of the positive Poisson distribution (PPD)
f(z; 8) = a6®/z!, x € I, where I is the set of positive integers,« = 1/(e’ — 1) and0 < 6 < =,
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has been considered by many authors. Among them, Tate and Goen [Ann. Math. Statist. 29
(1958) 755-765] have also obtained the distribution for the sum of » independent and identi-
cally distributed random variables having the PPD with parameter § which we call the
second type Stirling distribution (S8TSD). In this paper certain properties and characteriza-
tions of the PPD and the STSD are investigated following Patil and Wani [Sankhya, Ser.
A. 27 (1965) 271-280] and explicit expressions are given for the caleculation of the crude and
central moments of the PPD in terms of Stirling numbers of the second kind. The distribu-
tion for the sum of n independent random variables having the PPD with different param-
eters is derived, and from this the STSD is obtained as a special case. Recurrence relations
for the probability function of the STSD are provided, and the distribution function of the
STSD is expressed in terms of the sum of incomplete gamma functions. (Received 5 May
1969.)

21. Useful bounds in symmetrical factorial designs and error correcting codes.
B. R GuraTi, Eastern Connecticut State College.

Let m:(r, s) denote the maximum number of distinct points in a finite projective space
PG(r — 1, s) of r — 1 dimensions based on the Galois field GF (s), where s is a prime or power
of a prime, so that no ¢ of these points are linearly dependent. It is well known that m;(r, s)
also represents the maximum number of factors that can be accommodated in a symmetrical
factorial design in which each factor is at s = p= levels, blocks are of size s", and no ¢-factor
or lower order interaction is confounded. For an (n, k) group code, with % information
symbols and fixed redundancy r = n — k, the maximum value of »n for which u errors can
be corrected in a channel capable of transmitting s distinet symbols with certainty is
May (7, s). The maximum value of n for which u errors can be corrected with certainty and
u -+ 1 can be detected is given by mau,1(r, s). Bose has recently shown (Bull. Inst. Internat.
Statist. 38 (1961)) that the theory of confounding and fractional replication due to Fisher,
Finney, Bose and Kishan and theory of error correcting codes developed by Hamming and
Slepian can be reduced to the problem of investigating m:(r, s). In this paper, we haveé
established the following results: (i) m;(¢ +7r,2) =t +r 4+ 1fort = 2( + 1), r = 1, (ii)
me(t +1r,2) =t+r+2fort=2r,2r +1,r 22, Qi) m@t+r,2) =t +r+5bfort=
2(r — 1),2r — 1,7 = 4. The bound is achieved for r = 4. (iv) m:(t + 1, 3) = t + 7 for
3<t=<5andt-+2fort=6,and (v) m(@t +2,3) =t+5for6 =t =8and?+ 3for
t = 9. These results generalize some of the previously reported results (Ann. Math. Statist.
40 (1969) 723). (Received 5 May 1969.)

22. Some approximations and uses of the Dirichlet distributions. (preliminary
report). GEORGE C. T1a0 and B1yt Aronsa, University of Wisconsin and
University of Ife.

Several approximations to integrals of the types (1) ¢/l --+ So* (1 + Z'E=1 xi)—zlf=o pi
ITioie?itda @) cfst - S5 — Zhaadr? Il e?i dee @) cfe - S
a+ Xk, mi)-2,f=o Di H’f=1 z? i Gz, where ¢ = I'(D -0 pi)/]%0 ' (ps), are considered.
Bayesian studies of variance component models in ANOVA (Tiao and Tan, Biometrika 62,
37-53) suggest moment method of obtaining approximations to some incomplete gamma
type integrals and hence to (1), (2) and (3). The resulting approximations involve only the
calculations of incomplete beta functions which can be looked up in tables. Two of the
approximations appear to be better than existing ones in both simplicity and accuracy. The
good performance of a third and perhaps the simplest is limited to some values of the a; .
Some new bounds are also obtained for the bivariate case of (1) and (3), and simpler proofs
are given for some other known bounds. Mention is made of various applications in such
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studies as ANOVA, homogeneity of variances, order statistics from gamma distributions,
selection of populations with the smallest and largest variances, regression analysis, multi-
nomial distributions and analysis of nonorthogonal designs. (Received 7 May 1969.)

23. A martingale analogue of Kolmogorov’s law of the iterated logarithm.
Wirriam F. Stout, University of Illinois.

In the paper we establish a martingale analogue of Kolmogorov’s law of the iterated
logarithm for sums of bounded independent random variables. A modification of Kolmo-
gorov’s classical exponential bounds approach is used in conjunction with stopping rule
theory for martingales in order to establish the result. Our law of the iterated logarithm is
shown to include the martingale laws of the iterated logarithm established using different
approaches by Strassen (Proc. Fifth Berkeley Symp. Math. Statist. Prob. 2 (1965) 315-343)
and Levy (Theorie de Daddition des variables aleatoires, Paris (1965)). An application is
made to sums of unbounded martingale differences. (Received 9 May 1969.)

24. A comparison of some parametric and non-parametric discrimination pro-
cedures in negative exponential populations. JAck R. BorstinGg and L.
JoseEPH L. LockeTT, III, Naval Postgraduate School and Stanford Uni-
versity. (By title)

Several procedures based on the likelihood ratio for discrimination between two negative
exponentially distributed populations are proposed. The small sample and asymptotic per-
formance of these procedures is compared with that of non-parametric procedures and the
classical linear diseriminant function. Some guidelines for the use of the procedures dis-
cussed are presented. (Received 10 May 1969.)

26. Some distribution problems in life testing. RoBERT R. READ, Naval Post_-
graduate School.

The paper treats distribution problems associated with truncated life testing of subsys-
tems under conditions of limited test facilities. Specifically, there are ¢ test chambers and
7 (2¢) subsystems available for test. The failure law is exponential and reliability estimates
are to be based upon the total test time of all subsystems. The total idle time of the test
center is also of interest and use is made of the fact that total idle time and total test time
sum to a fixed quantity. The output process of the test center is also of interest for purposes
of experimental design and scheduling, The paper characterizes the joint distribution of the
output of the center, the total test time, and the total idle time under stopping rules based
on either fixed time or fixed number of failures. Normal approximations are justified.
(Received 10 May 1969.)

26. Limit laws for maxima of a sequence of random variables defined on a
Markov chain (preliminary report). StpNEY I. REsNICK and MAarcEL F.
NeuTs, Purdue University and Cornell University.

Consider the bivariate sequence of r.v.’s { (J , X»), n = 0} with X, = 0 a.s. The marginal
sequence {J,} is an irreducible, aperiodic, m-state M.C., m < «, and the r.v.’s X, are con-
ditionally independent given {J,}. Furthermore P{J, = §, Xn < @ | Jn1 = ¢} = psHi(z) =
Qi; (x), where H1(*), ++ , Hn(+) are cdf’s. Setting M, = max {X1, -+, X,}, we obtain
P{J, =7, M, = z|Jo=1} = [@"()]:;i, where @(z) = {Qi;(z)}. The limiting behavior of
this probability and the possible limit laws for {M,} are characterized: THEOREM. Let p (z)
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be the Perron-Frobenius eigenvalue of Q(z) for real x, then: (a) p(x) 2s a cdf; (b) if for a
suitable normalization {Q7;(aijn® + bijn)} converges completely to a matriz {Us(x)} whose
entries are nondegenerate distributions, then Ui (x) = wjpu(x), where mj = lima.. pi; and
pu () 18 an extreme value distribution; (c) the normalizing constants need not depend on <, j;
(d) p™(an® + ba) converges completely to p,(z); (€) the maximum M, has a nontrivial limit law
pu(z) ©ff Q*(z) has a nonirivial limit matriz U(z) = {Uii(z)} = {rjpu(x)} or equivalently
iff p(x) or the cdf [[7=1 H:™¢ (z) is in the domasn of attraction of one of the exireme value dis-
tributions. Hence the only possible limit law for {M,} are the extreme value distributions which
generalizes the results of Gnedenko for the ii.d. case. (Received 14 May 1969.)

(An abstract of a paper presented at the Central Regional meeting, Iowa City, Towa,
April 23-25, 1969. Additional abstracts appeared in earlier issues.)

44. Estimating the conditional probability of misclassification. MARILYN SORUM,
Northwestern University.

An observation z is assumed to come from one of two p-dimensional normal populations
I, , II; with unknown mean vectors ui , u2 and common known covariance =. Letting & , Z2
denote sample mean vectors based on observations from II, , II, , z is classified as coming
from I, if (Z; — %)% 2 (&1 — 72)'271(F1 + Z.). The quantity to be estimated is Py =
P,(Z1 , %2 , u2), the conditional probability of misclassifying an z coming from II; , given
the fixed rule based on 7y , #; . Related quantities are Py* = Py*(A), the expectation of P; ,
and Py** = Py**(A), the probability of misclassifying « from II; when all parameters are
known (i.e. the above rule with u; , u2 in place of &1 , Z2); A2 = (u1 — p2)'Z (1 — pe). The
“original” observations on which the rule is based plus additional “test” observations
from II, are assumed available. Estimators considered include ones obtained by classifying
the original or test observations from II; ; ones of the form P, (% , Z: , fi2), Po* (A), Pz**(ﬁ),
where fi,A are estimators of u: , A; and the conditional (given & , Z:) UMVU estimator
based on original and test observations. Looking at asymptotic mean square error (condi”
tional moments), for all estimators studied the leading term is of order 0, (N71*¢). Com-
paring estimators on the magnitude of the leading term, estimators based on normality are
better; estimators based only on original samples are as good on the (unconditional) average
as corresponding estimators requiring test observations; and all the estimators using nor-
mality and only original samples are equivalent. (Received 5 May 1969.)

(Abstracts of papers not connected with any meeting of the Institute.)

1. Comparison of translation experiments. Erik Nikorai TorRGERSEN, Uni-
versity of California, Berkeley.

In this paper we treat the problem of comparison of translation experiments. The “con-
volution divisibility” criterion for “being more informative’ by C. Boll (1955, Ph.D. thesis
Stanford Univ.) is generalized to a “e-convolution divisibility” criterion for e-deficiency.
We also generalize the “convolution divisibility” ecriterion of V. Strassen (dnn. Math.
Statist. 36 (1965) 423) to a criterion for “e-convolution divisibility”. It is shown, provided
least favorable “e-factors” can be found, how the deficiencies actually may be calculated.
As an application we determine the increase of information—as measured by the defi-
ciency—contained in an additional number of observations for a few experiments (rec-
tangular with unknown scale parameter, exponential with unknown scale parameter,
normal with known mean and unknown variance, multivariate normal with unknown mean
and known covariance matrix, one way lay out with unknown means and known variances).
Finally we consider the problem of convergence for the pseudo distance introduced by
LeCam (Ann. Math. Statist. 86 (1964) 1419). It is shown that convergence for this distance



ABSTRACTS 1517

is topologically equivalent with strong convergence of the individual probability measures
up to a shift. (Received 2 May 1969.)

2. Maximum likelihood estimation of a unimodal density function. Epwarp J.
WeeMmAN, University of North Carolina.

Under the assumption of unimodality of the probability density function, a non-para-
metric maximum likelihood estimate of that density is given. Strong consistency of the
density estimate is shown to depend on strong convergence of an estimate of the mode.
The maximum likelihood estimate of the density generates an estimate of the mode which
is shown to converge almost surely. (Received 7 May 1969.)

3. A characterization based on the absolute difference of two i.i.d. random
variables. PrREM S. Purt and HermMaN RuBiN, Purdue University.

Let X be a nonnegative random variable with X, and X, as its two independent copies.
The problem considered here is to characterize all the nonnegative distributions with the
property that the distribution of the absolute difference |X; — X;| is same as that of X.
It is shown that in general such a distribution has to be either purely discrete, or purely
absolutely continuous or singualr and that it cannot be their mixture. The result for the
case when X is discrete was reported earlier (see Prem S. Puri, Ann. Math. Statist. 40 (1969)
725). For the case when X is absolutely continuous, it is shown under certain conditions
that the only distribution that enjoys the above property is the exponential distribution
with pdf f(z) = 6 exp (—6z), for x = 0, and zero elsewhere, with 6 > 0. The case when X
is singular is not considered. However, here X cannot be bounded as it is shown that the
only bounded X satisfying the above property is either the one with distribution Pr(z = 0)
= Pr(X = a) = 3 for some a > 0 or with Pr(X = 0) = 1. (Received 12 May 1969.)

4. Estimation of the parameter of an exponential distribution on the basis of a
preliminary test. J. SinaH, University of California at Berkeley.

Let @1,22, * ,Zmand y1, 42, **+ , Y» be two random samples from populations having
pdf’s f(z, 61) and f(, 6,) respectively where f(z, ) = (1/0) exp (—x/0). We are interested
in estimating 6; . We first make a test of the hypothesis H:6, = 6, . If the preliminary test
accepts the hypothesis H we use both X and Y samples for estimating 6; and if the pre-
liminary test rejects the hypothesis H we use only X sample for estimating 6; . We thus de-
scribe an estimate § of 6, as below: 8 = (mZ + ng)/(m + n), if 1/FE 2my < (m/n)2y;/Za; <
F{8) amy; 8 = &, otherwise, where « is some preassigned level of significance. The preliminary
test used here is equivalent to the likelihood ratio test for the above hypothesis. The dis-
tribution of the estimate 8 has been derived and the bias and mean square error of 8, as an
estimate of 6 , has been investigated. We plan to do some empirical investigation for the
comparison of the estimate & with the usual estimate . (Received 12 May 1969.)

5. The behavior of some robust estimators on dependent data II (preliminary
report). JosEPH L. GAstTwirTH and HERMAN RuBiN, The Johns Hopkins
University and Purdue University.

This paper continues our study (Abstract, 39 (1968) 1087) of the behavior of robust
estimators on dependent processes. In particular, we have proved the following theorems.
TrEOREM 1. On stationary Gaussian sequences such that p, = 0 for all k and > pr < o, the
asymptotic effictency of any linear combination of order statistics which is an unbiased esti-



1518 ABSTRACTS

mator of the mean of the process relative to the sample mean s greater than or equal to its value
in the case of independent observations. THEOREM 2. For a normal first order autoregressive
process with negative p, the asymptotic efficiency of any linear combination of order statistics
which is an unbiased estimator of the mean of the process relative to the sample mean is less
than or equal to its value tn the case of independent observations. THEOREM 3. Analogous
results hold for the Hodges-Lehmann estimator. THEOREM 4. Under the conditions of Theorem
2, the asymptotic efficiency of a finite linear combination of order statistics relative to the sample
mean — 0 as p — —1. (This s not true for the Hodges-Lehmann estimator or the trimmed
mean.) (Received 20 May 1969.)



