STRONG CONSISTENCY OF CERTAIN SEQUENTIAL ESTIMATORS¹

By Robert H. Berk²

Hebrew University

1. Introduction and summary. Motivated by Loynes' (1969) treatment of (weak) consistency of sequential estimators, we establish here some allied results on strong consistency. The strengthened conclusion is achieved by imposing further restrictions, so that our results are not as broadly applicable as Loynes'. The reader is referred to Loynes' paper for additional motivation and discussion.

As in that paper, we are concerned with estimators that improve a given one by taking conditional expectations with respect to a sufficient statistic, in the case where the sample size may itself be a random variable. x_1, x_2, \cdots will denote the data sequence, random variables defined on a measurable space (Ω, Ω) . All probability measures considered on (Ω, Ω) will render the sequence iid. It is seen below (Theorem 3.4) that a given sequence $\{t_i\}$ of stopping times for the data sequence leads to a strongly consistent sequence of estimators if $\lim t_i = +\infty$ a.s., and the t_i are C-ordered (Definition 2.3). This entails that the t_i increase monotonically to $+\infty$ a.s., but requires additional structure as well. The specific considerations are in Section 3; Section 2 presents some general notions.

- **2.** Generalities. Let $\{\mathfrak{C}_n: 1 \leq n \leq \infty\}$ be an increasing sequence of subfields (of \mathfrak{C}) with $\mathfrak{C}_{\infty} = \bigvee_n \mathfrak{C}_n$. Let $\{\mathfrak{C}_n: 1 \leq n \leq \infty\}$ be another sequence of subfields and $\{\mathfrak{C}_n: 1 \leq n \leq \infty\}$ be a decreasing sequence of subfields with $\bigcap_n \mathfrak{C}_n = \mathfrak{C}_{\infty}$. A random index is a positive (extended) integer-valued random variable on (Ω, \mathfrak{C}) . These will be denoted by M, N, etc.
 - 2.1 Definition. $\mathfrak{G}_N = \{ \bigcup_n B_n(N=n) : B_n \in \mathfrak{G}_n \}.$

Remark. Note that N is \mathfrak{G}_N measurable. If \mathfrak{G}_n is generated by a statistic v_n , $\mathfrak{G}_N = \mathfrak{G}(N, v_N)$, where $v_N = \sum v_n I_{(N=n)}$.

2.2 Proposition. If $f \in L_1(\Omega, \alpha, P)$,

$$E_{P}(f|\mathfrak{G}_{N}) = \Sigma \{E_{P}(fI_{(N=n)}|\mathfrak{G}_{n})/E_{P}(I_{(N=n)}|\mathfrak{G}_{n})\}I_{(N=n)}[P].$$

PROOF. Denoting the RHS by f_N , for $B_n \in \mathfrak{G}_n$,

$$\int_{(N=n)B_n} f_N = \int \{ E_P(fI_{(N=n)} | \mathfrak{G}_n) / E_P(I_{(N=n)} | \mathfrak{G}_n) \} I_{(N=n)}
= \int_{B_n} \{ E(fI_{(n=n)} | \mathfrak{G}_n) / P(N = n | \mathfrak{G}_n) \} P(N = n | \mathfrak{G}_n)
= \int_{B_n} fI_{(N=n)} = \int_{(N=n)B_n} f \cdot \square$$

- 2.3 Definition. $M \leq N$ are C-ordered if also, $\mathfrak{C}_N \subset \mathfrak{C}_M$.
- 2.4 Proposition. If $M \leq N$, the following are equivalent:
- (a) N is C_M measurable.
- (b) M and N are C-ordered.

Received 2 December 1968.

¹Supported in part by NSF Postdoctoral fellowship 48097.

² On leave from The University of Michigan.

- (c) $\forall k \leq n, \exists C_{kn} \in \mathcal{C}_k \text{ so that } (N=n)(M=k) = C_{kn} (M=k).$
- PROOF. $(a) \Rightarrow (b)$. Choose $C \in \mathcal{C}_N$. For some $C_n \in \mathcal{C}_n$, $C(N = n) = C_n$ $(N = n) = C_n(N = n)(M \le n) = [(N = n)] \cap [C_n(M \le n)] \in \mathcal{C}_M$ since each of the sets in brackets does. Thus $C \in \mathcal{C}_M$.
- $(b) \Rightarrow (c)$. $\mathfrak{C}_N \subset \mathfrak{C}_M \Rightarrow N$ is \mathfrak{C}_M measurable. Thus for all $k, n, \exists C_{kn} \in \mathfrak{C}_k$ so that $(N = n)(M = k) = C_{kn}(M = k)$.
- $(c) \Rightarrow (a)$. For $k \leq n$, $(N = n)(M = k) = C_{kn}(M = k) \in \mathcal{C}_M$. For k > n, $(N = n)(M = k) = \emptyset$. Hence $(N = n) \in \mathcal{C}_M \Rightarrow N$ is \mathcal{C}_M measurable. \square
- 2.5 COROLLARY. If (N > n) $\varepsilon \, \mathbb{C}_n$ for all n, then for all $M \leq N$, M and N are C-ordered.

PROOF. For $k \leq n$, $(N \leq n)(M = k) \varepsilon C_M$, while for k > n, $(N \leq n)(M = k) = \emptyset$. Thus N is C_M measurable. \square

Remark. The condition in 2.5 is usually stated that N is a reverse stopping time on the sequence $\{\mathfrak{C}_n\}$. Another criterion for C-ordering is given in Section 3 (see Theorem 3.5).

2.6 Definition. A collection $\{N_j: j \in J\}$ of random indices is C-ordered if every pair selected from it is C-ordered.

REMARK. Clearly, in order that $N_1 \leq N_2 \leq \cdots$ be C-ordered, it is necessary and sufficient that for $i = 1, 2, \dots, N_i$ and N_{i+1} be C-ordered.

2.7 THEOREM. If $N_1 \leq N_2 \leq \cdots$ is C-ordered and $N_{\infty} = \lim N_i$, then $\{N_i: 1 \leq i \leq \infty\}$ is C-ordered and $\mathfrak{C}_{Ni} \downarrow \mathfrak{C}_{N_{\infty}}$.

PROOF. By the C-ordering, it is clear that C_{N_i} decreases to C^* , say. If $C \in C_{N_{\infty}}$, for some $C_n \in C_n$, $C(N_{\infty} = n) = C_n(N_{\infty} = n) = \lim_i C_n(N_i = n) \in C^*$. Thus $C_{N_{\infty}} \subset C^*$, which in turn implies that $C_n : 1 \le i \le \infty$ is C-ordered.

Choose $C \in \mathfrak{C}^*$. $\forall i \exists C_{ni} \in \mathfrak{C}_n$ so that $C(N_i = n) = C_{ni}(N_i = n)$. $C(N_i = n) \to C(N_{\infty} = n)$, thus $\lim_i I_{C_{ni}} = 1$ on $C(N_{\infty} = n)$. Let $C' = \Omega - C$. $C'(N_i = n) = C'_{ni}(N_i = n)$, so that $\lim_i I_{C'_{ni}} = 1$ on $C'(N_{\infty} = n)$. Or,

$$\lim I_{c_{ni}} = 1$$
 on $C(N_{\infty} = n)$,
= 0 on $C'(N_{\infty} = n)$.

Let $C_n = \limsup_i C_{ni} \varepsilon \, \mathfrak{C}_n$. $C(N_{\infty} = n) = C_n(N_{\infty} = n) \epsilon \mathfrak{C}_{N_{\infty}}$. Thus $C \varepsilon \, \mathfrak{C}_{N_{\infty}}$ and hence $\mathfrak{C}^* = \mathfrak{C}_{N_{\infty}}$.

3. Strong consistency. Let z_n be the order statistic generated by

$$(x_1, \dots, x_n)$$
: $z_n \equiv \{x_1, \dots, x_n\}.$

Let \mathcal{O} be a family of distributions on (Ω, \mathcal{A}) and for every n, let v_n be $\mathcal{B}(x_1, \dots, x_n)$ measurable and sufficient for (x_1, \dots, x_n) . We suppose v_n satisfies.

Condition A. For all n, (i) v_n is $\mathfrak{B}(z_n)$ measurable and (ii) v_{n+1} is $\mathfrak{B}(v_n, x_{n+1})$ measurable.

REMARK. A(i) requires v_n to be symmetric in x_1, \dots, x_n , a condition usually met in applications. A(ii) implies that $\{v_n\}$ is a transitive sequence; see Bahadur (1954).

Let $\mathfrak{C}_n = \mathfrak{B}(x_1, \dots, x_n)$, $\mathfrak{C}_n = \mathfrak{B}(v_n)$ and $\mathfrak{C}_n = \mathfrak{B}(v_n, x_{n+1}, x_{n+2}, \dots)$. Under condition $A, \mathfrak{C}_n \downarrow \mathfrak{C}_{\infty}$, say, and by the Hewitt-Savage 0 - 1 law, \mathfrak{C}_{∞} is a.s. trivial $[\mathfrak{C}]$.

3.1 Lemma. If $T \in L_1(\Omega, \alpha_n, \emptyset)$, $E(T | \mathfrak{G}_n) = E(T | \mathfrak{C}_n) [\emptyset]$.

PROOF. Follows from independence of α_n and x_{n+1} , x_{n+2} , \cdots .

3.2 Definition. A random index t is a stopping time on $\{\mathfrak{C}_n\}$ if $(t=n)\epsilon\mathfrak{A}_n$, \forall_n . All stopping times will be on $\{\mathfrak{C}_n\}$.

Remark. If t is a stopping time, $\alpha_t = \{A \in \alpha : A(t = n) \in \alpha_n\}$.

3.3 COROLLARY. If t is a stopping time, for all $T \in L_1(\Omega, \Omega_t, \mathcal{O})$, $E_P(T \mid \Omega_t) = E_P(T \mid \mathcal{O}_t)$ and neither expression depends on $P \in \mathcal{O}$.

PROOF. $E_P(T \mid \mathfrak{C}_t) = \Sigma \{ E_P(T1_{(t=n)} \mid \mathfrak{C}_n/P(t=n \mid \mathfrak{C}_n) \} I_{(N=n)}[P]$. Since $TI_{(t=n)}$ and $I_{(t=n)}$ are \mathfrak{C}_n measurable, the conclusion follows from Lemma 3.1 and the sufficiency of \mathfrak{C}_n . \square

3.4 THEOREM. Let $s \leq t_1 \leq t_2 \leq \cdots$ be C-ordered stopping times so that $\lim_i t_i = +\infty$ [\mathcal{O}]. Then for all $T \in L_1(\Omega, \mathcal{O}_s, \mathcal{O})$ and $P \in \mathcal{O}$, $E(T \mid \mathcal{O}_{t_i}) \to E_P T[P]$.

PROOF. We remark first that if $s \leq t$ are stopping times, then $\alpha_s \subset \alpha_t$. Thus for all i, $T \in L_1(\Omega, \alpha_{t_i}, \mathcal{O})$, so that by Corollary 3.3, $E(T \mid \alpha_{t_i}) = E(T \mid \alpha_{t_i})$ [\mathcal{O}]. By Theorem 2.7, $\alpha_{t_i} \downarrow \alpha_{t_i} \subseteq (\mathcal{O}, \Omega)$ [$\alpha_{t_i} \subseteq (\mathcal{O}, \Omega)$]; hence $\alpha_{t_i} \subseteq (\mathcal{O}, \Omega)$ [$\alpha_{t_i} \subseteq (\mathcal{O}, \Omega)$].

Thus if the t_i increase to $+\infty$ a.s. and are C-ordered, projecting T onto the sufficient σ -fields $\mathfrak{G}_{t_i} = \mathfrak{G}(t_i, v_{t_i})$ produces a sequence of strongly consistent estimators of E_pT . If s and the t_i are not random, one obtains the strong consistency of the usual Blackwell-Rao estimators. If, in addition, $v_n = z_n$, $E(T \mid \mathfrak{G}_{t_i})$ is just the U-statistic formed from t_i observations, based on the kernel $T = T(x_1, \dots, x_s)$. Strong consistency in this last case is already known: see Berk (1966).

For the more specialized structure of this section, we present a criterion that assures C-ordering and which is more useful than Corollary 2.5.

3.5 THEOREM. Let $\{V_{ni}, n = 1, 2, \dots, i = 1, 2, \dots\}$ be a collection of measurable sets, V_{ni} being a subset of range v_n for all i and so that $V_{ni} \supset V_{n(i+1)}$ for all n and i. Let t_i be the first $n \geq 1$ so that $v_n \in V_{ni}$ or be $+\infty$ if no such n occurs. Then $t_1 \leq t_2 \leq \cdots$ are C-ordered.

PROOF. Since V_{ni} is decreasing in i, it is clear that t_i is increasing in i. Moreover, for $k \leq n$, since $V_{ji} \supset V_{j(i+1)}$,

$$(t_{i} = k)(t_{i+1} = n)$$

$$= (v_{1} \varepsilon V'_{1i}, \cdots, v_{k-1} \varepsilon V'_{(k-1)i}, v_{\kappa} \varepsilon V_{ki})$$

$$\cap (v_{k} \varepsilon V'_{k(i+1)}, \cdots, v_{n-1} \varepsilon V'_{(n-1)(i+1)}, v_{n} \varepsilon V_{n(i+1)})$$

$$= (t_{i} = k)C_{kn}, C_{kn} \varepsilon C_{kn}.$$

By Proposition 2.4, the t_i are C-ordered. \square

Remark. We note that the above proof works equally well if

$$\mathfrak{C}_n = \mathfrak{B}(v_n, v_{n+1}, \cdots).$$

- **4. Examples.** We illustrate the idea of C-ordered stopping times. We suppose the x_i are real-valued and, for convenience, we suppress \mathscr{O} . (i) Let t_i be the first $n \geq 1$ so that $\max\{x_1, \dots, x_n\} \geq a_i$, or be $+\infty$ if no such n occurs. We take a_i increasing and $\mathscr{O}_n = \mathscr{O}(z_n, x_{n+1}, \dots)$. Since a_i increases, t_i increases. Moreover, $(t_i > n) = (x_i < a_i, i = 1, \dots, n) \in \mathscr{O}_n$, so that by Corollary 2.5, the t_i are C-ordered.
- (ii) Let t_i be the first n > i so that $x_n > \max\{x_1, \dots, x_i\}$ or be $+\infty$ if no such n occurs. Take $\mathfrak{C}_n = \mathfrak{G}(z_n, x_{n+1}, \dots)$. Again, t_i increases. If $t_i > i+1$, $t_{i+1} = t_i$. Thus for n > i+1, consider $(t_i = i+1, t_{i+1} = n)$. $(t_{i+1} = n) \epsilon \mathfrak{C}_{i+1}$, thus $(t_i = i+1, t_{i+1} = n) \epsilon \mathfrak{C}_{t_i}$, which implies that t_{i+1} is \mathfrak{C}_{t_i} measurable. By Proposition 2.4, the t_i are C-ordered. The first two examples are taken from Loynes (1969). The next is motivated by the stopping rule for the Wald SPRT; the last example, by a sequential procedure proposed by Chow and Robbins (1965).
- (iii) Let $v_n = x_1 + \cdots + x_n$ and t_i be the first $n \ge 1$ so that $|v_n| \ge a_i$, or be $+\infty$ if no such n occurs. We take a_i increasing and $\mathfrak{C}_n = \mathfrak{G}(v_n, x_{n+1}, \cdots)$. On taking $V_{ni} = (-a_i, a_i)$, it is seen that Theorem 3.5 applies.
- (iv) Let $v_n = (\bar{x}_n, s_n)$, where $\bar{x}_n = \sum_{1}^{n} x_i/n$ and $s_n = \sum_{1}^{n} (x_i \bar{x}_n)^2$. We consider the continuum of stopping times: t_d is the first $n \ge 1$ so that $s_n \le b_n a(d)$, or is $+\infty$ if no such n occurs. We take $a(\cdot)$ increasing, $\{b_n\}$ to be an arbitrary sequence of positive constants and $\mathfrak{C}_n = \mathfrak{G}(v_n, x_{n+1}, \cdots)$. Clearly $c \le d \Rightarrow t_c \ge t_d$ and, letting $V_{nd} = [0, b_n a(d)]$, Theorem 3.5 shows that $\{t_d : d \ge 0\}$ is C-ordered. Let $t_{c+} = \lim_{d \downarrow c} t_d$ and $t_{c-} = \lim_{d \uparrow c} t_d$. Since these monotone limits are sequential, Theorem 2.7 shows that the augmented system

$$\{t_d, t_{d+}, t_{c-}: c > 0, d \ge 0\}$$

is C-ordered.

REFERENCES

- BAHADUR, R. R. (1954). Sufficiency and statistical decision functions. Ann. Math. Statist. 25 423-462.
- [2] BERK, R. H. (1966). Limiting behaviour of posterior distributions when the model is incorrect. Ann. Math. Statist. 37 51-58.
- [3] Chow, Y. S. and Robbins, H. (1965). On the asymptotic theory of fixed-width sequential confidence intervals for the mean. Ann. Math. Statist. 36 457-462.
- [4] LOYNES, R. M. (1969). The consistency of certain sequential estimators. Ann. Math. Statist. To appear.