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STRONG CONSISTENCY OF CERTAIN SEQUENTIAL ESTIMATORS!

By Rosertr H. BErk®

Hebrew Unaversity

1. Introduction and summary. Motivated by Loynes’ (1969) treatment of
(weak ) consistency of sequential estimators, we establish here some allied results
on strong consistency. The strengthened conclusion is achieved by imposing
further restrictions, so that our results are not as broadly applicable as Loynes’.
The reader is referred to Loynes’ paper for additional motivation and discussion.

As in that paper, we are concerned with estimators that improve a given one
by taking conditional expectations with respect to a sufficient statistic, in the case
where the sample size may itself be a random variable. z; , Z2 , - - - will denote the
data sequence, random variables defined on a measurable space (2, @). All
probability measures considered on (€2, @) will render the sequence iid. It is seen
below (Theorem 3.4) that a given sequence {t;} of stopping times for the data
sequence leads to a strongly consistent sequence of estimators if lim ¢; = +
a.s., and the ¢; are C-ordered (Definition 2.3). This entails that the ¢; increase
monotonically to + « a.s., but requires additional structure as well. The specific
considerations are in Section 3; Section 2 presents some general notions.

2. Generalities. Let {@, :1 < n < «} be an increasing sequence of subfields
(of @) with G, = V4G . Let {B,:1 < n < «} be another sequence of subfields
and {C,:1 < n £ »} be a decreasing sequence of subfields with N,€, = C,. A,
random index is a positive (extended ) integer-valued random variable on (£, GL)
These will be denoted by M, N, ete.

2.1 DEFINITION. By = {UnBa(N = n):B, ¢ ®,}.

ReMARK. Note that N is ®y measurable. If &, is generated by a statistic
Un, By = G(N, vy), where vy = 2 Ond (Nn) -

2.2 ProposiTiON. If f ¢ L1(Q, @, P),

Ex(fI®n) = Z{Ep(fIv=m|®2)/ E p(I v=n)| B )} v=my [ P].

Proor. Denoting the RHS by fv , for B, ¢ ®,,

f(N=n)anN = f {E p(fI vemy| Bn)/E (I vmn| B )} (=)

S E(fl | B2)/P(N = 1| ®)}P(N = n| &)
= fB,,fI(N=n) = f(N=n)B f D

2.3 DerINITION. M = N are C-ordered if also, Cy C @y .

2.4 ProrosITiON. If M = N, the following are equwalent

(a) N is @y measurable.
(b) M and N are C-ordered.
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(¢) Yk = n, AC4n e C so that (N = n)(M = k) = Cyu (M = k).

Proor. (a) = (b).Choose C eCy . Forsome C, @, ,C(N =n) =C, (N =n)
=Co(N =n)(M £n) =[(N =n)] n[C.(M £ n)]eCy since each of the sets
in brackets does. Thus C ¢ @y .

(b) = (¢). Gy C @y = N is @y measurable. Thus for all &, n, A Ck, € C; s0
that (N = n)(M = k) = Couu(M = k).

(¢)=(a).Fork =n, (N=n)M =k) = Cu(M = k) e¢Cy.Fork > n,
(N =2)M =k) = & Hence (N = n) £ Cy = N is @y measurable. []

2.5 CoroLLARY. If (N > n) & @, for all n, then for all M < N, M and N are
C-ordered.

Proor. Fork = n, (N £ n)(M = k) €@y, whilefork > n, (N = n)(M =k)
= (. Thus N is @i measurable. [] -

ReMARK. The condition in 2.5 is usually stated that N is a reverse stopping
time on the sequence {€,}. Another criterion for C-ordering is given in Section 3
(see Theorem 3.5).

2.6 DrrinNiTION. A collection {N;:j ¢ J} of random indices is C-ordered if
every pair selected from it is C-ordered.

REMARK. Clearly, in order that Ny < N, < --- be C-ordered, it is necessary
and sufficient that forz = 1,2, - - - , N; and N, be C-ordered.

2.7 TuporeM. If Ny £ N, £ --- 14s C-ordered and N, = lim N., then
{N.:1 £ 7 £ »} is C-ordered and Cy; | Cx,

Proor. By the C-ordering, it is clear that (‘ZN, decreases to €, say. If C eCyx_,
for some C €@y, C(Ny =n) = Co(Nyo = n) = limiCn(N; = n) £ . Thus
ex, C e Whlch in turn implies that {€;:1 < 7 =< »} is C-ordered.

Choose C ee* Vi AC,; £ @, so that C(N; = n) = C'm(N =n). C’(N =n)
—C(N, =n), thuslim; I¢,, = lon C(N, = n).Let ¢’ = @ — C. C'(N; = n)
= Cni(N: =n),s0that im I¢., = 1on C'(N,, = n). Or,

limI¢,, =1 on C(N, = n),
=0 on C' (N, = n).

Let C, = lim sup; Cni €@, . C(N,, = n) = Co(N = n)eCy_ . Thus C ¢ Cx_ and
hence €* = Cr . [

3. Strong consistency. Let z, be the order statistic generated by

(®y, o, @) 20 = {T1, -, ZTu}.
Let ® be a family of distributions on (2, @) and for every =, let v, be
®(z1, + - , ) measurable and sufficient for (21, -« -, #.). We suppose v, satis-
fies.

ConprtioN A. For all n, (i) v, is B(2,) measurable and (ii) v,4118 ®(vs , Tny1)
measurable.

ReEMARK. A(i) requires v, to be symmetric in 2y, - - - , z. , a condition usually
met in applications. A(ii) implies that {v.} is a transitive sequence; see Bahadur
(1954).
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Let G, = ®(x1, +++, Tn), Bp = B(vn) and C, = B(Vn, Tut1, Tute, *** ).
Under condition 4, €, | €., say, and by the Hewitt-Savage 0 — 1 law, G is
a.s. trivial [®].

3.1 LEMMA. If Tels(Q, @, , ®), E(T |®,) = E(T|€.) [®].

Proor. Follows from independence of @, and Znt1, Zata, - -

3.2 DeFINITION. A random index ¢ is a stopping time on {@,} if ({ = n)e@y , ¥,.
All stopping times will be on {@,}.

REMARK. If ¢is a stopping time, @; = {Ae@:A(t = n)eQ.}.

3.3 CoROLLARY. If t is a stopping time, for all Tel,(Q, G, ®), Ep(T | ®;)
=E»(T | C,) and neither expression depends on P & ®.

ProoF. Ep(T | €,) = Z{Ep(T1ny | Co/P(t = n | Co )} v—m[P]. Since T
and I, are @, measurable, the conclusion follows from Lemma 3.1 and the
sufficiency of ®, . []

3.4 THEOREM. Let s £ &) < &, £ --- be C-ordered stopping times so that limgt;
= + oo [®]. Then for all TeL:(Q, @; , ®) and Pe®, E(T | ®;) — ET[P].

Proor. We remark first that if s < ¢ are stopping times, then @, C @, . Thus
for all 4, TeL1(R, G:, , @), so that by Corollary 3.3, E(T | ®;;) = E(T | e,) [®].
By Theorem 2.7, C;; | Co, = (&, Q) [®]; hence Ex(T | C;;) — E-T[P]. [J

Thus if the ¢ increase to 4+« a.s. and are C-ordered, projecting 7' onto the
sufficient o-fields ®;;, = ®(%:, v¢;) produces a sequence of strongly consistent
estimators of E,T. If s and the {; are not random, one obtains the strong consist-
ency of the usual Blackwell-Rao estimators. If, in addition, v, = 2., E(T | ®.;)
is just the U-statistic formed from ¢; observations, based on the kernel
T = T(a1, -+, % ). Strong consistency in this last case is already known: see
Berk (1966 ).

For the more specialized structure of this section, we present a criterion that
assures C-ordering and which is more useful than Corollary 2.5.

3.5 TurorEM. Let {V,i,n = 1,2, ---,¢ = 1,2, -} be a collection of measur-
able sets, V,; being a subset of range v, for all © and so that Vai D Vg for all n
and 1. Let t; be the first n = 1 so that v, &€ Vi or be 4« if no such n occurs. Then
<t = --- are C-ordered.

Proor. Since V,. is decreasing in 7, it is clear that ¢; is increasing in . More-
over, for k < n, since V;; O Vjuw ,

(t: = k)(tigr = n)
=(ne V;i , o y Up—1 € Vzk—l)i » Vs € Vi)
N & Vicsn » = » et € Ve » 0 € Vcisn)
= (ti = k)Cin, Cin € Cpy .

By Proposition 2.4, the t; are C-ordered. []
ReMARK. We note that the above proof works equally well if

C, = (B(Un,vn.u, )
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4. Examples. We illustrate the idea of C-ordered stopping times. We suppose
the z; are real-valued and, for convenience, we suppress ®. (i) Let ¢; be the first
n = 1so that max {z;, -+, %} = a:, or be + « if no such n occurs. We take a;
increasing and €, = ®(2, , Toy1, * * * ). Since a; increases, t; increases. Moreover,
G>n)=(xi<a,2=1---,n) ¢@C,, so that by Corollary 2.5, the ¢; are
C-ordered.

(ii) Let t; bethefirst n > ¢ sothat z, > max {z1, -+ - , 2 or be 4+ « if nosuch
n occurs. Take @, = ®(2, , &nt1, - - - ). Again, t;increases. If t; > ¢+ 1,830 = ¢; .
Thus for » > 7 4 1, consider (¢; = ¢ + 1, tipa = n). (tiqa = 1)eCsiy, thus
(t: = ¢ + 1, tiya = n)eCy,; , which implies that ¢:41 is ©;; measurable. By Proposi-
tion 2.4, the ¢; are C-ordered. The first two examples are taken from Loynes
(1969). The next is motivated by the stopping rule for the Wald SPRT; the last
example, by a sequential procedure proposed by Chow and Robbins (1965).

(iii) Let v, = @1 + - - - + x, and ¢; be the first n = 1 so that |v.] = a:, or be
=+ « if no such » occurs. We take a; increasing and @, = ®(vs , Tng1, - -+ ). On
taking V.; = (—a;, a;), it is seen that Theorem 3.5 applies.

(iv) Let v, = (%, , sn), where &, = Dy ai/n and s, = 2.1 (x: — &) We
consider the continuum of stopping times: ¢; is the first n = 1 so that s, < b, a(d),
or is + o« if no such n occurs. We take a(-) increasing, {b,} to be an arbitrary
sequence of positive constants and @€, = ®(v, , Zn41, * -+ ). Clearly ¢ £ d = ¢,
= tg and, letting Va.e = [0, b,a(d)], Theorem 3.5 shows that {¢;:d = 0} is C-or-
dered. Let {,. = lim 4, and {_ = lim 4.0 . Since these monotone limits are
sequential, Theorem 2.7 shows that the augmented system

{td, td+’ tc—:c > O, d g O}

is C-ordered.
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