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1. Introduction. Let F(z, y) be a bivariate distribution function with marginal
distribution functions G(z) and H (y). Lancaster [8] has studied the structure of
bivariate distributions using orthogonal functions on the marginal distributions.
Let {¢:(2)} and {n;(y)} be complete orthonormal sets of functions on G(zx) and
H(y) respectively such that E(t:(x)n;(y)) = pidi;, 1 = p° = p° = -+, where
8:; is the Kronecker delta. {{i}, {n;} are called the canonical variables of (X, Y'),
and {ps} the canonical correlation coefficients of (X, Y'). The sets {¢:}, {#; and
{pi} determine the bivariate distribution function F(z, y) uniquely given G(z)
and H(y). F(z, y) is said to be ¢’-bounded with respect to its marginal distribu-
tionsif ¢" + 1 = [ {dF(z, y)/dG(x)dH (y)}* dG(x) dH(y) < =, or equivalently

¢ ipe = ¢’ < . ¢ -bounded distributions have a canonical expansion of the
form dF (z, y) = dQ(z) dH(y){1 + D nei pninn.*}, in mean square.

Sarmanov [10] has characterized the canonical correlation coefficients of
¢’-bounded distributions, whose marginal distributions are normal and whose
canonical variables are the Hermite-Chebyshev polynomials. The series expan-
sion of a bivariate normal frequency function in Hermite-Chebyshev poly-
nomials,

2m)7(1 = ) Fexp {—(a® — 20my + ¢")/2(1 — o)}
= (2r) " exp {— (2" + ¥")/2H{1 + 0o p"Hu(2)HA(y)}

is used in this characterization, {H,(z)} being orthonormal on (27)*exp
-{—2"/2}. There is a similar expansion in the Laguerre polynomials of a bi-
variate gamma frequency function derived by Kibble [5]. A multivariate exten-
sion of this frequency function has been derived by Krishnamoorthy and Partha-
sarathy [7] and some properties of this multivariate case discussed by Krishnaiah
and Rao [6].

In this note, the canonical correlation coefficients of bivariate gamma distri-
butions, with canonical variables the Laguerre polynomials, are considered,
making use of the frequency function derived by Kibble [5]. A class of these
distributions which are ¢’-bounded is obtained, the general proof not depending
on ¢>-boundedness.

The connection with Bochner’s work [1] on stochastic processes is shown and
thus a class of stochastic processes associated with the Laguerre polvnomials is
constructed.

Moran [9] has obtained a minimum bound for the ordinary correlation coeffi-
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1402 R. C. GRIFFITHS

cient between two correlated gamma variables. For those bivariate distributions
in this note, further restrictions on p are obtained.

2. Bivariate gamma distributions. The Laguerre polynomials {L,*(z)} are a
system of polynomials, orthonormal and complete with respect to the gamma
distribution whose frequency function is w*(z) = "¢ */T(a), z > 0. The
Laguerre polynomials have the expansion
(2.1) Lf(x) = (") (D (—2)™/m!

The notation is such that if {L«,*(z)} is the set of Laguerre polynomials referred
to in Erdélyi [4], then L,*(z) = (") L#, ().

DermviTioN. Let X and Y be two gamma variates with parameters o and b
respectively. (X, Y') will be said to be distributed in gamma correlation it
E(L (X)L (Y)) = 8umpn, {pa} being a sequence of constants. (X, ¥) then
has canonical variables {L,(X)}, {L.’(Y)} and canonical correlation coefficients
{Pn}-

Kibble [5] has obtained a bivariate gamma distribution with joint frequency
function

(2.2) w (@)W (Y1 + D12 "La"(z)L. (y)} for 0 £ 2 < 1,
and moment generating function (mgf)
(23) E(exp(th + th)) = (1 - tl)_a(l - t2)~a(1 - ztltz/(]. - tl)(l - tz))_a

when ¢ is half-integer. Recently, Vere-Jones [11] showed that the ‘“‘symmetric”
bivariate gamma distribution is infinitely divisible and so (2.3) is a momeft
generating function for any real ¢ > 0. For z = 1 this is also a mgf of the ran-
dom variable (X, Y = X). A possible “mgf” for a bivariate gamma, distribution
is thus

(2.4) (1 —6)7"(1 — &)™ — atyty/ (1 — 4)(1 — &))" 5,

with L > 0, > 0,P > 0and 0 = z = 1. However Kibble [5] has pointed
out that the resulting ‘“frequency function” is negative for some values of

(x, y) if 2P > min (L, M). Krishnamoorthy and Parthasarathy [7] have con-
sidered a moment generating function of the form

(2.5) (b, ytn) = |I —QD|™®

where p is a half-integer, I is an identity matrix, D is diagonal matrix whose
diagonal elements are 4, - - - , {, and Q is the covariance matrix of the “accom-
panying”’ multivariate normal. The multivariate distribution with mgf (2.5)
has gamma marginals and an expansion in the Laguerre polynomials under
covergence conditions on Q.

Some properties of (2.5) have been discussed by Krishnaiah and Rao [6].

Although (2.4) is not in general a mgf, it is for certain values of L, M, P and z.

LemMA 1. (24)isamgfif M =b,L = a,P =a,b 2 aand0 =z < 1. The
resulting random variable (X, Y') is in gamma correlation with canonical correlation
coefficients p, = ("TATR(mHETY TR
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Proor. Since (2.3) is a mgf for alla > 0 and 0 =2 =< 1,50 (1 — )"
(1 — &) ™1 — 2tity/(1 — 6)(1 — &) “isamgf foralla, ¢ > 0and 0 <
z < 1. Placing b = a + ¢ gives the first part of the lemma. The random variable
(X, Y) corresponding to this mgf is of the form (X, Y = U + V), (U, X)
having the mgf (2.3), and V being a gamma (b — a) variable, independent of U
and X.

It is known that the Laguerre polynomials satisfy a ‘“Runge-type” identity

(26) LU + V) = 220w (OLAU)LZZ(V),

where U and V are independent and L,*(U) is L,*(U) scaled to have a leading
coefficient of unity; (see Fagleson [2]). The leading coefficient of L,*(U) is
(—=1)"(" ™) #/nl, so from this and (2.6) E(L.(X)LL(Y)) = ("¢ )}
(" hns, . . When z = 1 this corresponds to a distribution with “random
elements in common” as discussed by Eagleson [2].

The case when the marginal distributions of (X, Y') are identical is considered
first.

TrHEOREM 1. A sequence {p,} is a sequence of canonical correlation coefficients of
o distribution in gamma correlation with identical marginals if and only if p, =
fo' £ du(t), p(t) being a distribution function on [0, 1].

Proor. Sufficiency. Any mixture of the distribution function corresponding to
(2.3) with respect to a distribution function u(z), defined on [0, 1] will again
be a distribution function. The canonical variables will be {L,*(X)}, {L.*(Y)}
and canonical correlation coefficients p, = fol " du(t).

Necessity. Let {p,] be a sequence of canonical correlation coefficients.
B(L,"(Y)| X) = pLn"(X). Nowy" = (—1)"n!("7 )L (y) + aeLsa(y) +
-+ + a,, where the a; are easily determined constants.

27) B(Y"[X) = (=1)"nl("7 ) puLn(X) + bLii(X) + -+ + ba
= Pan + chn—l + -+

where the b; and c; are constants. From (2.7) p, = lim,.., B{(Y/X)" | X}. These
are the moments of a positive distribution, and since p,” < 1, the distribution is
concentrated on [0, 1].

Sarmanov [10] has characterized the canonical correlation coefficients of a
bivariate normal distribution, and the above proof is essentially due to him.
However for bivariate gamma distributions the theorem can be extended to the
nonsymmetric case. '

THEOREM 2. A sequence {p.} s a sequence of canonical correlation coefficients of a
random variable (X, Y') distributed in gamma correlation with marginals gamma a
and gamma b respectively if and only if

(2.8) pn = (CFEIECTENTR[ du(2),

for b = a, where p(t) s a distribution function concentrated on [0, 1].

Proor. Sufficiency. From Lemma 1 (2.4)isamgfif ¥ = b,L = aand P = a,
b= aand 0 =< 2z = 1. A mixture of the corresponding distribution function with
respect to a distribution function p(z) concentrated on [0, 1] is again a distribu-
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tion function. The correlation coefficients of this distribution are then mixtures

of the correlation coefficients in Lemma 1; that is, of D G
Necessity. Let {p,} be a sequence of canonical correlation coefficients. Then

E(LY) | X) = puLn®(X). Now y" = (=1)"nI("27)L(y) + aeLaa(y) +

-++ 4 a,, where the a; are easily determined constants. Thus
E(Y" | X) = (=1)"nl("0 ) puLa’(X) + boLaa(X) + -+ + ba
= ("R X+ eX" T+ - o,
where the b; and ¢; are constants. So
po = (R limg. B{(Y/X)" | X).
Set
0 = limgae B{(Y/X)*| X} and 0* = lim,.., E{(X/Y)*| Y}.

These are both moments of positive distributions. From a similar argument to
the above p, = (*FHH(T % So vt = (e (MY, . Now
(e (") = T(n + a)T(b)/{T(a)T(n + b)} is the nth moment of the
distribution with frequency function T'(b)/{T'(a)I'(b — a)la” (1 — z)&
0 < z < 1 and so is bounded by unity. Since also p,’ < 1, v,* is the moment
of a distribution defined on [0, 1].

Assume v, is the moment of a distribution on [0, 4], ~ > 1. Then
0* ~ 0, T(b)/(a), v = [o't"do(t) = (1 + m)"f11mdd(t), choosing
1 < 1+ m < h. This implies »,* — ® as n — o, which is a contradiction;
i.e., v, is the moment of a distribution on [0, 1], and the necessity is proved.  *

Theorem 2 expresses the distribution function of a random variable (X, Y)
in gamma correlation as a mixture belonging to a convex set, the extreme points
of which are the distribution functions corresponding to the mgf (1 — #)™"-
(1= 6)°(1 — atiy/(1 — 6)(1 — &)™ 0=< 2= 1.

3. ¢’-boundedness. (X, Y) is ¢*-bounded if D n_1 ps° < . This implies that
if F(x, y) is the distribution function of (X, Y), then

(3.1) dF(z,y) = w*(@)w'(y) dzdy{l + 2 et puLa’(z)La’(y)} in mean square.

Some simple observations give the following two sufficient conditions for ¢-
boundedness. (i) If u(¢) in Theorem 2 is defined on [0, 1 — €], € > 0, then the
distribution is ¢>-bounded. (ii) If (X, ¥) is in gamma correlation withd — a > 1,
the distribution is always ¢’-bounded. Another sufficient condition for ¢’-bound-
edness is given in the next theorem.

TuroreM 3. Let T be the random variable associated with u(t) in Theorem 2.
Set v, = fol £ du(t). Dmype < o is equivalent to Se n ", < o, and
for these conditions to hold it is sufficient that there exists an a > 0 such
that

P(T>1—t)/£°"M 5 0ast— 0.
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PrOOF. 0, = [o " du(t) + [ist"du(t) < (1 —8)" + P(T > 1 — &) for
all 5 > 0. Consider a sequence 8, = 7", choosing 3/(} + a) < 8 < 1. Giver
anv ¢ > 0 there exists an Ny(¢) such that forn = No(e) P(T > 1 —6,) < en 7,
~ = 1(a — b)B + B(} + a), from (3.2). S0 Zwen TVP(T > 1 — 5,) <
ed w9 = 28(4 + @) + (b — a)(1 — B) > 1. The sum on the right
ronverges since 9 > 1. Also (1 — 1/2")" = exp (—n*™®), and so
ZNO n (1 — 1/n°)™ converges by the integral comparison test since,
%x exp (—2z™) dx converges for fixed ; with m > 0 and 2, > 0.

wo P(T>1—6,)(1 —8,)"n ~®=) converges by a similar integral comparison
test. i.e.

(3.3) °:=1 n—-(b~a) 2 < .

Since ("TTH ("N ~ 27 T(b)/T(a) (3.3) is equivalent to D mey p’
< .,
ReEMARK. In view of Féjer’s asymptotic formula

(AL () = o e o5 2(na)t — /2 + w/4] + o(nTTY)
for fixed x > 0, (see Erdélyi [4 p. 199])
Pn |Lna(x )Lnb(y)l ~ vnn—(b-—a)/2—3/2 n(x’ y)y

where v, = f o t* du(t) and hence f,(x, y) is bounded with respect to n for fixed
x, y > 0. This implies the expansion (3.1) is pointwise convergent for fixed
x,y > 0.

4. Positive definite sequences.

DeriniTioN. Let {Q.(X )} be a complete orthogonal system on a d1stnbut10n
w(z). {t.} is a positive definite sequence with respect to {Q,(X)} if whenever
S M 6,Q.(X) = 0 for all X, any M, then Yoy antaQ.(X) = 0 for all X
any M. Bochner [1] characterizes those sequences {¢,} which are positive definite
with respect to the ultrasphencal polynomials {P,(X)}, orthogonal on du(z) =
(1 —2)Fde/ [ (1 — )7 * dy, and normalized so that P,(1) = 1. He proves
that a sequence {t,} is positive definite with respect to {P.(X)} if and only if

= fl_l P.(z) du*(z), where u*(z) is a positive, bounded, monotonely increasing
functionin —1 <2 < 1.

Eagleson [3] has shown that when a distribution function has a finite number
of points of increase that there is a 1-1 correspondence between positive definite
sequences and canonical correlation coefficients. Using the concept of positive
definite sequences he characterizes thé canonical correlation coefficients of bi-
variate binomial distributions with identical marginal distributions. In the case
of bivariate gamma distributions with identical marginal distributions sequences
of canonical correlation coefficients, {p,}, are also positive definite sequences. To
see thisif )2 a,L,*(X) = 0, thenE(Z 0 0nLn(X) | V) = D ¥ tupnln®(Y)
= 0. Conversely if {t.} is a positive definite sequence, which is a canonical
correlation sequence, then t,L,*(y) = [o° L.*(z) dy(z | y), 1p(x | y) bemg the
distribution function of X given Y. Setting y = 0 t, = (""s) 7 [¢" L. (x)-
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dd(z), where d(x) is the distribution function d(z |y = 0). The next theorem
gives the class of distributions d(x) when p, < § < 1.

THEOREM 4. {p,}, with p, < § < 1 1s a sequence of canonical correlation coeffi-
cients with respect to a random variable in gamma correlation if and only if p, =

(YT LA (x) doa(x), where do(x) = a5t exp (—a/t) do(t) dx/
T'(a), u(1 — t) being a distribution function on [0, d].
Proor.

(1 — 2)™2""exp (—2/(1 — 2))/T(a)
| = w'@){1 + Xia TR LA)}, 0 < 2 < 1,

for which see Erdélyi [4 p. 189]. Set f(z; z) equal to the right hand side of this
equation. Then 2" = ("¢ [ L,*(z)f(x; 2) dz. From Theorem 2 and the
condition p, < & < 1 it is necessary and sufficient that p, = (mremtyi(nt
[o’ 2" dn(2), n(2) being a distribution function. So p, = (vt Jo* L (x)-
do(z), setting d(x) = fosf(x; 2) dn(z). Placing u(t) = 5(1 — t) gives the
theorem.

Moran [9] has obtained bounds for the ordinary correlation coefficient of two
correlated gamma variables. He proves that if the gamma variables have pa-
rameters a and b, and y = A () is defined by [o* w*(u) du + [’ w'(v) dv = 1
then pmin = {[o* ud (w)w*(u) du — ab}/(ab)!. When a = b = 1 then pmin =
2 — /6 = —0.64493. If it is assumed that the random variable (X, ¥) is in
gamma correlation, then further restrictions are placed on the correlation
coefficient. In fact the following result holds.

CoROLLARY. Let p be the ordinary correlation coefficient of (X, Y'), distributed in,
gamma correlation, and v be the mean of some distribution on [0, 1]. Then p =
v(a/b)* and 0 < p = (a/b)%.

Proor. L*(X) = (a — X)/d = —(X — E(X))/(var X)  and sop = py =
v(a/b)k.

5. Stochastic processes. Bochner [1] has constructed a homogeneous stochastic
process associated with the ultraspherical polynomials using the concept of
positive definite sequences. Using the same methods, with sequences of canonical
correlation coefficients replacing positive definite sequences, a class of stochastic
processes associated with the Laguerre polynomials may be constructed.

DeriNiTION. A sequence of functions {¢,(t)} 0 S ¢t < o, n =10,1,2,---isa
homogeneous stochastic process if

(1) for each t, {c,(¢)} is a sequence of canonical correlation coefficients of a
symmetric distribution in gamma correlation.
(i) en(w + v) = cu(u)ea(v)

(iii) co(t) = 1

(iv) ¢,(0) = 1
and ¢,(t) is eontinuous.

TuEOREM 5. {c,(t)} s a homogeneous stochastic process if and only if

(5.1) co(t) = L, ea(t) = exp(—tfo {(1 —y™)/(1 — y)} dG(y)),n = 1,
where G(y) 1s a positive increasing function of y in [0, 1] such that f o dG(y) < o,
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Proor. Sufficiency. y" is a canonical correlation sequence for fixed
0 = y = 1. By the closure properties of canonical correlation sequences
exp(—t) D ro y™ /7! = exp{—t(1 — y")} is a sequence of canonical correla-
tions for ¢ = 0. Replacing ¢ by ¢dG(y;)/(1 — y;),7=0,1,---mand 0 £ y;
< 1, and using closure properties again; 1, exp {—#{ > 7 (1 — y,")/(1 —
¥5)} dG(y;)} is a sequence of canonical correlation coefficients. exp {(—tfi7° {1
—y")/(1 — y)} dG(y)} is the limit of such approximating sums. If G(y) has
an atom at one, with a measure of p, then this atom contributes np in the in-
tegral [3{(1 — y™)/(1 — ¥)} dG(y). 1, exp (—tnp) is a canonical correlation
sequence and thus so is (5.1).

Necessity. Since {c.(t)} is a canonical correlation sequence by Theorem 1
ea(t) = [ sy du(y, ), uly, t) being a distribution function on [0, 1] for all
¢t = 0. Properties (i) to (iv) imply that c.(¢) = exp (—tya), vo = 0. Set G(y,
t) = [t (1 — 2)du(z, t)/t. For all t > 0, G(y, t) is a positive increasing func-
tion of y. [o{(1—y")/(1—y)}dG(y, t) = (1—exp (—tya))/t, n 21,
so setting n = 1, G(y, t) is seen to be bounded uniformly by a constant depend-
ing only on & for ¢ < 8. v, = limeoy [3{(1 — y™)/(1 — )} dG(y, t), n = 1.
Using Helly’s first theorem it is possible to choose a sequence ¢, — 0+ such
that G(y, t.) converges weakly to a nondecreasing function G(y). Since the in-
terval is finite and (1 — y")/(1 — y) is continuous in [0, 1], Helly’s second
theorem implies that v, = [4{(1 — ¥™)/(1 — y)} dG(y), G(y) having the
desired properties.

6. Examples.

6.1. For the particular case of identical marginal distributions and p, "=
Jot*dt = 1/(n + 1), a closed form for the frequency function f(z, y) of the
corresponding random variable (X, Y) is known.

f@,y) = v (@ ({1 + et (n + 1)L (2) L (y)}
= {P(a7 max (CL‘, y)) - P(ay x)P(a’ y)/I‘(a)}/I‘(a)

where I'(a, z) = [7 ¢ exp (—t) dt. (See Erdélyi [4 p. 215]).

6.2. Eagleson [2] gives the following example of a bivariate gamma distribution
whose canonical variables are the Laguerre polynomials. Let Wy, W, and W;
be independent gamma variables with parameters a, b and ¢ respectively. Set
X =Wi+ Wz, Y = Wy + Ws. The canonical correlations are given by

pr = [(T(a +b)T(b + ¢))/(T(a + b + r)I'(b + ¢ + )T (b + r)/T(b).
This is in the form of the sequences {p,} in Theorem 2 as
or = (r+a;|-b—1)%(r+b:-c—1)—%fé tr d/l.(t)

where du(t) = I'(a + )™ (1 — t)* " di/[T'(a)T(b)] if it is supposed that
cZa.

6.3. Let {H,(X)} be the Hermite-Chebyshev polynomials, orthonormal and
complete on the normal frequency function ¢(z) = exp (—24z%)/(2r)},
— o <z < «.Sarmanov [10] has shown that {c,} is a sequence of canonical
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correlation coefficients of a ¢’-bounded distribution in generalized normal cor-
relation if and only if ¢, is the nth moment of a distribution on the interior of
[—1, 1]. Consider (U, V) distributed in this way. Then (X, ¥), X = 107,
V = 1V?, is distributed in gamma correlation with canonical correlations
Pn = Con, and symmetnc margmals gamma 1. E(Hou(U)Ho(V)) = 8inCon,
and since Hu(U) = (—)*Li}(X), (see Erdélyi [4 p. 193]), E(L (X)L.(Y)) =
SinCen and con is the nth moment of a distribution on [0, 1] as in Theorem 2.

6.4.If (X1, Y1) and (X,, ¥;) are independent and both distributed in gamma
correlation, then so is (X1 + X, Y1 #+ ¥,). The Runge-type identity L ***(X;
+ X,) = Zt-o (ML (X,)L5-(X,), and a similar identity for Yy, Y. with
notation as in Lemma 1 gives this immediately.

6.5. The expression (2.4) is a mgf if and only if P < min (L, M) and 0 =
2z < 1. Suppose L < M. The sufficiency is clear from a slight extension of
lemma 1. If (2.4) is a mgf it is necessary that the canonical correlations be of
the form of those in Theorem 2. Since p, = ("5 ("5 ™)~ UG I L TR
necessary that I'(n + P)T(L)z"/[T(P)T(n + L)] be a moment of a distribu-
tion on [0, 1], %., say. Now u./(Unsitn1) = (n + P — 1)(n + L)/((n
+ P)(n + L — 1)) and this can only be less than or equal to unity if P < L.
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