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NONPARAMETRIC ESTIMATION OF THE TRANSITION
DISTRIBUTION FUNCTION OF A MARKOV PROCESS!

By GroreE G. Roussas
University of Wisconsin, Madison

1. Introduction and summary. In [8] the problem of nonparametric estimation
in Markov processes has been considered, and estimates of the initial, two-
dimensional joint, and transition densities of the process, satisfying a number of
optimal properties, have been obtained. In the present paper, under the same
nonparametric setup, the attention is centered primarily on the transition dis-
tribution function of the process.

It will be assumed that the underlying Markov process, defined on a proba-
bility space (Q, @, P) and taking values in the real line R, is (strictly) stationary,
and has initial, two-dimensional joint, and transition densities p(-), q(-, *),
and {(- | z), z ¢ R, respectively, relative to the appropriate Lebesgue measures.
Let K be a probability density. On the basis of the first n 4+ 1 random variables
X;,7=1,2, ---,n 4+ 1 of the process, we define the random variables p, (),
z e R, and ¢.(y), y ¢ R X R (by suppressing the random element ») by the
following relations

(1.1) pa(@) = @h) " 2 K((@ — X))
(12) ¢ ) = ga(@, &) = @h)" Ljm K((x — XHEHK (@ — Xpa)h™),

where h = k(n) is a sequence of positive constants satisfying also some additional
conditions. We further set

(1.3) (@' | z) = gulz, @' )/pa ().
Next, by means of p, (z) and ¢, (z, '), define the random variables
Fa@) = [Zapa(e) d2,  Gale|2) = [Zota(de | 2).

We finally let F (- ) and G(- | z), = € R, be the initial and transition distribution
funections of the process.

Under suitable conditions on the function K, the sequence {4}, and the process,
the main results of this paper are the following.

The distribution function F, (x), as an estimate of F (z), obeys the Glivenko-
Cantelli theorem. This is Theorem 3.1. Turning now to the estimate Gy (- | ) of
G(- | =), we have been able to establish in Theorem 3.2 that sup {|G.(z | )
— G(z | z)|; 2 € R} converges to zero, as n — o, but in the probability sense.
This is true for all x ¢ R.

In Section 4 it is assumed that the rth absolute moment of X exists (for some
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r = 1,2 -..), and the problem is that of gaining further information about
G (- | ), by estimating its kth moment, to be denoted by m (k; z), for k = 1,
2, -+, r. By letting the rather simple expression

ma(l; &) = Mh) 7P (@) Djm1 XjuK (@ — X;)B7)

stand for an estimate of m (k; x), it is shown that, asn — «, m,(k;z) — m(k; x)
in probability, fork = 1,2, - -+, r and « ¢ R. This is the content of Theorem 4.1.

Finally in Section 5 we look into the problem of estimating the quantiles of
G(- | ), and in connection with this, two results are derived. For some p in the
interval (0, 1), it is assumed that the pth quantile, £(p, z), of G(- | z) is unique.
By defining £, (p, ) as the smallest root of the equation G.(z | ) = p and using
it as an estimate of £(p, x), it is proved that, as n — o,

. (p, z) — £(p, x) in probability (Theorem 5.1),
and :
k)@, ®) = £@, 2)] > N0, (¢ %)) inlaw.

This is Theorem 5.2, and the variance 7° (¢, ) is explicitly given in that theorem.

2. Notation and assumptions. It is assumed throughout this paper that the
Markov process is (strictly) stationary, and it satisfies condition D, ([1] p. 221).
No further mention of these assumptions will be made. It is also assumed that the,
process has initial, two-dimentional joint, and transition densities, with respect
to appropriate Lebesgue measures, to be denoted by p(-), ¢(- , - ), and (- | z),
x ¢ R, respectively.

By K we denote a positive probability density defined on R into itself and
satisfying the following K-assumptions.

K1) K(x) £ My, zeR.

(K2) oK (z) — 0, as |a] — .

(K3) K is continuous.

(K4) | |2K(z)de < »,forsomer = 1,2, --- (This r is the same as the r in
the condition (P2) below.)

(K5) The derivative K’ exists, except possibly for a finite number of points,
and is such that 2°|K’ ()| £ M., z ¢ R.

The quantity # = h(n) stands for a sequence of positive constants which tends
to zero, as n — o, and satisfies the following H-assumptions. Asn — «,

(H1) nh — «.

(H2) nmh — « nondecreasingly.

(H3) nh® — 0.

Finally the process is assumed to obey the following P-conditions.

(P1) Both p(-) and ¢(- , - ) are continuous and p () > 0, z ¢ R.

(P2) (1) E(|X{]) < = forsomer = 1,2, ---,and (ii) E(|X;|| X1 =z) =
[ |¢"lt(dz | x) is continuous.

(P3) Forp e (0, 1) and z ¢ R, the pth quantile of the transition distribution
function of the process, G (- | ), is unique.
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(P4) The joint densities g1,:(- , -) and ¢1,:,;(- , -, - ) of the random variables
Xi, X:and X1, X;, X;, respectively, are bounded; that is, ¢,:(x, z') £ M;,
forall 1 < fand gi,;(x, ¢, 2") £ Ms,foralll < ¢ < j.

(P5) The density p(-) satisfies the Lipschitz condition |p(z’) — p(z)| =
M (z)|lx — 2.

(P6) The density g (- , - ) satisfies the Lipschitz condition (i) |¢(y') — q(¥)| £
M* @)y — ¥ll, and (i) [ M*(z,2") da’ < o, where (z, ") = .

Not all of the results obtained in this paper require the validity of all assump-
tions listed here. It would be suggested therefore to mention at the outset which
results depend on what assumptions.

In Section 3 only assumptions (K1), (K2), (K3), (H1), and (P1) are utilized.

The results of Section 4 are derived under assumptions (K1), (K2), (K4),
(H1), (H2), (P1), (P2)(i), and (P2) (ii).

Finally the theorems and lemmas of Section 5 require the validity of the fol-
lowing assumptions: (K1), (K2), (K4) (forr = 1), (K5), (H1), (H3), (P1),
(P3), (P4), (P5), (P6)(@i), and (P6) ).

Probability densities satisfying the K-conditions can be found, for example,
among those densities mentioned in [4].

There is no problem in choosing % so that it will satisfy the H-conditions.
Assumption (H2), although somewhat restrictive, will be ordinarily fulfilled in
practice.

The assumption (P2) (ii) is used only in Section 4, as it was pointed out above.
It is felt that the result of that section should hold without (P2)(ii). We have
not been able, however, to avoid using the assumption in question. Obviously,,
(P2) (ii) is implied by (P6) and (P1), if (P6) (ii) be supplemented by the condi-
tion that [ |2"|M™* (z, 2') da’ < .

Results of the same nature as those treated in Section 5, are usually derived
under differentiability conditions on the densities involved. In this respect, as-
sumptions (P5) and (P6) constitute an improvement over such differentiability
conditions.

REMARK. Assumption (P2)(ii) and the continuity of p(-) assumed in (P1)
imply, in effect, that the function [ [¢'|¢(z, z) dz is continuous. It follows from
this that, if 4 is a measurable subset of R, one has that [ 2'I,(2)q(z, 2) de is
also a continuous funetion as is easily seen.

In closing this section we mention once and for all that all bounding “‘con-
stants” (some of which depend on x) are positive and finite numbers, and all
limits are taken as n — o unless othérwise explicitly stated. Integrals without
limits are taken over the entire real line, and whenever suprema are taken, it is
tacitly assumed that the resulting functions are measurable.

Finally it should be pointed out that in the proofs of the various lemmas and
theorems only the main steps are presented here. The details can be found in the
references cited.

3. Estimation of the initial and transition distribution functions. If F,* is
the sample distribution function defined on the basis of the random variables



NONPARAMETRIC ESTIMATION OF TRANSITION DISTRIBUTION FUNCTION 1389

X;,7 =1, .-, n of the process, it is an easy matter to see that
Plsup {|[F."(z) — F(@)|;z ¢ R} — 0] = 1,

where F is the initial distribution function of the process and R is the real line.
Let now p, (z) be the estimate of p (z) given in (1.1). Define F,, (x) by F,. (x) =
f 2w Pn(2) dz. Then 1t is shown here that the distribution function F, enjoys the
same property as F.*. Namely,
TueorEM 3.1. Let assumptions (K2) and (K3) be satisfied. Then

Plsup {|F.(z) — F@)|;ze R} — 0] = 1.

The proof of this theorem is based on the following two lemmas for the formula-
tion of which some further notation is required.

For an arbitrary but fixed z ¢ B, define the following sequences of functions of
v

G, h;v) =1 — [ " K@)de  forv <z,
g, hyo) = [S" T K@)de  forv > z,

and set
@ = {G(il), h;v);n =1, 2, "'}7 G', = {g(x7 h;v);n = 1) 27 "'}-

Then the first lemma is to the following effect

LeMMa 3.1. Under the assumptions of Theorem 3.1, the classes @ and @ consist
of equicontinuous functions.

Proor. By means of the Mean Value theorem of integral calculus and the
continuity of K ((K3)), one gets

G (x, h;v) — Gz, h;vo)| < 2Mu(z — 90) v — vdl,

where M,is a bound of [w|K (w) which exists by (K2) and (K3). This establishes
the equicontinuity of the class @.

The equicontinuity of the class @ is shown in a similar fashion.

Clearly, the members of the class @ are uniformly bounded (by 2). This
boundedness together with the equicontinuity of Lemma 3.1, and the fact that
F.*(x) — F (z) a.s. for every « in R, imply that Theorem 3.1 in [6] applies and
gives

[20 G(x, h;v) dF* () — [%0 G(x, h;0) dF ) — 0 a.s.
This is equivalent to
F.* (@) — [20 G*(x, hyv) dF.* () — F (x)
+ [20 G*(x, h;v) dF (v) — 0

a.
where we set G* (2, h;v) = f(”_”)h "K() dz, 0 < z). Now |G* (2, h;v)| < 1,
Q*(x, h;v) — 1@ < z), and F,* (z) — F(z) — 0 a.s., ¢ R. Therefore

3.1) [2e G*(x, hyv) dF,* () — F () a.s.

S.,
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A similar argument applied to the members of the class @' gives
(3.2) [2 g(x, hyv) dF.* () >0  as.
We now observe that
Fo@) = [Zopa(e) de = [[JS7" K (2) de] dFa* ()
= [2. [[S K () de) dF.* @) + [2 [[%2"" K () de] dF.* () as.,

where in the first integral » remains strictly less than z and in the second integral
v remains strictly greater than x. Hence

(33) Fa(x) = [Z0 G*(z, h;0) dF.* ) + [% g(z, h;v) dF.* @) a.s.
Utilizing the results (3.1) and (3.2), (3.3) gives then
F.(x) — F(z) a.s. for every z ¢ R.

That is, the following lemma has been established.
LeMMma 3.2. Under the assumptions of Theorem 3.1, we have

F.(z) > F(x)as.  foreveryzeR.

This lemma provides all that is needed for the proof of Theorem 3.1. In fact,

Proor or THEOREM 3.1. A close examination of the proof of the Glivenko-
Cantelli theorem (see, e.g., [2] p. 20) reveals that the proof rests on the fact that
the distribution function which is used as an estimate of the underlying distribu;
tion function F converges a.s. to F (z), for all  in B. When the sample distribu-
tion function is used as an estimate of F, this convergence follows from the strong
law of large numbers for the independent case, and the Ergodic theorem in the
stationary case. In the present case the a.s. convergence of F, (z), for all z in R,
is provided by Lemma, 3.2.

ReMargs. (1) It is to be pointed out that Theorem 3.1 remains true for
(strictly ) stationary sequences, since only stationarity, but not the Markovian
character of our process, was used in its proof.

(2) A theorem such as Theorem 3.1 was formulated by E. A. Nadaraya in [3]
for the independent case only, but no proof was presented.

A much more interesting problem in the case of Markov processes is that of
(nonparametrically ) estimating the transition distribution function G(z | z) =
JZs t(da’ | ) of the processes. This problem has not been solved as yet, to the
best of our knowledge. In the present paper a solution to this problem is pro-
posed.

What we do is to define the distribution function G, (z | ) = [Zs ta(d2’ | 2),
where t. (2" | ) is the estimate of (¢’ | z) given in (1.3), and use G, (z | ) as
an estimate of G(z | ). Then it would be desirable to prove a theorem such as
Theorem 3.1. However, it appears that a theorem of this nature would require at
least that p. (z) converges a.s. to p (), while all we know so far is that this con-
vergence is true in the probability sense only (in fact, in quadratic mean; see
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[8] Theorem 3.1.) Here we confine ourselves to establishing a weaker mode of
convergence of G, (z | ). More precisely the following theorem is proved.

TaEOREM 3.2. Let assumptions (K1), (K2), (H1), and (P1) be satisfied. Then
sup {|G.(z| ) — G(z | z)|; z € R} — 0 in probability, for all x ¢ R.

The following lemma will facilitate the proof of the theorem.

Lemma 3.3. Under the assumptions of Theorem 3.2, we have

E [ |g(x, ') — qx, )| d’ — 0, for all z ¢ R,

where q, (, «') s given in (1.2).

Proor. Thisis an easy consequence of Theorems 2.2 and 3.1 in [8] and Theorem
1in [5].

Proor oF THEOREM 3.2. We have

sup {|G.(z | z) — G(z | x)|;2 ¢ R}

sup {[pa" (@) Ze gn(z, 2') d&’ — p7 (&) [0 q(x, 2') da'|;2 € B}

pn (@) sup {[Ze |gu(z, @) — ¢z, &")| da’s2 e R} + [p7 (z) — p ' (@)
sup {[2w q(x, 2') da’; 2 € R}

pn @) [ lan (2, 2") — ¢, 2")| &’ + |pa” () — 27 (@)Ip ().

Now from Lemma 3.3 it follows that

 lga(z, 2") — q(=, 2')| dz’ — 0 in probability, for all z ¢ R.

Il

IIA

IIA

Since also p,(x) — p(x) in probability, the theorem is proved.

4. Estimation of the moments of the transition distribution function. In this
section it is assumed that for some positive integer r, E|X,'| exists, and further
information about G (- | z) will be sought through the estimates of its moments
E(X)" | X1), for k = 1, ---, r. We consider again the estimate ¢, (z, ') of
q(z, «') given in (1.2), where now %* is replaced by & for easier writing. That is,
we take

0" @ &) = @) Xim K (@@ — X)h K (@ — X)),

By means of ¢." (2, z') and the estimate p, () of p (&) given in (1.1), we define
the estimate t.* (2’ | £) = ¢.*(x, ')/pa(x) of the transition density (2’ | x),
and we further set

m* (k; 2) = [ 2. (dz | ), k=12 ---,7r.

The expression m,” (k; x) will be used as an estimate of the kth conditional

moment
mk;z) = EX" | Xh = z) = [ t(de | ).

It is readily seen that
4.1) m,*(k; x)
= Yiao[mh) 'pa (@) 2iw OFTK (& — X)h ) X5 [ 27K () del.
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This expression of m,* (k; ) is somewhat complicated, in particular for large
values of k. Thus it would be desirable to replace it by something considerably
simpler. To this effect we consider

#.2) ma (k5 2) = () pu " (2) i XinK (& — Xp)B ),

and it will be shown that both m,* (k; 2) and m. (k; z) behave in the same way
asymptotically. This is made precise by the following theorem.

TrEOREM 4.1. Let assumptions (K1), (K2), (X4), (H1), (H2), (P1), (P2)({),
(P2) (ii) be satisfied. Then the quantities m," (k; z) and my, (k; z) defined by (4.1)
and (4.2) are consistent estimates of the kth conditional moment m (k; x); that s,

(i) ma" (k; ) — m(k; z) in probability and also

(i) ma(k; ) > m(k; z) in probability, k = 1,2, -+, r.

The following lemma, will simplify the proof of the theorem.

Lemma 4.1. Under the assumptions (K1), (K2), (K4), (H1), (P1), and
®2) (i), we have

m,* (k; ) — ma(k; z) — 0 in probability, E=1,2---,r.

Proor. Clearly, it suffices to establish the lemma, for k = r only, since the proof
for the remaining values of k& will be quite similar. We have

ma* (r; x)
= 2050 [mh) pn (@) 25 DN K (@ — X)h)Xia [ ¢TK () de]
+ Mma(r; x).

Therefore, by the fact that p.(x) — p(z) in probability (Theorem 3.1 [8]) and
assumption (K4 ), it suffices to prove that

n BT 3 XK ((x — X;)BT) — 0 in probability.
But
K TBIXK (@ — XO)R )| = B [ Wik [ K((& — 0)h ™ )q (@, w) dv] dw,
and

B[ K(@x—v)h g, w) dv— gz, w)
by Theorem 1A in [4]. Hence
Fh [ K((x — v)h ), w) dv— 0@ < r, thus A"~ — 0).

On the other hand,

K| f K (@ = 0)h)q@, w) dv < MaH ™ |w'lp (w)

by assumption (K1), and this is <M s|w’|p (w), where M includes M; and also a
bound for 2", The Dominated Convergence theorem applies then and gives

KB XK ((x — X1)h )| — 0.
The Tchebichev inequality concludes the proof of the lemma.
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By Lemma 4.1 the validity of Theorem 4.1 follows from the covergence in the
second part of it. Thus we would like to prove that
(4.3) mh) i X;uK(@ — X)) — | wq(x, w) dw in probability,

confining ourselves to the value k = r only which we can do, as was pointed out in
the proof of Lemma, 4.1.

The convergence in (4.3) will be established by means of the familiar trunca-
tion method. To this end, we set

W; = Win) = I XjuK (@ — X;)h™),

and, for some positive §, define
Vi=Viln) = W;if|W;| =ns  Z; = Zi(n)
= 0 otherwise, = W, otherwise,

forj=1,2,---,n. Then W; = V; 4 Z; and the left-hand side of (4.3) becomes
n Y7 W, Next

@4) n7 2 W;—clr) = [0 2 Vi— da(@)] + [al) — c(r)]
+ 1 (r) = @) + 17 2 Zj,

0if [Wy| < né

where

(4.5) clr) = [ Wz, w) dw,

(4.6) e (r) = E(Wy), and

4.7) du(r) = E(V1) = E{Wilyw, <mn}.

The relation (4.3) is then equivalent to proving that
nt 35y Wi — e(r) — 0 in probability.

By (4.4), it suffices to prove that the right-hand side of that relation tends to
zero in probability, and this will be done in a series of three lemmas the first of
which is the following one.

LEmma 4.2. Let assumptions (K1), (K2), (P2)(@), and (P2) (ii)besatisfied.
Then with ¢(r), ¢, (r), and d,(r) defined by (4.5), (4.6), and (4.7), respectively,
we have ‘

() ca(r) = c(r) and

(i) ca(r) — du(r) — 0.

Proor. (i) In fact,

ea(r) = b [K(@x — o)A ) wq, w) dw] dv.

But [ w'q (v, w) dw is continuous, by assumption (P2) (ii), and therefore Theorem
1A [4] applies and gives the desired result. From this proof it also follows that

(4.8) E Wi = F'E[IX| K (@@ — X)h )] — [ |w] ¢(x, w) dw.
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(ii) It is seen that
lea(r) — dur)| < BTE[XS| K((@ — X1)h )]
— B{h X| K((@ — X1)B7 )M yxgr gnonaey1y -

The first member of the right-hand side of the last relation converges to
J W' q(x, w) dw, by (4.8). Next

E{h7 XS K ((x — X0)B ) yxyr) nonay—1}
=1 [ K(@ — 0)B){ W] Tijwr) gnsnar=11q @, w) dv dw}.

Now the integral in the square brackets is a continuous function (see Remark in
Section 2), and, by the Dominated Convergence theorem, it tends (asn — «)
to the function [ |w'|¢(», w) dw which is also continuous. Then an obvious
generalization of Theorem 1A in [4] applies and concludes the proof.

LeMMma 4.3. Under the assumptions of Lemma 4.2, we have

n D i Vi — da(r) = 0 in probability.
Proor. We have

(V1) < né [ Wy dP = nsE |W4|,

and since
EWi| - [ ] ¢, w)dw = p@)E(Xy|| X2 = 2) (finite),
we get
4.9) > (V1) £ ndMs(z).
Next
|Cov (V1, Vin)| £ 245 E (V1)

by Lemma 7.1 [1], and hence
(4.10) 25— |Cov (V1, Vi)l = MGE(VY),

where M7 = 24} a - o ). By means of the Tchebichev inequality and the in-
equalities (4.8) and (4.9), one easily gets

Pln 33V — do(r)| = €] £ Msd, Ms = (1 + 2M7)Ms(z)e>.

Since this last inequality is true for every § > 0, the proof of the lemma is com-
pleted.

We finally formulate and prove the following

Lemma 4.4. Under the assumptions (K1), (K2), (H2), (P2)(@), and (P2)(ii),
we have

n D4 Z;— 0 in probability.
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Proor. It is easily seen that
Pln™ 2iw 7l 2 e < P2j-12; # 0] £ 6 [ [Wi| Iywy>nn dP.
But
(4.11) [ Wi Iy 508 dP — 0.
In fact,
J W Lywyion dP < [ 7K (& — 0)h7 ) (0) do,

where we set
fa (7)) = f |wr| I[lw’lé”hBMFIIQ(”’ w) dv dw.

For each n, f,(-) is a continuous function (see Remark in Section 2), and for
each v, it converges to zero. If, in addition, assumption (H2) is satisfied, this
convergence is nonincreasing. Then an obvious generalization of Theorem 1A in
[4] applies to the expression [ 'K ((z — v)h™")fu (v) dv and gives (4.11).

Proor oF THEOREM 4.1. This proof follows by putting together the various
facts established in this section. To summarize: by Lemma 4.1, only the second
part of the theorem requires a proof. In order for this part to be true, it suffices
to show the validity of (4.3), or the validity of its equivalent form (4.4). That
(4.4) holds, follows from Lemma 4.2, Lemma 4.3, and Lemma 4.4.

REeEMaRK. In this section, unlike Section 8 and Section 5, in forming the esti-
mate ¢, (z, «'), h itself rather than A was used. And as was already pointed out
at the beginning of the present section, this was done only for convenience in the ,
writing. All arguments obviously go through with B replacing 4. One point only
deserves some special attention. In proving Lemma 4.4, the nondecreasing
property of nk was utilized. But this implies that nk? is also nondecreasing. So no
problem arises there either.

5. Estimation of the quantiles of the transition distribution function. For
0 < p < 1, the pth quantile of G(-|2) is a root of the equation G(z|z) =
By assumption (P3), there is only one such a root which we denote by £(p, ).
The problem then is that of estimating £(p, ). An obvious estimate for it isthe
sample pth quantile; that is, a root of the equation G, (2 | ) = p. For reasons of
definiteness the smallest root of this equation will be taken to be the pth quantile
of G, (-| z), and it will be denoted by &. (p, z).

In the present section two properties.of £, (p, «) Wlll be established. Namely,
consistency in the probability sense, and asymptotic normality. The first of these
results is the following theorem.

TarEorEM 5.1. Let assumptions (K1), (K2), (H1), (P1), and (P3), be satis-
fied. Then, with £(p, x) and &, (p, x) as defined above, we have

t.(p, ) — E(p, x) in probability, 0<p<l, zeR.

Proor. In order to simplify the notation the letters p and & will be left out in
the expressions &, (p, ) and £(p, ) and we will simply write £, and £ For e > 0,
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define §(¢) by
3(e) = min {G(¢ + e|z) — G(E|=), GE|z) — GE — e|2)}.
Then §(e) is positive because of the uniqueness of £. Next
|G lx) — GE|2)] = sup {|G(|2) — Ga(z|@)];2¢ R},
while from the definition of §(e) it follows that
[&n — &l > e S [IGElz) — G(E|2)] > 5(e)].
Therefore
Pllen — &l > e = PlIG(E|2) — GE|2)] > 8(e)]
< Plsup {[Ga (2 |2) — G(e|9)]; 2 R,

and this last expression tends to zero by Theorem 3.2.

The proof of the asymptotic normality of &, is much more involved. Some
preliminary results will facilitate it. Applying Taylor’s formula to G.(-| z), we
get

Gu(z]|2) = Gulzo| ) + (2 — 20)ta (¥ | 2).

Upon replacing z by &, and 2o by £ and observing that G, (¢, |z) = p = G(£| z),
one has then

(5.1) ®h)} (tn — &) = — Mh)'[Ga(E]2) — G(E| ) (Ga| @),

where {» = {x(p, ) is a random variable whose values lie between the values
of the random variables & and £ We intend to establish asymptotic normality
for (nk)’*(sn — £). To this end, we first prove the following lemma.

Lemma 5.1. Under the assumptions of Theorem 5.1 and, in addition, assumption
(K5), we have

5.2) t(tn|2) — t(£|2) in probability, zeR.
Proor. Clearly (5.2) is equivalent to
(mh)™ 2 K (@ — Xh™)
K ((fn — X)) Y — K((¢ — X31)hH)] — 0 in probability.
Since by assumption (K5),
K(Gn— Xa)hh) — K(( — Xp)hH) = (8 = )b K (),

where {»; is a random variable taking values between those of the random
variables (fn — Xj1)h fand (¢ — X ,~+1)h_%, the last relation becomes

(5.3) (¢ — &) @) 1 [K (@ — X HEK (£4;)] — 0 in probability.

By assumption (K5) again and the fact that h,; is bounded in probability uni-
formly inj = 1,2, -+ -, n, as is easily seen, it follows that A 'K’ (¢,;) is bounded
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in probability uniformly in j. By means of this result and the convergence in
probability of (nh*)™ D%, K((z — X,)k?), the entire expression on the left
hand side of (5.3), except for ¢ — ¢, is bounded in probability uniformly in j.
This fact together with the convergence ¢, — ¢ in probability which follows from
the fact that £ — £ in probability, concludes the proof of the lemma.

Now we will work with the expression (nk )G, (¢|x) — G (¢|2)]. It is readily
seen that

Go(t|z) = 2t L (Y;)/ 200 Lu(X5),
where
(54) L.(X;) = K(@x — X;)h™")  and
(6.5) L*(¥;) = K(@— X1 [La K(@ — Xp)h™") da,
Y; = (X5, Xin),
1,2, .-+, m.

J
One verifies further that
(5.6)  (h)'[Gn (| 2) + va]

= (k)™ 2a Lo (XD (0h) ™ i lon (Y5) — Bea(Y5)],

where
(5.7) on(Y5) = L (Y;) + vaLa (X;)
(5.8) vn = —[EL.* (Y1)][ELn (X))

We will be interested in proving asymptotic normality for the expression
(nh)% [Gu(t|z) + vs). But (nh)™ Z}Ll L, (X;) — p(x) in probability, and thus
it suffices to prove asymptotic normality for

®h) ™ 25w len(Y5) — Eou(Y5)].

More precisely,
Lemma 5.2. Let assumptions (K1), (K2), (H1), (P1), and (P4) be satisfied.
Then

£ (k) 2 ta [en(Y5) — Eeu(Y)]} — N (0, 00’ (¢, 2)),
where .
o (¢ @) = G| 2)p(x) [ K () de.

Proor. The proof consists in simply verifying the conditions (A1), (A2), (A3),
(A2)**, (A3)*, and (A4)** in [7]. Condition (A1) is satisfied. The quantity
hn appearing in (A2) is equal to nh here which tends to infinity by (H1). As for
the condition (A3), this has already been checked in [8] under the conditions
(K1), (K2), (H1), (P1), and (P4). Here the o1*(z) of (A3)(iv) has the value

(5.9) o' (@) = p) [ K*(e) de.
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Next (A2)** is also true with the quantity ! appearing in (A2)**(ii) given by
(5.10) l=np)

The verification of (A3)* and (A4)** is long, but rather straightforward. The
interested reader is referred to [9] for the details.
Now Lemma 5.2 in conjunction with the relation (5.6) gives

(5.11) &{ mh )G (E| ) + val} = N (0, 00’ (5, 2)p™" (2)),

where v, is given by (5.8).

At this point attention will be given to the expression mh)' . + G| 2)].
The lemma stated and proved below relates to its convergence.

Lemma 5.3. Under the assumptions (K1), (K2), (K4) (with r = 1), (H3),
(P1), P5), and (P6)(@1), (P6)(ii), we have

mh)'on + GE|2)] = — @h)H[BL (Y)IEL. (X)) — G(¢l2)} — 0,
Proor. Clearly,
[EL.* (Y)IEL, (X)] ™" — G| =)
= [7EK (@@ — X))k ™) [EL” (Y1) — G (¢ | 2)ELa (X1)].
Hence it suffices to show that
B b )Y[EL, (Y1) — G (¢|2)EL, (X1)] — 0.
This is rewritten in the following more convenient form
()R EL," (Y1)
— [i q@, w) dw] — Mh)HT'G (€| 2)EL.(X1) — [fe gz, w) duw).
But
PG (5| 2)EL (X)) — [fe gz, w) dw
= [Lat(|z) de- mh)'TER (@ — X0)E™) — p ()],

and
(5.12) mh)FEK ((x — X)E™) — p(x)] — 0.
In fact,
(k) [EK (@ — X0)h™) — p(@)] £ M (@)h@h) [ || K@) dz

by assumption (P5). Finiteness of [ |¢| K (z) dz (assumption (K4) withr = 1)
together with the fact that nh® — 0, which is mplied by assumption (H3),com-
pletes the proof of (5.12). Next one has

(mh) R EL* (V1) — [t q(z, w) duw]
st oM@ 2)dd [ [ @+ v ) K@K W) d dw



NONPARAMETRIC ESTIMATION OF TRANSITION DISTRIBUTION FUNCTION 1399

by assumption (P6)(i). Since
[ 0"+ ) K @)K (w) dv dw
< [ [ (o] + |whHK @)K w) dv dw = 2 [ 12| K(2) de,
assumptions (K4) (withr = 1), (H3), and (P6) (ii), imply that
(5.13) (nh)'[WEL (Y1) — [Yu g, w) dw] — 0.

Relations (5.13) and (5.12) taken together, conclude the proof of the lemma.
Now Lemma 5.1, Lemma 5.2, Lemma 5.3, and relation (5.11) provide all that

isneeded for the formulation and proof of the second main result in this section.
That is,

THEOREM 5.2. Let assumptions (K1), (K2), (K4) (withr = 1), (K5), (H1),
(H3), (P1), (P3), (P4), (P5), and (P6)(i), (P6)(ii) be satisfied. Then

£f (h)'[E. (p, ) — E(p, )]} — N (0, 7, z)),

where 7° (], z) = (¢ 2)F ¢ |x) [K () de, 0 < p < 1, z¢R.
Proor. By (5.1),

h) (g — §) = — M) [Ga(E | 2) — GG |2l (| 2),
and this is further rewritten as
@h) E — £) = —{ ) [Gu(E|2) 4+ va] — @h))a + GE|2)] e (6n | 7).

By Lemma 5.1, Lemma 5.3, and relation (5.11), this last expression converges
in law to a normal law. By relation (5.11) again, Lemma 5.1, and Lemma 5.2,
the mean of the limiting normal distribution is zero, and its variance 7° (¢, z) is
given by

I

(| 2)od (& 2)p (@)
¢ )@ (| 2)p ) [ K@) dep™ (z)
(e 20)G (g 2) [ K (2) do.

GEY

I

I

The proof of the theorem is concluded.
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