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CONSISTENT ESTIMATION OF A LOCATION PARAMETER IN THE
PRESENCE OF AN INCIDENTAL SCALE PARAMETER

By J. PranzacL
Unaversity of Cologne

Let P/® be a probability-measure on the Borel algebra of the real line R
with median zero. For 6 ¢ B and ¢ ¢ (0, « ), let Py ,/® be the probability
measure defined by Py.(B) = P{(x — 0)/o:x ¢ B}, B e ®. The parameters
6 and o will be called ‘“location parameter’” and ‘‘scale parameter,”” respectively.
Our problem is that of consistently estimating 6 from a realization governed by
Xoe1 Ps,q» , where (¢”),ex is unknown.

Intuitively speaking, the problem is to estimate an unknown (structural)
location parameter § which is constant for the whole sample sequence (2, )..n
in the presence of an unknown (incidental) scale parameter ¢ whose value
changes from one sample z, to the next.

In statistical theory this problem deserves at least the same interest as the
central limit problem. The interest in the asymptotic behavior of Z, = YT,
is rooted in the role which %, plays as an estimate for 8. The generalization which
was forced upon this problem in probability theory, namely to study the asymp-
totic behavior of b, (X my 2, — @), Was a mistake from the statistical point
of view. The relevant generalization is to consider estimates of 6 other than Z, .

Despite its importance, this problem is rarely treated in the literature. The
only pertinent result known to the author is due to Wolfowitz (1953, p. 17)."
It assures the existence of a strongly consistent sequence of estimates for the
particular case of P being the normal distribution N (0, 1) under the condition

(C) SUPnen W2y (0”) < .

This result was obtained by the minimum distance method. It does, however,
not reveal the full power of this method. It is easy to see that under condition
(C), the sequence of means (&, ).~ is consistent for 6, and the sequence of es-
timates defined by 0,(X) = Z,(10e, 21, 7 € N, is strongly consistent ([a] denotes
the largest integer less than or equal to a).

Chebychev’s inequality implies
X Pooix e R¥:|2n — 6] 2 ¢ < 727535, (")

< 227  suppey 0 Dony (07)h
The Lemma of Borel-Cantelli implies that for X5y Ps.» — a.a.x £ R" the rela-
tion [Z» — 6] = € holds for a finite number of %’s only. Hence

X1 Poor i infoey (% & RY:|0n(x) — 6] < ¢
= X:,o=1 Po,‘,v lim infkm {X & RN:lil}-zk — 0] < é} = 1.
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1354 J. PFANZAGL

Though Theorem 5.1 of Wolfowitz (1953, p. 16 ) would enable us to derive
a somewhat stronger result, we shall abstain from doing so because a slight
modification of the minimum distance method yields the following much stronger
result.

THEOREM. Assume that P admits a unimodal density with respect to Lebesgue
measure. Then there exists a sequence of estimates which is consistent for 9 if

(A) limn Y2, (14+6)" = o
neN
If -
(B) lim (n log log n) ™ D ey (1 4 o) = o,
neN

the sequence is even strongly consistent.
It seems to be at least of theoretical interest that condition (A) [resp. (B)]
guarantees the existence of [strongly] conSIStent estimates even in cases where

the variance of %, tends to infinity. Take, e.g., =k o '=1keN
That condition (C) is much stronger than condltlon (B) can be seen from the
following

ProrositioN 1. Condition (C) tmplies lim infpey 7" 2 ma(1 + ¢*) ™ > 0.
Proor. Repeated applications of Schwarz’s inequality yield

1< (7 20 (L4 0)) (07 2004 (14 6)
SR A+ @ L+ )T

The assertion now follows immediately from the fact that, because of
(1 + ") < 3 + 3(¢")%, condition (C) implies Supney 7~ (14 ")l < .
The nature of the conditions (A) and (B) is further explicated by the follow-
ing Propositions 2 and 3. Roughly speaking, these conditions are only “slightly
stronger” than the corresponding conditions with 1 4 ¢” substituted by ¢”:
ProrosITION 2. For arbitrary positive constants ¢y, ¢,

limpew anzs=1 (¢ + a'v)_l = ©
if and only if
limpen anZ:;l (a + )= w.

Proor. Let ¢y < ¢1. Then the assertion follows immediately from the rela-
tion ‘ '

(o + ") < (o4 ") < (e + ") er/co.
ProrositioN 3. For arbitrary posi’tive constants ¢y, €1,
liMpey @ D_pms (0o + 0”) 7 =
if and only if

limneN anzz;l (ma.X (Cl , o‘v))_l = o0,
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Proor. This follows immediately from Proposition 2 and the relation
max (¢1,0") £ a+ ¢ £ 2max (a,d).

As the consistency of the sequence of estimates depends on the asymptotic
behavior of (n'*z.._l (1 4+ ¢”) \uen , the question naturally arises whether there
are realistic conditions under which we know that limp.y n? > iy (1 + ¢*)™* =
o without knowing the sequence (¢’ ),.x . We shall give two examples.

(1) If there exists a sequence (@, ),.x such that ¢ < a, for all » ¢ N and
limaey 7 20 (1 + @)™ = o, then condition (A) is fulfilled.

(2) If (0" )wen is a sequence of independent realizations of (not necessarily
identically distributed) random variables such that ¢ < ¢ with positive prob-
ability, say p, then irrespectively of the values of p and ¢, condition (A) is
fulfilled with probability 1. We have (1 + ¢")™ = (1 + ¢)x0.0(¢"). By
assumption, x@,»(e¢”) is the realization of a random variable assuming the
values 1 and 0 with probabilities p and 1 — p, respectively. As

]j-mneN n_%znﬁl X(O,c)(o‘v) = ®

with probability 1, this implies the assertion.
Proor orF THE THEOREM. (i) For notational convenience let F(t) = P(— «, t).
Let {t:, t, ---} be an enumeration of the rational numbers. We determine

a ®"-measurable map X — (0,(X), o4 (X), -+, 0,"(x)) such that
:'°=1 2_iIZ"v=1 X(—w,ti)(x") - v=1 F((t - en(x))/an (X))I
(1) = 2inf {2575 27 2200 Xewio (@) — 25 F((6 — 8)/5")]:

(t,s' -+ ,8") e R x (0, ).

(That this map can be chosen measurable follows as 1n Pfanzagl (1969), part
(1) in the proof of Lemma 2).

We shall show that the sequence of functions (6, )nen thus defined has the
properties asserted in the theorem.

(ii) Let 6 € R and € > 0 be fixed. We shall show that there exists some 7, ¢ N
(depending on 6 and ¢) such that [6,(x) — 6| = € implies

(2) 27" min {2ia (F(e/20") — §), 2204 (3 — F(—¢/20")}
=8 200 27 20 Xt (@) — 220 F((t — 0)/")).

Let 41, t2e N be such that § — e < ¢, <0 — ¢/2 and 0 + ¢/2 < &;, <
0 + e and let % = max (i, %).

At first we assume that § + ¢ < 6,(x). As P has median zero, we obtain
forallve N

F(e/2¢") = F((ti, — 0)/0)

and

3 2 F((ti, — 0u(x))/0a" (%))
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Therefore, for all n ¢ N,
21 (F(e/20") — §)
S 2 F((ty — 0)/0”) — 2om F((i, — 6a(%))/04”(X)).
Using (1), we obtain
2703 0 (F(e/26") — %) S 2 i 27| 200 F((4: — 0)/0”)
— 2 F((t = 0a(x))/0" (X)) S 20m1 27 2001 Xt ()
— 2 F((6 = 0)/0")] + 2071 27 2001 Xt ()
— D2 F((t — 02(%))/0” X)) = 3 Dims 27 Dt Xty ()
— 2 F((t = 0)/07).

Together with the corresponding argument for 6,(x) < 0 — e, this yields (2).

(iii) Let f be a unimodal density of P with respect to Lebesgue measure and
let ¢o = 27 -%e min (f(e/2), f(—e/2)). (We remark that ¢, depends not only
on e but via 4 also on 6.) As f is unimodal, ¢, > 0 if € is sufficiently small. We

have
F(e/20") — 3 2 F(e/2(1 +0")) — 3 2 3e(1 + ") f(3e(1 4+ 0")7)

2> Le(1 4+ ") Y(e/2) = 3-2%(1 + o)

Nl

Similarly,
3 — F(—¢/2") 2 3-2%%(1 + o")7\ »
Together with (2) we obtain that |6.(x) — 6| = e implies
(3) o2y (L4 do")
S 20 27 20 Xt (7)) — 20 F (6 — 0)/a”)].
(iv) We have

J (220 xemir (@) = 20 F((t: — 6)/0”)) dX ot Poo» = 0
and
Sai = J (201 Xt (@) — 23 F((t — 0)/0"))? dX =1 Py,ov

= > F((t — 0)/6")(1 — F((t — 6)/d")) < n/4.

Let a ¢ (1, 2) be arbitrary. As (@ — 1)D i1 a * = 1, we obtain from (3)
by Chebychev’s inequality:

X1 Pogrix e RV:|0,(x) — 6] 2 ¢

S XoaPoodx e RV i) oy (14 ") S Dt 27 D0 Xcoontny ()
— 20 F((t = 0)/0")]}
Xy PooUig {x e RN :07(a — 1)e ) nm (1 4+ ")

IIA
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S 27 200 Xt (%) — v F((t: — 8)/0”)|}
< D X Pyofx e R¥:(a/2)(a — ey iy (1 4 o)
= |E;L=l X(—s0,t0)(T5) — 1 F((ti — 0)/0” )l
2 %n(a/2)2i(a — 1) (2 (14077
=d'(a — D744 — o) (07 20 (1 + o))
which converges to zero by (A). Hence (A) implies consistency of (6, )new
(v) Now we shall prove strong consistency under (B). By the law of the iter-
ated logarithm, for any 7 ¢ N there exists a X Pp.» — null set X; such that
x ¢ X; implies
Hm supey (25h: log log s5:) 7 2o0mt Xecwni () — 2oves F((t: — 8)/0”)] = 1.
(For the definition of s%; see part (iv).)
As sy, < nforalln e N, we obtain for x ¢ X; :
(4) lim supner (2n log log 1) | 220es X(cwi (@) — 2ovm F((: — 0)/0”)| < 1.
Let Xo = Ui X;. If there exists x £ X, such that |6,(x) — 6] = ¢ for in-
finitely many n, say Ny, we obtain from (3) and (4):
278y lim Supnex, (nloglogn)?> iy (1 + o)1 =1

This, however, contradicts (B). Hence (8,(X) )n.v converges to 8 for allx # X, .
As X, is a X Pyo» — null set, this proves the assertion.
REMARK. It seems natural to replace the distance function

<:‘°=1 2_i|23=1 X(—-oo.ti)(xv) - ZLI F((ti - 0)/‘7y)l

by the distance function Super | i Xcw,(Zy) — Doney F((t — 6)/0")|.
This would, however, presuppose to generalize a deep study like that of Chung
(1949) to cover the case of not necessarily identical distribution functions.
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