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GENERALIZED LEAST-SQUARES ESTIMATION OF A SUBVECTOR OF
PARAMETERS IN RANDOMIZED FRACTIONAL
FACTORIAL EXPERIMENTS!

By M. M. LENTNER?

Kansas State University and Montana State University

1. Introduction and summary. In fractional replication, the problem is to
estimate a subvector, «, of S = p° pre-assigned parameters in the presence of an
additional subvector of nuisance parameters. Estimation procedures for random-
ized fractional replicates in 2™ factorial systems have been treated by Ehrenfeld
and Zacks [1], [2] and Zacks [6], [7] under an orthogonalized form of the statistical
model. Extension to systems with general prime p has recently been studied
under a “fully orthogonalized” model by Lentner [4]; this is discussed in Section 3.

The generalized inverse operator is then applied to the study of estimation pro-
cedures in general N = p™ fractional replication. The present work differs from
that of Zacks [7] where the problem of estimating the entire vector of N param-
eters was considered.

The class of all type-g (generalized inverse) solutions for e is given and the class
is investigated with respect to unbiasedness and optimality. Specifically, it is
shown that there is a unique unbiased type-g estimator which coincides with the
classical estimator under the assumption of zero nuisance parameters. Using the
trace of the mean square error matrix as the risk function, it is shown that there
is a coincidence of Bayes, minimax, admissible, and classical procedures under
certain conditions.

2. Notation. Except for minor deviations, the symbolism and terminology
to be used is that in [2] and [6]. For prime integer p > 1, a general factorial system
of m factors each at p levels consists of N = p™ treatments. The main effects and
interactions of the m factors are measured by the set of N parameters
B = {B,u=0,1, -+, N — 1}; a is the subvector of B of S = p"pre-assigned
parameters of interest and g is the subvector of the remaining N — S parameters
of B, the nuisance parameters. There is no loss in generality in assuming that the

parameters in « are 8o, B1, - - , Bs—1 since one can merely relabel the original
parameters.

The treatment designated by the m-tuple (%,%, -, tmw-), Where
2,=0,1,---,p— lforeachj =0,1,"-- ;m — 1, when placed in correspondence

with the point x;, where t = Y 7= i;p’, invokes a standard order among the z, .
The set X = {x;:t = 0,1, --- , N — 1} is partitioned into M = p™ ° blocks of S
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treatments each, in such a way that the subvector « is unconfounded with blocks;
specifically, forv = 0,1, --- , M — 1, the blocks are given by

X, ={zt=¢4+vS;2=0,1,---,8 — 1}.

A randomized fractional factorial experiment is one in which block X, is
selected with probability &, ; the probability vector & = (%, &, -, 1)
completely determines such an experiment. The special randomized procedure,
RPI, is specified by the probability vector £ = 1/M )I(M), where 1% is a vector
of M ones. Another special class of fractional procedures are the non-randomized
ones, those having a single &, equal to unity.

Let the random variable y; denote the response observed under treatment z; .
The expected value of : can be expressed as a linear function of the N parameters;
viz., foreacht = 0,1, -+« | N — 1,

(2.1) E(y:) = D M= en(t, )Bu.

The N X N matrix Cxy = [cx (4, j)] can be obtained recursively by Kronecker
direct multiplication from C,, the matrix whose column vectors are orthogonal
polynomial coefficients of order p;i.e., forr = 2,3, --- ,m

(22) Cpr = Cp ® Cpr-l .

The random error associated with y, is denoted by e, , independent of z; .
Other terminology will be defined when first introduced.

3. Extension of estimation procedures to general p™ fractional factorial sys-
tems under RPI. As mentioned in [1], structural problems (singular coefficiens
matrices, non-orthogonal columns) may arise in fractional factorials when p = 3
even if the orthogonalized form of the model is used. As proposed in [1] to over-
come these difficulties, the S preassigned parameters are taken to be the subgroup
generated by the first s main effects while the defining subgroup will be taken as
the subgroup generated by the last (m — s) main effects. It should be emphasized
that these restrictions are unnecessary when p = 2; any set of s independent
parameters can be taken as the generator of « and any set of (m — s) independent
parameters (which are also independent of the pre-assigned) can be taken as the
generator of the defining subgroup.

The complete factorial model in orthogonalized form }'s

(3.1) Y = Cy (g) + ¢

where Y denotes the N X 1 vector of observations and e denotes the N X 1 vector
of random errors. Since the columns of Cx are orthogonal, it follows for
4,7 =20,1,---, N — 1, that

CN,CN = AN2 = [6'ijd§,N]7

where

o= 200 en (4, )
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and 8;; is the Kronecker’s delta. Being a positive-definite (diagonal) matrix, Ay
has a positive-definite (diagonal) square root; viz.,
AN—_-[ajjdi,N] for i,j=0,1,"',N—1.
Then, letting Cx* = CyAy ’, the complete factorial model (3.1) becomes

(3.2) Y = CN*AN (g) + €.
Using the fact that Cy = Cx ® Cs, one gets Ay’ = Ay’ ® As” and consequently
Ay = Ay ® As = [ dO,M As, dl,MAS y "t dM——l,MAS J

where the half-brackets denote a direct sum of matrices. Now,

a a*
A =
i (ﬂ) (6) ’
where a* = do,MAsot and (ﬁ*), = [6?1’) y "ty 6?1;_1)] Wlth ﬁzkt) = dg,MAsB(t) fOI‘
t=1,2 -+, M — 1.

From the theory of fractional replication (see [4]), the statistical model for the
fractional replicate utilizing block X, is

E3
(3~3) Yv = C‘u,N <§*) + €y,

where (Cyx*) = [C{),N , C{,N RN Cy—1.x]; Co.x is a block of S rows of Cx*. From
the definition of Kronecker direct multiplication and the fact that Cy* =
Cx* ® Cs*, we have

(3.4) Cow = [co0.uCs", H,Y,

where

(3.5) Coupt = durneCar (v, U)

and

(3.6) HY = [HY, -, Hfy) with HY, = couuCs™
Thus,

(3.7) Y, = [M'Cs*, H,*] (g) + &

= [Cs, H,*] <§;> + .

Tt is interesting to note that this transformation has not changed the vector of pre-
assigned parameters but merely changed the nuisance parameters in a one-to-one
manner. The model given in (3.7) will be called the “fully orthogonalized model
for the fractional replicate utilizing block X,”.

The particular investigation which culminated in the above results was
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centered around estimation theory (see [4]). A major problem encountered was
that H,H, had no known structure when p = 3, whereas H,*(H,*)' =
[(M — 1)/M]Isunder the fully orthogonalized model.

It was shown in [4] that all results in Sections 3 and 4 of Zacks [6] are valid for
general prime p with certain modifications. Specifically, one needs to replace
SHC®Y by Cs; H, by H,*; S7I® by As™* and positive-definite by positive
semi-definite. Proofs of several of these results can be considerably shortened by
use of the following. Let E; denote the expectation operator under probability
vector £.

LemMA. Let F, be an S X 8 matrix satisfying the two conditions of Theorem 3.2
of [6]. Then,

Eu(F,|H*) =0 for v=0,1,---,M — 1.

Proor. By (F,H,*) = Ew(Q.H,*), where Q, = E(F, | H,*). Then, by the
second condition, QH* = O, where Q = [Qo, - -+ , Qu—1] and

(H*)’ = [(HO*)I’ Tty (H;kl—l),]'
From the condition E(F,) = O, it follows that Ei(Q,) = O or equivalently

231 Q.0s" = 0. Thus, Q1Y ® Cs*) = 0, which combined with QH* = 0
gives QCy* = O and the lemma follows.

4. Generalized inverse estimators. Some elementary properties of generalized
inverses (g-inverses) from Rao [5] are used in the development. The most general
definition of g-inverses is used herein; i.e., letting G (4 ) denote the class of g-in-
verses of anm X n matrix 4, the n X m matrix A~ belongs to G(4) if and only if *
AATA = A.

Since the coefficient matrix (Cs, H,*) of the fully orthogonalized model (3.7)
is of order S X N and rank S, its transpose has left inverses and hence, the normal
equations associated with (3.7) have the particularly simple form

(4:1) (057H1; )<B*> = Yv-

Hereafter, let ¢ = Csand G, = H,*.
Under g-inverse theory, the system (4.1) has solutions

(42) <;fk> ='C:N Yv7
where C, v = (C, G,) and C,» belongs to G (C,,~).

Letting U™ be an arbitrary N X 8§ matrix, it can be shown (see [4]) that the set
G (C,,x) can be generated by

4.3) Con(U*) = Cox + (Iy — ConCox)U™.
The matrix [3—1] belongs to G (C,,x), whereby the generator (4.3) reduces to

(44) Cu(U) = [C“(IS_J;] G, U):l
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where U* = [9"] is partitioned so that U is of order K X S with K = N — 8.
Substitution of (4.4) into (4.2) leads to the following.

DEFINITION. Any solution of the normal equations (4.1) under g-inverse theory
will be called a type-g estimator; i.e.,

4.5) 6 (U) = C'UIs + GU)Y,

is a type-g estimator of « for every v and every arbitrary K X S matrix U. It is
interesting to note that &, (0) is precisely the estimator of « obtained under the
classical analysis when the nuisance parameters are assumed zero.

5. Unbiasedness in the class of type-g estimators. Because of the importance
of RPI, in which a block of treatment combination is chosen at random, (see
[1]), we first investigate unbiasedness of type-g estimators under this randomiza-
tion scheme.

THEOREM 5.1. The only unbiased type-g estimator of o under RPI is &, (0) =
Cc'Y,, foreachv =0, --- , M — 1.

Proor. Writing &,(U) = C~ 'y, + ¢ G,UY, , it follows that a necessary and
sufficient condition for unbiasedness of & (U) is E(G,UG,) = O since
E(C_IY ) = a, E(G,) = 0, and G, is independent of ¢, . Now, G,UG, = (TG,

, ToGy 2-1), where T, = G,U = S5 G, U, , each U, being of order 8 X 8.
Thus E@G,UG) = 0 1s equivalent to E(T Gw) = O for each u = 1,
M — 1;ie, E(Cs* 215" cor,16m,uU:Cs™) = O since Gyu = Cou, »Cs”. But, under
RPIL, E (c,,t, uCou,u) = Ot , the Kronecker’s delta, and the theorem follows.

We now show that unbiasedness is impossible when blocks X, are selected ac-
cording to probability vector £ = £*. .

TueoREM 5.2. There exists no unbiased type-g estimators of o under a ran-
domized procedure £ # £

Proor. Since

4 U) = a + C'GUCx + C*(Is + G,U)e + C(Gy + GUG, )",

it follows that necessary and sufficient conditions for unblasedness of & (U) are
E:(G,U) = O and E;(G, —I-GUG)—ONow,letGU Cs*P, and G, +
GoUGy = (Qu, -+ Qvu1)Cs", where P, = D 15" cor,uUr and Quu = cou,u (Is +
Cs*P,) for each u, v = 1, --- , M — 1. Therefore, equivalent conditions are
E:(P,) = O and E;(Q,.) = O for each w,v = 1, --- , M — 1. Define m;,u =
Z:}i;l EvCou, MCot, 11 Then,

(5'1) EE(Pv) = ZM—_(;I Ev Zt=1 cvt,MUt = Méz:l;f ﬂ'o,tUt = 0,

and

(5-2) EE(QW) = M—1£vcw M(Is+CS*P ) —M;ron—I-Cs Zz=l 7rut _O

foreachu = 1, -+- , M — 1. Equations (5.1) and (5.2) give a system of M equa-
tions in (M — 1) matrices, the Cs*U, . This system can be written as

Ccs* U,
(5.3) (r* ® Is) |: : } = —(m* ® I),
Cs*Un—
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where
7 =[mw] for t=0,-+ , M —lyu=1-,M—1
(7’*), =M§(0 mo,L, * ,Wou—1)

It will be shown that system (5.3) is inconsistent by showing that the coefficient
matrix (r* ® Is) and the augmented matnx (=¥, m") ® Ishave different ranks.
To this end, it suffices to show that m,* is linearly independent of the columns of
7*. On the contrary, suppose there exists M — 1 constants: a1, +-- , aw_1, not
all zero, such that

(54) Eu—o aumo,u = 0
and
(5.5) DM Gumiu = moy for t=1,---, M — 1.
Foreacht =1, ---, M — 1, equation (5.5) can be written as
1m0 (DU Gulou,n0)EnCotsr = D vg: EuCot,r
which implies that D ey GuCyu,x = 1; this result substituted into (5.4) gives

3L E, = 0, a contradiction. This completes the proof.

6. Decision theoretic framework and optimal strategies. A set of strategies
available to the statistician for estimating the subvector « is the class { (¢, U)},
where £ is the vector of probabilities used in selecting the blocks of treatments
and U is the matrix used in calculating the type-g estimator. These strategies area
now investigated relative to the risk function: the trace of the mean square error

matrix; i.e., the risk due to (§, U) at 6 = <;*> is

(6.1) R U;0) = tr {Ea (U) — of[é,(U) — af'}.
When the parameters 6 have prior distribution # (8), the prior risk is
(6.2) p(& Usn) = ER(E U;0)].

For convenience, let E, denote the expectation with respect to » (i.e., over all
blocks X,) under RPI. A workable expression for the risk function is first given.

LevMma 6.1. For a type-g estimator of a under RPI, the risk function has the
form:

6.3) RE,U;0) =dtr (As? + ’U’DU) + tr [(C'U'DUC)ad]
+ 2 tr {B,[(G,UC)'R™'W,]8*}
+ tr {B[W./RTW.,]8* (8%)'},
where R = CC'; W, = G, + G,UG,; and
D = [M %057, for 4,7=1,---, M — 1.
Proor. Writing &, (U) = & + C7'G,UCa + C'(Is + G,U)(G.8* + ), it
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follows that
R(£*, U;0) = B,{[¢/ (G,UC)R™(G,UC)a + 24/ (G, UC)'R™'W,8*
(6:4) + @)W,/ RW,6*
+ & s+ GUYR™(Is + GU)e] | o, 8%,

Since G,’R'G, = [cos,uCoj,ubds ), for 4, j = 1, --- , M — 1, B,(G'R™'G,) = D
and the first term of (6.4) becomes o'C'U’'DUCa. Using the fact that the trace
of a matrix is invariant under any cyclic permutation of its factors (see [3], p. 7)
and by the independence of G, and ¢, , the last term of (6.4) can be written as

tr {B,[(Is + GUYR(Is + G,U)E, (ee, )}
(6.5) = tr{E,R" + 2U'G,/R™ + U'G,/R™'G,U)}
= o’ tr (As * + U'DU).

Taking the trace of (6.4) and by cyclic permutations, the lemma now follows.
TarorEM 6.2. Relative to risk function (6.1) and RPI, &,(0) = C'Y, is the
Bayes type-g estimator of o under any prior distribution n(0) such that:

6.8) Ey(ad) = ’Is; E,(%) = 0;  E[8*6")] = 7'Ix.
Proor. From Lemma 6.1 and equations (6.2) and (6.6), the prior risk funec-
tion takes the form

6.7) p(E*, Usn) = a*tr (As °+ U'DU) + p’*tr (RU'DU)
+ 2 tr {BRUs + QUGG Is + G,U)}.

But, G.G,” = [(M — 1)/M]Is and by manipulations analogous to those used to
obtain equation (6.5),

(6.8) p(£*, Usn) = a’tr (As ® + U'DU) + 4’ tr (RU'DU),

where a® = o* + [(M — 1)/M]+. Since tr (U'DU) and tr (RU'DU) are each
nonnegative, infy p (¢, U;n) = o’ tr (As *). This infimum is attained only when
U = 0, and the theorem is proved.

Before giving a corollary to Theory 6.2, it should be emphasized that condi-
tions (6.6) assume equal variances for the transformed nuisance parameters 8*;
the original nuisance parameters 8 would have equal variances if and only if
p = 2.

COROLLARY 6.2.1. Relative to risk function (6.1) and RPI, 4,(0) = C"'Y, isan
admissible type-g estimator of a.

The next two theorems deal with optimality of general strategies; i.e., when
both £ and U are arbitrary. It is convenient to designate the non-randomized
probability vectors by & = (%, -+-, fu) foreach t = 0, 1, --- , M — 1,
where & = 64 .

TrEOREM 6.3. The Bayes type-g strategies, relative to risk function (6.1) and a
given distribution 1 (0), are non-randomized.



GENERALIZED LEAST-SQUARES ESTIMATION 1351

Proor. Let (&, U,) by Bayes against 9. Then, p(§,, U, ;1) < infy p(§, Us;9)
for every &, in particular, when £ = & ,fort =0, - -- , M — 1. Let U, , be defined
for each ¢t and n by p(&, Uiy ;) = infy p(&, U;n). Thus, p(&,, Uy ;1) <
p(&n, Uinyn), foreacht = 0, --- , M — 1, and consequently
(6.9) p(&, Uysn) < infep(&, Unnsm).

But,
p(&, Uy ;) = infeinfy D g’ £up (&, Usn)
(6.10) - 2 infe 3505 & infy p (&, Usn)
= inf; Z::Sl £0P(gv y Uniy ;1) 2 inf, P(gv y Uiy 3n)-
Equations (6.9) and (6.10) imply that & = & for some k =0, --- , M — 1.
This completes the proof.

THEOREM 6.4. Relative to risk function (6.1), (£*, U = 0) is a minimaz type-g

procedure.

Proor. Taking the trace of equation (6.4), replacing £* by £, and using cyclic
permutations, we get

R U;0) = tr [(UCad'C'U')E(Z,)]
(6.11) + 2tr[a(8*)E: (W, J,YUC] + tr [8*(8*) E: (W, R™'W,]
+ o’ tr {E(Is + G,U)R(Is + G, U]},

where J, = G,'R™ and Z, = G,'R™'G, . For the non-randomized procedure £, ,
the risk function is

6.12) Rk, U;0) = o tr(As + 2U'J, + U'ZU) + tr [(C'U'ZUC)ad]
+ 2tr[(W/R'GUC)a(8*) ] + tr[(W/R™'W.)8* (8*).

Suppose, for each fixed ¢t = 0, --- ; M — 1, that 6 has a prior distribution 5 (8)
such that

E,(ad') = 20°As7"
(6.13) Ea(8*)] = —[Md*/ (M — 1)IC'G,
E,8*#*)] = I« .
Then, the prior risk for a non-randomized procedure, £ , is
o6, Usn) = a*tr (As™ 42U, + U'Z.U) + 24 tr (U'ZU)
(6.14) — 2Md*/ (M — )] tr (G:W/RT'G.U) + 7" tr (W,/R™'W)
=d + dtr (UZU).

Because Z; is positive semi-definite for each ¢ = 0, - - - , M — 1,infy p (&, U;n) = o®
and is attained only when U = O;i.e., a:(0) = C"'Y, is Bayes against any
satisfying (6.13). Now, let {n:(6)} be a sequence of prior distributions of  such
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that, for each fixed ¢,
E, (ad') = 20,°As "
Eyla(8*)] = —Ma’/ (M — 1)ICTG,
EyJ8* (8%)] = kr'lx,

where ai> = ¢ + k(M — 1)7*/M.

Then, foreach b = 1,2, - -+ ; &ix = C 'Y, is Bayes against n and p (& , dsx ;)
= & + ai tr (U'Z,U), whereby im sups.« p (&, éux ; m) = «. And, from
equation (6.3),

R(E, U =0;0) =d tr (As°) + (8*)Ds*

whereby supe R(E*, U = 0;0) < «, assuming 8* is a finite vector, and the
theorem is established.
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