## A BRANCHING PROCESS WITHOUT REBRANCHING

By I. R. SAVAGE<sup>1</sup> AND I. N. SHIMI<sup>2</sup>

The Florida State University

Associated with a branching process, let S(t) denote the number of particles replacing original particles that split during [0, t], and C(t) denote the number of particles arising from branching and in existence at time t. The branching process is said to be a barely branching process if  $P\{C(t') = S(t'), 0 \le t' \le t\} = 1$ . It is shown that the limiting branching process discussed by Stratton and Tucker [2] is a barely branching process. For their limiting process an elementary computation yields (1) the distribution of S(t) for each t and (2) the fact that S(t) has independent increments.

This result was obtained by Bühler [1] whose approach differs from our approach.

Stratton and Tucker [2] consider the following model:

- (1) At time 0 there are N particles. All particles are mutually stochastically independent.
- (2) For a particle in existence at time t, the probability of its being replaced by k (an integer  $\geq 0$ ) particles in the time interval [t, t+h] is  $\lambda_{k,N}\phi_N(t)h + o(h)$ , where o(h) is uniform in t,  $0 < \sum_{k=0}^{\infty} \lambda_{k,N} = \lambda_N < \infty$ ,  $\phi_N(t) > 0$  and  $\lambda_{k,N} \geq 0$ . The probability of nonreplacement is  $1 \lambda_N\phi_N(t)h + o(h)$ , where o(h) is uniform in t.
- (3)  $\lim_{N\to\infty} \phi_N(t) = \phi(t)$  uniformly over every bounded interval, and  $\lim_{N\to\infty} N\lambda_{k,N} = \nu_k \geq 0$  where  $0 < \lim_{N\to\infty} N\lambda_N = \nu = \sum_{k=0}^{\infty} \nu_k < \infty$ . The functions  $\{\phi_N(\cdot)\}$  are assumed continuous.

Let  $Y_N(t)$  be the number of branchings by time t of the original N particles. Let  $S_N(t)$  be the number of particles which replaced those  $Y_N(t)$ . Given  $Y_N(t) = y > 0$ , then the distribution of  $S_N(t)$  is the y-fold convolution of the distribution of a random variable  $X_N$  with  $P(X_N = k) = \lambda_{k,N}/\lambda_N$ .

The usual elementary computations will show that, for fixed t, the distributions of  $\{Y_N(t)\}$  converges to the distribution of a Poisson random variable, Y(t), with

$$P(Y(t) = y) = [\nu \Phi(t)]^y e^{-\nu \Phi(t)} / y!,$$

where  $\Phi(t) = \int_0^t \phi(x) dx$ . [The proof uses the fact that  $Y_N(t)$  has a binomial distribution with parameters  $p_N(t) = 1 - \exp(-\lambda_N) \int_0^t \phi_N(x) dx$  and N. Then (3) implies that for fixed t,  $\{Np_N(t)\}$  converges to  $\nu\Phi(t)$ .]

Also the stochastic processes  $\{Y_N(t)\}\$  converge in distribution to a nonstationary Poisson process  $\{Y(t)\}\$ .

Received 13 November 1968.

<sup>&</sup>lt;sup>1</sup> Research supported by contract NONR 988(13) NR 042-003 from the Office of Naval Research

<sup>&</sup>lt;sup>2</sup> Research supported by Contract GZ-315 from the National Science Foundation.

Further, given  $Y_N(t) = y$ , the distribution of  $\{S_N(t)\}$  converges to the y-fold convolution of the distribution of X where  $P(X = k) = \nu_k/\nu$ . So that  $\{S_N(t)\}$  converges in distribution to a stochastic process,  $\{S(t)\}$ , with probability generating function  $m_t(\theta)$ , where

$$m_{t}(\theta) = \sum_{y} P(Y(t) = y) (\sum_{k} v^{-1} \nu_{k} e^{k\theta})^{y}$$
  
= exp - \nu \Phi(t) (1 - \sum\_{k} v^{-1} \nu\_{k} e^{k\theta}), which is equivalent to [2(8)].

And,  $\{S(t)\}\$  has independent increments. The  $\{S(t)\}\$  process is barely branching since it entails no rebranching.

Stratton and Tucker consider  $C_N(t)$  the number of particles arising from branching and in existence at time t. The event  $\{C_N(t') = S_N(t'), 0 \le t' \le t\}$  occurs when there is no branching of the new particles arising from branching during [0, t]. Now if a particle came into existence at time T (< t) then the probability of its not branching by time t is

$$\exp \left\{-\int_T^t \lambda_N \phi_N(x) \ dx\right\} \ge \exp \left\{-\int_0^t \lambda_N \phi_N(x) \ dx\right\}.$$

So the probability that none of the  $S_N(t)$  particles branch by time t is greater than or equal to

$$\exp \left\{ -S_N(t) \int_0^t \lambda_N \phi_N(x) dx \right\}.$$

Thus

$$P(S_N(t') = C_N(t'), 0 \le t' \le t)$$

$$\ge \sum_{j=0}^{\infty} P(S_N(t) = j) P \text{ (no replacement branches } | S_N(t) = j)$$

$$\ge \sum_{j=0}^{\infty} P(S_N(t) = j) \exp \{-N^{-1}j \int_0^t N\lambda_N \phi_N(x) dx\}$$

$$\ge P(S_N(t) \le N^{\frac{1}{2}}) \exp \{-N^{-1}N^{\frac{1}{2}} \int_0^t N\lambda_N \phi_N(x) dx\}.$$

For increasing N,  $\{S_N(t)\}$  has a limiting distribution so  $P(S_N(t) \leq N^{\frac{1}{2}}) \to 1$  and

$$\exp \left\{ -N^{-\frac{1}{2}} \int_0^t N \lambda_N \phi_N(x) \ dx \right\} \to 1 \quad \text{as} \quad N \to \infty,$$

thus

$$P(S_N(t)' = C_N(t'), 0 \le t' \le t) \to 1 \text{ as } N \to \infty.$$

So  $\{C_N(t)\}\$  converges in distribution to a process which is barely branching.

## REFERENCES

- [1] BÜHLER, WOLFGANG J. (1967). Slowly branching processes. Ann. Math. Statist. 38 919-921.
- [2] STRATTON, H. H., JR., and TUCKER, H. G. (1964). Limit distribution of a branching stochastic process. Ann. Math. Statist. 35 557-565.