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LIMITING SETS AND CONVEX HULLS OF SAMPLES FROM
PRODUCT MEASURES!

By Liovyp FisHER
Unaversity of Washington

0. Summary. Let X1, X, --- be a sequence of independent identically dis-
tributed random vectors in R” (Euclidean n-space). Let the X’s have a distribu-
tion which is a product of » Borel probability measures along an orthogonal set
of axes. After sampling m times let H,, be the convex hull of {X;, -+, X,.}. All
possible limiting shapes for H,, are found along with necessary and sufficient con-
ditions that the limit be obtained.

1. Notation. The convex hull of a sample has been studied before by Efron

[1], Geffroy [3], [4] and Rényi and Sulanke [6].
Let Xy, -+, X, -+ be a sequence of independent identically distributed

Borel random vectors in R®. Let S(n) = {Xi, -+, X.}. Let |Xi| denote the
length of X; . Let M (n) = max {|Xi, - - -, |X.|} and
N(n)={Xl/Mn7""Xn/Mn} if M,,;éO,
= {0} if M, = 0.
H (n) is the convex hull of N (n). For A € R? let |A| = sup {|X|:X ¢ A}.
Thus N (n) is the sample shrunk so that it is contained in the unit ball. H (n)
is the convex hull of this shrunk sample.

S (4, €) denotes the ¢ neighborhood of a set A, that is,
S, e) ={y|Tzed, |z -yl <é.

The distance, d (A, B), between two bounded sets A and B is d(4, B) =
inf {e > 0|S(4,¢) 2 Band S(B, ¢) 2 A4}.

If T is a closed set we write limy.e B, = T ip. if P(d(B,, T) < €) —> 1 as
n — o foreach e > 0. limy. B, = T as.if P(d(B,,T) —»0) = 1.

The set T is required to be closed in order to make the limits unique. It is easy
to see that if the closure of N is equal to T then d (B, , N) — 0iff d(B,, T) — 0.

For any distribution function (df) F on R' we define

L) = minf{y|[F(y —0) =1 — 1/z = F(y)}.
In R’ we let
Ca) = {( )l
CO)={(,y))z=0 and 0=y =1 or y=0 and 0 = z < 1},
C(o) ={(@,y))0=z=1 and 0=y = 1}.

1%

0,y20,2"+y" =1} for 0<a< 4w,
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2. Limits in R’. The simplest case is contained in the following theorem.

THEOREM 1. Let each X; take values in R with a distribution which is a product
of identical measures along an orthogonal set of axes. Let the one dimensional meas-
ure have a df F satisfying F(0—) = 0 and F (z) < 1 for all .

(@) If limp.o N(n) = T ip. or as. then T = C(a)/|C(a)],0 £ a £ . If
a > 0 the limit exists a.s. lim,. N (n) = C(a)/|C(a)| a.s. iff L") = 2'°L(y)
asy — o for each x & (0, 1). limue N (n) = 27C () a.s. iff L(y) = L(y?) as
y —> 00,

(b) The results of (a) hold if N (n) is replaced by H(n), 0 = a < o by
1=a= o,anda >0bya > 1.

ComMENTSs. Since each of the limits for a > 1 exists for N (n) as well as H (n)
it appears that the theorem has little to do with convex hulls. However, it is not
obvious a priori that this is the case, and much of the proof is concerned with
establishing this fact. If @ = 1 it may be that N (n) does not have a limit while
H(n) does.

Proor. For simplicity we shall assume that F is continuous and strictly in-
creasing for x > 0. The more general case follows from routine but tedious ap-
proximation of an arbitrary distribution function by distribution functions of this
type.

For ease of understanding we break the proof up into a series of lemmas. One
direction of the proof is easy. If F behaves nicely it is easy to see that we have the
correct limits.

Lemma 1. Let L(y°) = °L(y) as y — « for each z ¢ (0, 1)

(i) ifa = 1 then

limgp.e N(n) = lim,, H(n) = C(a)/|C(a)] a.s.
) if 1 > a > 0 then
limu, N (n) = C(a) a.s.
lima,o H(n) = C(1) a.s.

Proor. It is enough to show the statements involving N (n) since if N (n) has
some limit it is clear thatH (n) will have a limit which is the convex hull of the
limit of the N (n). To show that N (n) has the limit it is enough to show that
S(n)/L(n) — C(a) a.s.

Finally, to show that S(n)/L(n) — C(a) a.s. it is enough to show (1) and (2)
below.

(1) (x, y) £C(a) implies the existence of a neighborhood B of (z, y) such
that

limy,e P(S()/L(n)nB = F,n=N) = 1.
(2) (z,y) e C(a) implies that for any neighborhood B of (z, ),
limy, P(S(n)/Ln)nB = &, n=N) = 1.
We first show that (1) holds under the hypotheses of the lemma. For each
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(x, y) e R, let
B, y,e) = {(v):lu —2| S¢fp—y| =¢ and
Q@ y,e) = {uv)uza—ev2y—d.
Now S(n)/L(n)nQ(x, y, ) = &, n = N is equivalent to
X:2Q@L(n), yL(n), eL(n)), i=1-+-,n; n=N.

Recalling that L(n) — « we see that if X,(w) £Q(zL(n), yL (), eL(n)) for
all but a finite number of n then there exists an N (w) such that

S@n)w)/L(n)nQ@L(n), yL(n),L(n)) = &, n=N.
We only need consider 2 = 0 and y = 0. Suppose z° + 3 > 1. Choose ¢ > 0

such that (x — 2¢)* 4+ (y — 2¢)* > 1 then

P(X.eQL(n), yL(n), eL(n))

(1 =F(z—eLm)A ~F(y— e L®))) <tmmen (1 — F(Ln“%))
(1 = F(L@®"™%)))

=n" where b= (z — 2)° + ¥y —2)* > 1

where we assumed z > Oand y > 0.If x = 0 or y = 0 the modifications are clear.
The inequality for large n follows from the assumption on L. An application of
the Borel-Cantelli lemma shows that (1) is true.

To show (2) let 2* + »* < 1. It is sufficient to consider z > 0 and y > 0.

Then we have
P ®)/L(n)nB(z,y,¢) = &)
= JIia P(X:/L(n) £ B(z, y, €))
(I = [F@+e)L®n)) — F((z — e)Ln))]
‘P ((y + e)Ln)) — F((y — e)L@)))"
Stmgen (1= [F(L@n %) — F(L@ )]

(P (L@ — F (L @)
(1 _ [,n— (z—}e)8 n (z+}e)“][,n— (7 DL n- (ﬂ+%e)“] )n

I

<isgen (1 — 77°)" whereb = (& — e)* + (y — 2e)* +6 < 1

for some 6 > 0. The Borel-Cantelli lemma gives S(n)/L(n) n B(z, y, ¢) = &
only finitely often a.s., thus completing the proof.
The following lemma is proved in much the same manner and its proof is

omitted.
Lemma 2. If L(y) = L(y) as y — « then

liMpsw N () = limp,e Hn) = 273C(w) as.
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The more interesting portion of the proof is involved in showing that we have
all possible limits. The following three technical lemmas will be needed.

Lemma 3. (a) Let x ¢ (0, 1) and L(y) a positive continuous function that is in-
creasing for large y. Suppose that for some a > 0,

2.1) L") = «"L(y) for large .
Then given e > 0 there exists a sequence y(n) — « such that 1 = z > e implies
(2.2) Ly®m)) < 2"Ly®)) for n =12 ---.

(b) If the inequality in (2.1) is reversed the inequality in (2.2) may be reversed.
Proor. (a) Clearly it is enough to show that we may find one such y (n) which
is arbitrarily large. Let ¢ > 0 be given and choose N such that

L") = aL(y) for y" = N.
Let v > NY*and v > 1. We now show that we may find a u ¢ [», v"*] such that

(2.3) LW’) £ 2"°L(u) forall z> e
Let H(y) = L(y)/ (log y)"*. Then
(24) H*) = H(y) for y*2 N

since L (y°)/ (log y*)''* < 2'°L (y) /="' (log y)"'*. Let v = min {y | H(y) 2= H (2)
for all z & [v, v'°], y € [, v"'*]}. By iterating (2.4) we find that

(2.5) H@yY?™ 2 H(@y) for y = N, m a positive integer.

By our choice of », 4° > N for 1 = 2 > ¢. We may find a nonnegative integer n
such that u* “®" ¢ [v, v"*] since u* < u ¢ [v, v"/%] and u* V" - © as N — .
Then by applying (2.5) we have H (v°) < H@* “*") < H ().

But H (v*) = H (u) implies L (4°) £ 2/°L(u) by going back to the definition
of H. Let y(1) = wu.

(b) is proved in the same manner by reversing the appropriate inequalities.

LeEMMA 4. N (n) has a limat i.p. off S(n)/L(n) has a limit in probability. H (n)
has a limat i.p. off the convex hull of S(n)/L(n) has a limit i.p.

Proor. From standard theorems on convex sets it is clear that if H (n) has a
limit set Li.p. and if (z, y) is an extreme point of L then for each neighborhood B
of (z,4), limy.e PWN®m)n B %= &) = 1. Let MX(n) = max {X1, ---, Xa}
and MY (n) = max {Yy, ---, Y,}. Assume that lim,.., N(») = T i.p. or
lim,»w C(n) = T ip. It is clear that T must be symmetric about « = y. In either
case, MX(n)/M(n) —p,a > 0and MY (n)/M (n) —, a. Thus, MX (n)/MY (n)
—, 1. Since M X and MY are independent random variables it is easy to see that
this implies that M X and MY are relatively stable in probability. From Gnedenko
6], MX (n)/L(n) —,a > 0. Thus, S(n)/Ln) = (M (n)/Ln))-(Sn)/M (n))
converges i.p. if N (n) does. A similar argument holds for H (n) and the convex
hull of S(n)/L(n).

The “if”’ portions of the lemma are obvious completing the proof.
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Lemma 5. Let limg.., N (n) and/or lim,., H(n) exist i.p. If (z, y), x > 0 and
y > 075 a point such that for each neighborhood B of (x, y) limu.. P(S(n)/L(n)n
B 5 &) = 1 then the same statement is true for oll (&', y') with 0 < 2’ < = and
0<y =y

Proor. From the proof of the last lemma M (n) is relatively stable in proba-
bility. From Gnedenko [6] this is true iff for each & > 1,

limzs (1 — F(kL(z))(/(1 — F(L(z))) = 0.
It follows that if a > b > 0
F(L®m)) — FOL(n))=~1— F(@®BL(®r)) as n— o and
I ~F®BLM)))/A —F(aL(m))) — o as n— «,

Using these observations and B(x, y, ¢) defined in Lemma 1, if z — ¢ > z
y—e>y;
P(@S(n)/L(n) n B(z,y, e) = &)

= [[#« P(X: 2 B@L(n)yL(n), eL(n)))

=1 —[F(+eL®m)) —F((x—e)L®))]

F (@ + e)Ln)) — F((y — )L®))])" >1mmpen 1 — [l — F(@'L(n))]
L= FGL®)])" >1argen (I — [F(@ + L)) — F (@& — e)L(n))]
F(@W + e)Ln)) — F( — )L@)))"

=P@®m)/Ln)n B, y,¢) = &).

Since the first probability approaches zero the last does and since the B (z', 3/, €)
form a base for the neighborhood system of (x’, %) as € varies the lemma is proved.

Let D(n) = S(n)/L(n) and E(n) be the convex hull of D (n).

The following proposition combined with Lemma, 4 and the fact limy. A () = T
a.s. implies lim,,, A(n) = T i.p. [A(n) equal to N(n), H(n), D(n) or E(n)
gives us all possible limits.]

ProposimioN 1. (a) Iflimy.e D (n) = Nip.then N = C(a) where0 = a < «.

(b) If limy.o E(n) = Nip.then N = C(a),1 S a =

Proor. Since MX (n)/L(n) —, 1 it is clear that N contains (0, 0), (0, 1)
and (1, 0) under either (a) or (b).

We prove (a) first. If (1, 1) ¢ N then by the preceding comment N = C ().
If (¢, ¢) 2 N for every ¢ > 0, by Lemma 5, N = C(0). Thus assume that N == C (0)
or C(= ). Set z = max {z:(z, z) ¢ N}. 0 < z < 1. From the definition of z we
see (where P(z, y) = {(u,v):u = z,v = y}):

) ifz>2,PEMnN)nP,z) = g)—>1lasn— «,and

) ifz <z, PEM)nP@,z) = &) —>0asn— o,

Letting G(z) = 1 — F(x), (i) and (ii) are equivalent to

(2.6) if £>2 (01 —G@L®))"—1 as n— o,
if t<z (1-—G@Lh))"—0 as n— .
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Taking the logs of (2.6) we see that
2.7) if >2 nG@&L®m))—0
if <2z nG@L®))— o.

Now if zL(n) < L(n?) then nG*(zL(n)) = nG*(L(n?) = 1. Thus, if z > 2
we have zL(n) = L(n?). Similarly, if # < 2 then zL(n) < L(n*). Combining
these results,

2.8) 2L(n) = Ln*) as n— o.
Letting a = —log 2/log z by (2.8) we have
(29) 2L@y) X LE*)asy— o or (*)LEy) = LE*") asy— .

We used the fact that M (n) relatively stable i.p. implies L is a slowly varying
function to go from n to the continuous wvariable y.

Let £ > 0and y > 0 and 2° + 3” > 1. Then by (2.9) and Lemma 3 choose
y(n) such that r > min (z, y)/2 implies Ly ()™ ) < rL(y(n)) where o’ > a
and z* + 3*" > 1. It follows that:

(210) PDM®m)nP,y)=g)= (01— G@L®))GHYL®)))"
@211)  P@uennPwy) = &) S 1 — y@)” @H)v @
which approaches 1 as y(n) — « where [z] is the integer part of x.

From (2.11) it follows that (z, y) £ C (a) is not in N since it will have a neigh-
borhood which does not contain points of D (n) with high probability for some
large values of n.

Using the opposite inequality of Lemma, 3 it follows that if z* 4+ 3* < 1 then
P (x, y) has points of D (n) with a probability approaching one for some largen.
Thus, some point of P (x, y) ¢ N and hence by Lemma 5 (z, y) ¢ N. (a) is thus
proved.

Proof of (b). Suppose N = C(1) or C(« ). Since N is convex and contains
(0,0), (1,0) and (0, 1) it follows that N 2 C(1). Find z and @ as in the proof of
(a). The same argument yields that (z,y) £C (a) impliesP (D (n)n P (x,y) = &)
— 1 for some subsequence of integers n. As mentioned previously each neighbor-
hood of an extreme point of N must intersect D (n) with a probability approach-
ing one. It follows that N © C(a). Thus, (2, 2) is an extreme point of N and any
neighborhood contains points of D (n) with a probability approaching one as
n — w. Asin the proof of (a),2L(n) = L (n') which implies that each neighbor-
hood of a boundary point of C (a) has points of D (n) with a high probability for
some large n. Thus, N 2 C(a) completing the proof.

To complete the proof of our theorem we need to show that L behaves in an
appropriate fashion when C (a) is a limit.

LemMmA 6. Let lim,., D(n) = C(a) i.p.,,0 < a < o, or lim E(n) = C(a)
ip,1 <a < ».Thenz ¢ (0, 1) implies

Mo 22 myse L (/1@ (n)L(n)))/Ln) = (1 — a)"
where I(z) = L™ (2).
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Proor. Fix an z ¢ (0, 1). The probability that the x coordinate of a sample
point is to the right of L (n) is G (xL (n)). The expected number of sample points
in the first » with an z coordinate greater than zL(n) is nG(zL(n)) =
nG(L(I @L®)))) = n/I(xL(n)). By Chebyshev’s inequality the probability
that we have between % and 2 times the number of points approaches one.
Since this number approaches infinity and the maximum associated with F is
relatively stable in probability with a probability approaching one, the maximum
y-component of the points of S, with z-component greater than zL (n) is between
(1 — )L (n/2I (xL(n))) and (1 + €)L(2n/I(zL (n))). Since L is slowly varying
and we know that

max {y: | X = (@gs), @ 2 2L(n), i = 1,2, -, n}/Ln) = (1 — )" ip.

the lemma is proved.
Lemma 7. Let limp D(n) = C(a),0 < a < w;orlimE(®) = C(a),1 < a
< . Then if x € (0, 1)L(y") = 2" °L(y).
Proor. Let 8 = {z |z > 0 and L(y°) = z°L(y)}. Let b = 1/a. 1 ¢ Sand
1 ¢ 8, which is shown in the proof of Proposition 1. Note: (a) If z ¢ S and
y € S then zy & S (since then L(Z™) = VL(Z%) = y’2°’L(Z)). (b) If z ¢ S then
1/z ¢ S (since L(y") = #*L(y) implies £ °L(y") = L(y). Let Z = y°; then
(1/2)°L(Z) = L(Z"*)). (¢) lf z ¢ S and y & S then z/y ¢ 8 (by (a) and (b)).
By induction we show that S contains the set of positive integers. Suppose that
1,2,---,p —leSwherep — 1= 2. If p is not prime then p = pi-p: where
preSandpe 8. By (a),peS. If pis prime, then since 2 and (p + 1)/2 ¢ 8,
applying (a), p + 1 € 8. From (b), 1/(p + 1) 8. Thus,

(212) L") = 1/ @ + 1))'LG).
Select z (y) such that L (3" @y — 2 (y)L(y). Then by (2.12)
z@y) - /@ + D).
Now using Lemma 6,
C-Ye+1))=0-1/@+1))
= limp.w L(y/I(@)L)))/L{y)
= limno L@ ™ *™)/L ).

Thus, 1 — 1/(p + 1) = p/(@ + 1) ¢ S. Since p + 1e8Sby (a),pes.

By (¢), S contains all positive rational numbers. Since L is monotonic it fol-
lows that S contains all positive numbers.

LevmMA 8. If limyse D(n) = C(») ip. or limu.o E(n) = C (o) 1.0. then
L(y) = L.

Proor. With probability approaching one we have points of E(n) in any
neighborhood of (1, 1). As in the proof of Proposition 1, if # < 1 zL(n) <
L(n*) which gives the stated result.

_The totality of the results proved so far prove the theorem.
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3. Extension to R". From the theorem of Section 2 the most general limit in
R" (for i.i.d. random vectors whose distribution is a product of one dimensional
measures along an orthogonal set of axes) may be found. The ideas used in
proving the result are: (1) if a limit exists in n-dimensions by projecting onto a
lower dimensional subspace a limit still exists; (2) limits are invariant under
affine transformations; and (3) in looking at a limit in two-dimensions if we
linearly transform the limit so that the planes of support along the product
axes are equidistant from the origin we may assume that the one dimensional
product measures are the same. The theorem is stated below, but not proved
since the proof is tedious but not enlightening.

In n-dimensional Euclidean space let (z1, ---, z.) be the coordinate repre-
sentation of a vector with respect to a fixed orthonormal basis for the space. A
set @ is a quadrant of R" if it consists of all points such that each coordinate has
a fixed sign (consider 0 as both positive and negative). A set 4 is in S(a) if
the intersection of A with each quadrant @ is of the form

(@i, oy @) 200 (@ |0 S 1, (-, @) € Q)

where each b; = 0 and 0/0 is taken as zero. Let P be a Borel probability measure

on R" which is a product of n one-dimensional measures along the orthogonal set
of axes. Let F; be the distribution function of the 7th measure and

Li(x) = min {y:Fi(y — 0) = 1 — 1/z = Fi(y)}
Gi(z) = max {y:F:(y — 0) < 1/z < Fi(y)}.

THEOREM 2. Under the conditions and definitions of this section:

(a) All possible limits for N (n) i.p. or a.s. are tn S(a),0 = a < o, and have
norm one. If limu,.o N(n) =, A € S(a), 0 < a < o, then the limit exists a.s.

In order that lim,.. N (n) exist a.s. and is a set in S(a), 0 < a < o, which is
not a line segment 1t is necessary and sufficient that there exist a function L such
that L(y") = z'"°L(y) as y — » for all z £ (0, 1) and that lim,., L;(x)/L(z)
and i, |G:(z)|/L(z) all exist as nonnegative numbers and at least two distinct
values correspond to a positive limat.

In order that lim,.., N (n) exist as an a.s. limit in S () that is not a line seg-
ment it is necessary and sufficient that a function L exist such that L(y) = L(y*) as
y — o« and the conditions of the previous sentence tnvolving L; and G; hold.

(b) All the results of (a) hold if 0 < a is replaced by 1 < a and N (n) by H (n).

4. Acknowledgments and remarks. The results about limiting convex hulls
were contained in the author’s thesis written under the direction of Professor
John Lamperti at Dartmouth College. I am deeply grateful to Professor Lam-
perti. Part of the results were announced in [2]. The results of this paper lead to
results about convex hulls in certain function spaces which will appear in a
forthcoming paper. The results of Theorem 2 when the random variables have
a multivariate normal distribution are a consequence of the stronger results of

» Geffroy, [3] and [4].
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