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A NOTE ON ESTIMATING A UNIMODAL DENSITY!

By Epwarp J. WEGMAN

Unaiversity of North Carolina

1, Introduction. This paper is concerned with the problem of estimating a
unimodal density with unknown mode. Robertson [5] has shown in the case that
the mode is known a solution can be represented as a conditional expectation
given a o-lattice. Brunk [2] discusses such conditional expectations as well as
other problems.

A o-lattice, £, of subsets of a measure space (2, @, u) is a collection of subsets of
Q closed under countable unions and countable intersections and containing both
¢ and Q. If @ is the real line, then the collection of intervals containing a fixed
point, m, is a o-lattice which we shall denote as £ (m). A function, f, is measurable
with respect to a o-lattice, £, if the set, [f > a], is in £ for each real a. In this
paper, we shall say a function f is unimodal at J/ when f is measurable with re-
spect to £ (M ). This definition is equivalent to a more usual definition as seen in
the following easily verified remark.

ReEMARK. A function f is unimodal at M if and only if f is non-decreasing at
for x < M and f is nonincreasing at « for x > M.

Let © be the real line and let u = A be Lebesgue measure. Let L. be the set of
square integrable functions and L,(£) be those members of L, which are also
measurable with respect to £. We shall adopt the following definition of condi-
tional expectation with respect to a o-lattice.

DerintTioN 1.1, If f € Ly, then g € Ly (£) is equal to E(f | £), the conditional
expectation of f give &£ if and only if

(L1) J1-6(9) dx = [ g-6(g) ax
for every 0, a real-valued function such that 6(g) € L, and 6(0) = 0, and
1.2) Jaf—g)ax=0

foreach 4 ¢ £ with0 < A(4) < .

(Brunk [1] shows such a function, g, exists and is unique up to a set of Lebesgue
measure 0). In this paper, the estimation of the density will be based upon a
strongly consistent estimate of the mode such as those of Nadaraya [3] or of
Venter [6]. (The author is aware of a third estimate, as of now unpublished, given
by Robertson and Cryer).

2. An estimate of the density. The density, f, to be estimated has mode M
which is unknown, Let us assume 1 < y2 < -+ = ya is the ordered sample of
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size n chosen according to the density f. Let {M,} be a sequence, (we shall not
yet require {M,} to be a consistent estimate of M. In fact, our only restriction
nowisy1 £ M, = ynforn = 2.) Let y4m) be the largest observation less than or
equal to M, . Let A1 = [y1, 2), 42 = [12,43), *** , Aaw) = [Yatm) » Ma], Agemya =
[Ma, Yaemysal, * =+ 5 An = (Yna, yn]. Notice, if M, is an observation, A,m = ¢ and
will be deleted from this collection of intervals. With this convention in mind, let
us define

(2.1) gn = Z;;l ni‘[nk(Ai)]ml’IAi

where 7, is the number of observations in 4; and I, is the indicator of 4;. In
particular, n; = 1 except when M, is an observation, in which case 74wy = 0 and
Ngmy+1 = 2. Finally let £, be the lattice of intervals containing M, . Then f, =
E (§n | £4), the conditional expectation of ¢, given the o-lattice of intervals con-
taining M., , is an estimate of the density. Robertson [5] was able to show that
f» is an unimodal maximum likelihood estimate with mode M, when M,, is not an
observation. If M, is an observation, we could just as well have written
Agmy—1 = [Yam—1, Ma] and Agmyy1 = (Ma, Yom+1] instead of Agmy—1 = [Yom—1,
M,) and Ay = [Mn, Yamy1]. This shift may affect the likelihood product,
whereas in case M, is not an observation, there is no effect. See [7] for a construc-
tion of the maximum likelihood estimate when the mode is an observation.

3. Conditional expectations of the true density. In this section we shall repre-
sent the conditional expectation of the true density with respect to the lattice of
intervals containing a point in {y:f(y) > 0}, the support of f. Since the definition
of conditional expectation requires that f be in L, , we shall make that assumption
here.

TureoreM 3.1. If f is a density function unimodal at M and m s a point in the
support of f, then

1) If m > M, there is an interval [a, m] such that
E(f| £m)) = fona, m’ and
E(f|&£m)) = (m — a) " fium f d\ on [a, m].
@) If m < M, there is an interval [m, b] such that
E(f|£(m)) = fon[m, b and
E(f|&m)) = 0 —m)™ [imu [ d\ on [m, b].

(i) If m = M,E(f| £(m)) = f everywhere.

Proor. Case (iii) is easily verified and case (ii) can be shown in a manner
similar to case (i). We shall show case (i).

Leta = sup {y < M: (m — y)™ [y.m f A\ = f(y)}. To observe that the set is
not empty, notice for any y £ M, for which f(y) = f(m), y is an element of the
set. Let us define f* (y) = f(y) for y belonging to [a, m]° and f*(y) = (m — a)™*
[ ta.m f dX for y belonging to [a, m]. We want to show f* = E(f| £(m)). Clearly

(z) < f*(m) for each z, so it is not difficult to verify f* is unimodal at m.
Hence f* ¢ Ly (€(m)). We need only show (1.1) and (1.2) hold.

Leta' = sup{y <m:(m —a)™ [lamfd\ < f(y)}. Forysuch thata < y < @/,
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(m — @) [wm fd\ = f*(y) = f(y) and for y such thata’ < y < m, f*(y) 2
f(y). Now let A be any element of £ (m) with0 < A(4) < . Since we are deal-
ing with Lebesgue measure, we may assume 4 is a closed interval, say [bi, bs].
Since b, = m, we may write,

(3.1) Jowsa G =7 dN = [om ¢ — ) dN
Now, if a' < by < m, since we have f* — f = 0 on (a’, m]
(3.2) Joum (F =M dx = 0.
Ifa <b < d,sincef — f* = 0on (g, a),
(3.3) Jovan = AN = [oen (F — fF)dN
But [tam (f — f7) d\ = 0, so that

Joas G =)\ = —[wm = fF)dN
This together with (3.3) gives us

(34) Jorm F—FHYax = 0.
Finally, if b < a
3.5) f[bl'm] (f"‘f*)d)\ = 0.

Hence, combining (3.1) with either (3.2), (3.4), or (3.5), we have for 4 in
£(m) such that 0 < N(4) < , [, (f — fF)dx = 0.

This shows condition (1.2) holds. To show (1.1) holds, let 6 be any Borel func-
tion with 6 (f*) € L, and 6(0) = 0. ThenJ =@ N = [um =75
0(f*(m))dn = 8¢ M) [lom f — F)dAN But [ram (f — f)dN = 0, s0
[« —™)-0(f*)d\ = 0. Thus /* = E(f| £(m)) and the proof is complete.

4. Consistency. Let F be the distribution corresponding to f, and F, the empirical
distribution. Let @ = [limne sup, |Fa(y) — F(y)| = 0]. It is well known that
this set has probability one. We shall assume henceforth that all observations
arise from points in . If F is the distribution function corresponding to a random
variable Y with density f, it is known that Z = k-F (Y') is distributed uniformly
over the set [0, k]. Moreover, if Y1 £ Y, < --- £ Y, are the order statistics cor-
responding to a sample from F, then Z; = k-F(Yy), -+, Zn = k-F(Y,) are
distributed like the order statistics from a uniform distribution with range 0 to k.
We shall denote this uniform distribution by H*. If ¢y < 42 < -+ < yn is an
ordered sample and 21 = k-F (y1), *++ , 2, = k-F (yn) are the transformed points,
we denote the empirical distribution based on 2y, - - - , 2, by H.,*. Since

sup; |H.' (z) — H*(2)| = sup, |[Fa(y) — F(y)l,
Q' = [limn.e sup; |H. (2) — H*(2)| = 0],

for each k > 0. The reader may satisfy himself that for points in @', the following
statements are true.
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1. The largest observation less than and the smallest observation greater than
a number in the support of f converge to that number.

2. Corresponding to every pair, r; < rz2, of numbers in the support of f, there
is eventually a pair of observations y,,m) and yr,m satisfying

r < Yrin) < Yrom) < re.

We shall implicitly use these statements in the proof of the consistency
theorem.

Our estimate is given by f. = E (da| £.). Suppose yo is an arbitrary point in
the support of f and let ¢ = fa(yo). Let P, = [f» > ¢ and T, = [f» = ¢ If
3¢, (T:) = {LeLa:N(T. — L) > 0} and 3:(P,) = {Le&:N(L — P:) > 0},
the result of Robertson [4] gives us

(4.1) Falyo) = infrage,cry INTe — L) 7 [2,-1 0n X
and
(4.2) Fa(40) = supreese WL — PO [1-p, §n dN.

(Notice that Robertson’s theorem is stated for finite measure spaces. Once the
sample in question has been chosen we may restrict our attention to [y1 ,yn] for
which A[y1, ya] < ©.) The proof of the next theorem uses methods similar to
those of Robertson [5].

TraeoreM 4.1. If f is a unimodal density with mode M and {M,} s a sequence
converging to m in the support of f, then let fn = E(f| £(m)) and let f» be the esti-
mate described in Section 2. For every yo < m

(4.3) fu(yo") < liminf fa(yo) < lim sup fa(30) = fu(y0*)
and for every yo > m
(44) Fm(yo") = limsup fa(yo) = lim inf fa(ye) 2 fn(yo")

Inequalities (4.3) and (4.4) hold for points in Q', hence with probability one.

Proor. Inequalities (4.3) and (4.4) are proven in a similar manner although
they will require different forms of the representation theorem given in [4]. We
shall restrict our attention to (4.3). Let us suppose m > M and let a and a’ be
defined as in Section 3. Let 41 < 52 < -+ = y» be the ordered sample based on
a point from @’. Let # < m and = a number in the interior of the support of f. Let
Ys(m be the largest observation less than z. There is a number 2; < z in the support
of f since the interior is an open interval (including possibly (— «, ©)). Let yuwm)
be the smallest observation greater than z;. Let n be sufficiently large so that
Ystm) > Yumy - Lt t = fa(z) and P, = [f» > t]. Since f» is constant on intervals
between observations (a fact demonstrated by Robertson in [5]) and unimodal
with mode M, > z for sufficiently large n, P; = [yjm) , Yim)]. Notice for sufficiently
large 7, [Yuem , Yim] € 32 (P:) so that by (4.2),

7o @) Z Wi — Yum) " [ tvucmy wjay I N
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for sufficiently large n. But f[,,u(,,, Wiy Jn AN = n ™ (j(n) — u(n)), so that for
sufficiently large n

fa@) 207 Gm) —um): Wim — Yum)

If Z; = fx1)) ™ F(y:), ¢ = 1, 2,---, n, then since f is nondecreasing on
(— o, m) Zimy — Zu@w) = Yim) — Yum) , 50 that for sufficiently large n

fo@) 207 () — u@®)): Zim — Zuw) ™
Itk = f(z) ™, thenn ™ (j(n) — u(®)) = Ho* (Zimy) — Ho* (Zuewy). Finally, for
sufficiently large n
fo(@) 2 [Ha' (Ziw) — Ha" (Zum)): i — Zuem )"

Since liMnsw Zum = [f()] F (1), lim inf [Z;) — Zuw] > 0. Thus because of
the uniform convergence of H.,* to H",

limy . [Hn Zimy) — Hn Zu)l* @iy — Zuw )—1 = 1/k = f(m),

so that lim inf f, () = f(z1). In the discussion of Section 3, we saw for z < d’,
fn(x) = f(z). Hence we have

4.5) fm@ ) £ liminff,(z) for z = d'.
Using the representation given by (4.1), we can show in a similar manner that,
f@') = limsupfu(x) for z < m.
Again by the discussion of Section 3, for z < a,fn(x) = f(z) and fora’ < z < m,
fm(x) = f(z). Clearly then for yo < a
Fn(yo") S liminf fo(yo) < lim sup fa(@o) < fm(yo")-

Moreover, for d <z <m,
4.6) fa(z") = lim sup fa (z)

Now let y, be chosen in (a, m ). Then thereis a pair (z;, z2) such that 21 < yo < 2
anda < 7, < o’ and a’ < 2z < m. Clearly by (4.5) and (4.6)

fn(@") S liminf fo(yo) < lim sup fa(y0) < fm(22").
Since fn is constant on [a, m], we have

limnseo o (o) = fn (%0)-

This provides the desired conclusion, (4.3) if ¥ is in the interior of the support
of f. If f(yo~) = 0, the result is clear. The remaining cases may be provenin a
similar manner.

If f is continuous, then limpe fa (o) = fm (¥o) for yo = m. Using this and apply-
ing methods similar to those of the Glivenko-Cantelli Theorem, we have the
following corollary.

CoROLLARY 4.1. If f is continuous and the conditions of Theorem 4.1 hold, then
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fa converges to fm uniformly except on an interval of arbitrarily small measure con-
taining m. This holds for all points in @, hence with probability ome.
If the limit of the sequence {M,} is M, which is the case if M, is a strongly con-
sistent estimate of the mode, then we may state the following corollary.
CoROLLARY 4.2. If {M,} converges to M, the mode of f, with probability one, then
with probability one,

f@&) £ liminff,(z) £ limsupfa(z) £ f@&*) for z< M
and
f@) = limsup fu(x) = liminffo(z) = f@&*) for z> M.

In addition, if f is continuous, with probability one f. converges to f uniformly except
on an tnterval of arbitrarily small measure containing M.

Of course, f» also may have the maximum likelihood property mentioned in
Section 2. The maximum likelihood property causes f, to be a step function, so
that if f is continuous we may be willing to sacrifice the maximum likelihood
property in order to obtain a continuous estimate. If we assure our continuous
estimate is sufficiently close to f, , then our continuous estimate will also be con-
sistent. Clearly, there is no unique way to make f, continuous. In the following,
let f be a continuous density.

TueoreM 4.2. If {f.*} s a sequence of continuous density functions such that

(1) fa¥ 48 unimodal with mode M., ,

(2) fn*gMn) =.fn(Mn); .

(3) If fu is constant on By, -+, By, then f,* = j. at least once on each
B;,j =1, -k, then with probability one f,* converges to f uniformly except on an
interval of arbitrarily small measure containing M.

Proor. Let A be the interval of arbitrarily small measure. By Corollary 4.2,
SUDzeac |fn () — f(x)| converges to zero. Let ¢ > 0 and choose n sufficiently large
so that

SUPzeqc 'fn(x) - f(x)l < ¢/3.

It is easy to see that conditions (1), (2), and (3) are sufficient to imply that for
any z in the support

'fn*(x) _.fn(x)l = supy; lfn(yi+) _jn(yi_)l;

where y;, 2 = 1, --- , n are the set of observations. But adding and subtracting
f(y:) and using the triangle inequality,

SUPy;eac |fa W) — Fa i) S 25UDsesc [fu (@) — F(@)].

SUPzeas [fa* () — fa (@) S (2/3)e,
or for sufficiently large n

Hence

SUPzeac ]fn* (x) - f(x)l e
This completes the proof.
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