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DISCRETE DYNAMIC PROGRAMMING WITH SENSITIVE DISCOUNT
OPTIMALITY CRITERIA!

By ArtHUR F. VEINOTT, JR.
Stanford University

1. Introduction. This paper is concerned with stationary finite state and ac-
tion Markovian decision processes where future rewards are discounted and the
transition matrices are substochastic. The discrete time parameter case is treated
in Sections 2-4 with analogous results being obtained for the continuous time
parameter case in Section 5.

In Section 2 we generalize some results of Shapley [32], Bellman [4], Howard
[20], Blackwell [5], Eaton and Zadeh [15], Derman [8], and Denardo [7] which
are concerned with the use of the methods of successive approximation and policy
improvement in finding a policy 7 that maximizes the expected infinite horizon
discounted reward V,(w) where p is the rate of interest. Our contribution is to
the case where —1 < p =< 0, e.g., corresponding to inflation. One main new result
in this section, Corollary 4, is that the series defining V,(r) converges absolutely
for every (some) 7 for all one period rewards if and only if the same assertion is
true when = ranges over the stationary policies. This result is proved by dynamic
programming methods.

Up to now we have supposed the interest rate to be fixed. A stronger concept
of optimality would be to find a policy that maximizes V,(-) for a sufficiently
small interval of interest rates. Blackwell [5] has shown that there is a stationary
policy maximizing V,(- ) for all p > 0 close enough to zero. Recently Miller and
the author [30] discovered a policy improvement algorithm for finding such a
policy. The algorithm exploits the fact that for stationary policies the Laurent
expansion about the origin of the return V,(-) has a simple form. Analogous
results hold in the transient case where one seeks to maximize V,(-) for all
p < 0 close enough to zero. Section 3 consists of an expository development of the
Laurent expansion mentioned above together with some new results on properties
of its coefficients.

In Section 4 we introduce the following new optimality criteria. For each

n = —1,0,1, ---, apolicy =* is called n* discount optimal if (for n~, we con- _

sider only the transient case)
lim inf,op [o| [V, (x*) — V,(x)] = 0, forall .

The sensitivity of this criterion increases with #. And when n is as large as the
number of states, the criterion is shown to be equivalent to Blackwell’s criterion
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cited above. We also characterize the class of stationary n* discount optimal
policies and show that the algorithm given in [30] can be terminated more rapidly
when only #n* discount optimal policies are sought. This leads to efficient ways of
implementing that algorithm. In particular, Blackwell’s [5] and the author’s
[34] algorithms for respectively finding —1" and 0" discount optimal policies
emerge as special cases.

In [35] we investigate a family of sensitive averaging criteria and obtain the
algorithm given in [30] in a quite different way. We also establish the equivalence
of n* discount optimality with the corresponding averaging criterion.

2. Maximal expected reward: discrete parameter.

Preliminaries. Consider a system which is observed at each of a sequence of
points in time labeled 1, 2, - - - . At each of those points the system is found to
be in one of S states labeled 1, 2, - -+, S or to have ‘“stopped’”. Each time the
system is observed in state s, an action a is chosen from a finite set A, of possible
actions and a reward r(s, a) is received. The conditional probability that the
system is observed in state ¢ at time N + 1 given that it is found in state s at
time NN, that action a is taken at that time, and given the observed states and
actions taken at times 1, 2, --- , N — 1, is assumed to be a nonnegative function
p(t | s, a) depending only on ¢, s, and a. The corresponding conditional probability
that the system is observed to have stopped at time N + 1is 1 — Zp(t] s, a).
Once the system is observed to have stopped, it remains stopped and earns no
rewards.

Let F = XiaA.. A policy is a sequence © = (fi, fo, - - - ) of elements fx of F.
Using the policy = means that if the system is observed in state s at time N, the
action chosen at that time is fv (s), the sth coordinate of fy. Let f* = (£, f, ---)
and call f* a stationary policy. If = is a policy, let " denote the first N components
of = and call Y= = («", #", - - -) a periodic policy. Let f* denote the first N com-
ponents of f~.

For any feF, let r(f) be the S X 1 column vector whose sth component is
r(s, f(s)), and let P (f) be the S X S matrix whose stth element is p (| s, f(s)).
Ifr = (fi,fo, -+ ), let PY(x) = P(fy) -+ P(fy). Thus PY(f°) = P(f)" and
P’(r) = I. Call = transient if Y _y—o P" (r) converges. If = = (f;) is transient,
the S-vector V (r) of expected total returns starting from each state, given by

@ V(r) = 250 P" () (fun),
converges absolutely.

In the remainder of this section we shall drop the assumption that the row
sums of P (- ) be one or less; however, we refain the hypothesis that P (- ) is non-
negative. The definition of a transient policy given above is equally valid in this
case. Of course, we can then no longer think of the elements of P (f) as proba-
bilities. But there are many alternate interpretations of the generalized model
which, for brevity, we do not mention here.

If B = (by;) is a complex matrix, let |B|| = max; Z;|b;| be its norm. Assume
Bis S X S and denote by o (B) its spectrum and |o (B)| its spectral radius. In
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the sequel, we often use the well-known fact [22, page 30] that the following are
equivalent: (i) |[o(B)| < 1, (i) ||B"|| < 1 for some N = 1, (iii) BY — 0 as
N — «, and (iv) D_w—oB" converges absolutely. These conditions imply that
[I — B] is nonsingular and its inverse has the Neumann series expansion given
in (iv) above. If also B is real and non-negative, the above four conditions are
equivalent to: (v) [I — B] is nonsingular and has a non-negative inverse. If fur-
ther B is substochastic, i.e., |B|| £ 1, then the five aforementioned conditions
are equivalent to: (vi) ||B®]] < 1 and (vii) [I — B] is nonsingular. Thus [if
1P ()l = 1], f7 is transient if and only if P (f) satisfies any one of the conditions
[@)=(vil)] ()-(v) given above.

Maximal Expected Reward. Under the hypothesis |[P(f)]] < 1 for f e F,
Shapley [32] showed that there is a stationary policy maximizing V (- ) over all
stationary policies by the method of successive approximations. Howard [20,
pages 83 ff] devised a finite policy improvement method for finding such a policy.
Blackwell [5] showed that V (- ) assumes its maximum over all policies among the
stationary policies.

Our aim here is to establish these same results under the weaker hypothesis
that each stationary policy is transient. Partial results in this direction have been
obtained by Eaton and Zadeh [15], Derman [8], and especially Denardo [7].

The following lemma is basic to most of what follows. It generalizes a result of
Howard [20, page 87] from stationary to nonstationary policies.

Lemma 1. If 7 = (g:) and #* = (f:) are transient, then

(2) V(r) — V(ﬂ'*) = Z;=0PN(7F)V(!}N+1, T*)

where v(g, 7)) = V(g, *) — V(a*). If also m = ¢, then

3) VE®) = V@) = - P@)] v 7).
Proor.

Vi) = V@) = iV, «%) = V", 7)) = X0 PV (1)0(gwsa, 7).

One immediate consequence of this result is the following.

LEMMA 2. Suppose fe F and every stattonary policy s transient. Then either
v(g, f°) > 0 for some g e F or v(g, f°) < 0 for all g ¢ F. In the former case V (¢*)
> V(f*). The latter case occurs if and only if V(¢°) < V(f°) forallg e F.

The next two corollaries come from Denardo [7]. They generalize results of
Shapley [32].

CoRroLLARY 1. If every stationary policy is iransient, there is a stationary policy
that maximizes V (- ) over the class of stationary policies.

Proor. Apply the policy improvement method implied by Lemma 2.

Because of Corollary 1 we may define V* = max;r V (f°) provided every
stationary policy is transient. Also define the operator ® mapping E° into
itself by

4) RV = max,r[r(g) + P(g)V], Ve E”.
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Notice that ®, and hence ®”, is monotone (nondecreasing). The next result is an
easy consequence of Corollary 1 and Lemma 2.

COROLLARY 2. If every stationary policy is transient, V* is the unique fized point
of &.

We say that the dynamic program (7(-), P(-)) is positively similar to (r(-),
P (-)) if both are defined on F and there is an S X S diagonal matrix B having
positive diagonal elements for which #(f) = Br(f) and P(f) = BP(f)B™" for
all fe F. Positive similarity is evidently an equivalence relation on the class
of dynamic programs on F. On using some obvious definitions, we have P (r) =
BP" (x)B™', & = B®"B”', and when = is transient, V (x) = BV (r).

A property of a dynamic program is said to be ¢nvariant if it holds in all posi-
tively similar dynamic programs or holds in none of them. The following examples
of invariant properties of dynamic programs will be used frequently in the sequel:
(i) a policy is transient, (ii) a policy maximizes the total expected reward, (iii)
the iterates of the “optimal return” operator (4) converge geometrically to the
unique fixed point of the operator. A property that is not invariant is the mag-
nitude of the norm of a transition matrix.

Levma 3. (Hoffman ) For every e > 0 and every dynamic program (r(-), P(-)),
there is a positively similar dynamic program (7 (- ), P(-)) for which max, | P (g)||
< max, lo(P@))] + « )

Proor. It suffices to show that max, ¢ (P (¢))| < 1 implies max, ||P(¢)| < 1.
By Corollary 2, there is a unique S-vector v, v = 1, satisfying

») v = maxgr [l + P(g)v].

Let B be the diagonal matrix whose sth diagonal element is »,*. Pre-multiplying
(5) by B and subtracting the positive vector Bl gives 1 — Bl = max, P(g)1,
which completes the proof.

The conclusion of Lemma 3 cannot be strengthened to max, |P(g)| =
max, |0 (P(g))| as the following example shows.

ExampLe. If P is the matrix with rows (1, 1) and (0, 1), then |¢(P)| = 1.
Also the rows of every positively similar P are of the form (1, ) and (0, 1) with
b>0so|P|=14+0b>1.

The next corollary sharpens and generalizes results of Shapley [32] and Denardo
[7, pages 169-170].

COROLLARY 3. Suppose every stationary policy is transient. Then &V — V*
as n — . Moreover, for each o for which max,|c(P(g))] < a < 1 and each V,
there is a constant K such that |®"V — V¥| < Ka",n = 0,1, -+ .

Proor. By Lemma 3 there is a positively similar dynamic program (7(-),
P(-)) with max, ||P(g)| < . Then as Shapley [32] has shown, & is a contrac-
tion with modulus « under ||-||. Hence, by the Banach fixed point theorem, the
conclusions of the corollary hold for (#(-), P(-)). Thus, by invariance they hold
for (r(-), P(-)), which completes the proof.

The equivalence of 1° and 3° of the next corollary reading with “some” was
shown by Derman [8, page 19] under the hypothesis that each transition matrix
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is substochastic. This last hypothesis appears to be needed for his proof, although
as we show here, it is not essential to the result.

CoroLLARY 4. The following four statements are equivalent.

1°. Every (some) stationary policy is transient.

2. Every (some) periodic policy is transient.

3°. Every (some) policy is transient.

4°. For some N = 1, |[P" (x)|| < 1 for every (some) .

If also ||P(g)|| £ 1forall geF, the above are equivalent to

. |P5(x)|| < 1 for every (some) .

PROOF We establish the equlvalence of 1°-4° first. On reading with “every”,
notice that 4° = 3" = 2" = 1°. Also 1° = 4° by Lemma 3 and the invariance of
these properties.

Turning now to the results reading with ‘“‘some”, it is clear that '’= 2=
3" = 4°. Therefore, suppose 4° holds. Let 7(g) = —1 for all g. Then by 4° Vris
transient so V ( 1r) is finite. Now, as in Strauch [33], 0 = ®"0 = V(" 1r) and
®"0 | =V (= V("r)), say, as n — . Moreover, because ® is continuous, —V
is a fixed point of ®. Thus, for some f, V = 1 + P(f)V = ZN=0P(f)N1
+ P()"™™V = D ¥-oP(f)"1, which implies f* is transient and proves 1°

We now give an mdependent proof of the equivalence of 1 -5 for the case
||P (g)|| < l1forallgeF. Readmg first with “every”, we have 5' = 4" = 3’ =
2° = 1°. Therefore, suppose 1° holds.

It will be convenient to say the system is in state S 4 1 when it is stopped. Let

= (f:) be any policy and s, 1 = s = S, any state. Let T = {s} and let TV
be the set of states at time N (= 2, 3, ---) that are accessible from state s at
time 1 when using the policy .

It suffices to show state S -+ 1 is accessible from (each) state s in at most S
steps under =, for then ||P*(r)|| < 1. This will be soif N = 1 and (S + 1) 2
UYL, 7% imply T & UY, T". We prove this last assertion by contradiction.
Thus suppose TV < U T" for some N = 1. Then define g ¢ F by the rule:

g) = ;) for teT — UET, j=1,2 N,

and arbitrarily otherwise. Under ¢, the only states accessible from states in
U, 7% are those in UYL, T°. In particular, state S + 1 is not accessible from any
state in UY_; T% under ¢*. Thus ¢” is not transient, which is a contradiction and
completes the proof.
It remains to consider the result reading with ‘“some”. Clearly, '=5=
= 3° = 4°. Thus, suppose 4° holds. Then, there is a smallest integer K for which
||PK (r)|| < 1. Let T be the set of states at time N from which state S + 1 is
accessible by time K + 1. By definition of K, T" = {1, - -, S}. Write 7 = (fi)
and define g ¢ F' by the rule:

g@t) = fi(¢) for te T’ — U§=j+lTi, Jj=12--,K

Under ¢%, state S + 1 is accessible from every state so ¢” is transient, completing
the proof.
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Since " is transient if and only if o (P" (x))| < 1, it is clear that the equiv-
alence of 1° and 2° of Corollary 4 can be restated in the following interesting form.
(c.f., Bellman [4, pages 328-332]).

COROLLARY 5.

min, [o (P (9))] £ |o(P"(x))|"™ < max, | (P(9))]

for every N = 1 and . Moreover, the upper (lower) bound is attained for every
N = 1 by any stationary policy = = ¢~ for which g achieves the maximum (mini-
mum) on the right (left).

With the aid of Corollary 4, we see from Lemma 1 that Lemma 2 generalizes
immediately as follows.

THEOREM 1. Suppose every stationary policy is transient and =™ is a policy. If
v(g, ©) > 0 for some g e F, then V(g°) > V(x*). Also v(g, =*) < 0 for all
geF if and only if V(x) £ V(z*) for all .

By combining this theorem with Corollary 1 and Lemma 2 we get the follow-
ing immediate generalization of Corollary 1.

COROLLARY 6. If every stationary policy is iransient, there is a stationary policy
that maximizes V (- ) over the class of all policies.

Theorem 1 and Corollary 6 were established by Blackwell [5] for the case
[IP(g)]] < 1for all g ¢ F and by Denardo [7] under a hypothesis something like
the “every” part of 4° of Corollary 4.

3. Laurent expansion of the resolvent: discrete parameter. If Q is a set of
complex numbers, denote its complement by ©°. If Bisan S X S complex matrix,
then the matrix function Ry (B) = [\ — B] ™, defined for A £ o (B)", is called the
resolvent of B. An excellent account of the properties of resolvents of finite matrices
relevant for this paper is given in Kato [22, pages 36 ff.]. (However, the reader
should note that Kato calls [B — M~ the resolvent of B. Our terminology fol-
lows that used in Dunford and Schwarz [12, page 566].) This section is largely
expository with probably only (9), (25), and Lemma 7 being new.

The principal purpose of this section is to develop and interpret the coefficients
of the Laurent expansion [26, page 117] about the origin of the resolvent of
Q = P — I where P is an S X S substochastic matrix (Theorem 2 below). This
expansion is obtained in [22, page 39] by means of contour integration and in [30]
by elementary matrix calculations. In this section we pursue the latter method,
obtaining here more detailed results. The expansion plays a key role in the de-
-velopment of algorithms for finding n* discount optimal policies in Section 4.

The resolvent. The resolvent Ry(B) = R, of B is easily seen [22, page 36] to
satisfy the resolvent equation

6) Ry, — R, = (u— MNR\R,
for A, u € ¢ (B)°. Moreover, if A £ ¢ (B)°, then [22, page 37]

(7) R = (=1)"(a))} —-Rx, n=12 -
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If ¢(8B)| < 1 where 8 = X', then A e 0 (B)° and one has the Neumann series

expansion By = D _i—o8""'B’. Thus on differentiating with respect to A and using
(7) we get
(8) R)‘n+l — :0=0 (ij“n)B’H"n+lB1" n = 0’ 17 e

provided |o(8B)| < 1. This last result must be refined for our applications.
It is observed in [23, page 23] that 1eo(B)° provided

limN_m (N + 1)_1 1?’=o Bi = 0

In this event the series on the right of (8) may be divergent when A = 8 = 1.
However, since Ry is continuous in A € ¢ (B)° by Cramér’s rule, it is clear upon
letting 8 T 1in (8) that the series on the right of (8) is summable (4) (Abel) to
R™"' when A = 8 = 1. (The summability terminology used here is that of Hardy
[18, pages 7, 96].) Actually we shall show that an even stronger statement is
true, viz., the indicated series is summable (C, n + 1) (Cesaro) to R,*™ (see (9)
below). This result is known where S = 1 (the scalar case) andn = 0, 1, - - -
[25, page 481], and where S > 1 (the matrix case) and n = 0 [23, page 23].
See [25, pages 479, 489] for examples of such series in the scalar case that are not
(C, n) summable. Thus the result is sharp.

Lemma 4. The following are equivalent

1° limpee (N 4+ 1) 2150 BY = 0.

2°. 1e0(B)° and limy., N'BY = 0.
If either 1° or 2° holds, then

9) R = XL (WMB (Cyn+ 1), n=01,--
Proor. Evidently
(10) I — B> YB =1—-B"", N=01,---.

That 2° implies 1° follows by premultiplying (10) by R, dividing by N + 1, and
letting N — . It remains to show that 1° implies 2° and (9). On dividing (10)
by N + 1 and letting N — «, we see that 1° implies the second assertion in
2°. Averaging (10) we get

(11) [I —BI[(N + 1) 20> ieBl=1— B[N + 1) X X,B.

Since the right side of (11) converges to / as N — o, [I — B] must be nonsingular
so1leo(B)° and 2° holds. Thus on premultiplying (11) by R; and letting N — oo
we see that (9) holds forn = 0.

In order to complete the proof it will be convenient to use the (¢ + 1)-fold
summation notation =V'* defined by

o ()i= D2 Ym0 - Z§f=o Dok ()
It will suffice to show by induction on 7 that
12)  limyee (GHDT XX (BT =0, ,  t=0,1,---,n;

= R, t=mn+1;
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forn = 0,1, --- . We have just shown (12) holds forn = 0 and ¢ = 1. Also (12)
holds by hypothesis for n = ¢ = 0. Suppose now that (12) holds for the integer
n — 1 = 0 and consider n. We establish (12) for 0 < ¢t < n + 1 by induction
on {. One has the following generalization of (10),

(13) [I — Bl 2% (WMB' = 20 (W57)B — B(M")BY,
forN = 0,1, --- . Premultiplying (13) by Ky = (“#3") 'Ry and letting N — o,

it is clear from the induction hypothesis and 2° that (12) holds for ¢ = 0. Suppose
now (12) holds for some ¢t — 1,0 = ¢ — 1 < n 4+ 1, and consider ¢{. Summing
(13) yields

(14) [T — Bl X4 (iMBY = 28, (2B — B 2 X5 (M BY,

for N = 0, 1, --- . On premultiplying (14) by Ky and letting N — «, we see
that (12) holds for ¢ by the induction hypothesis and the fact [18, page 100]
that a series that is (C, n) summable is also (C, » + 1) summable to the same
sum. This completes the proof.

The reduced resolvent. In the remainder of this section we shall be concerned
with an S X 8 substochastic matrix P and the Cesaro limit

P* = limy.., N 4+ 1) D21, PF
Which is known [11, page 175] to exist. Moreover, P* uniquely satisfies
(15) PP* = P*P = P*P* = P*.
A useful implication of (15) is
(16) (P — P*)" = P* — P¥, n=12 .

It follows from (16) and Lemma 4 on setting B = P — P* that 1 e ¢ (P — P*)",
or equivalently 0 o (Q — P*)°. Also from (15), P*Q = 0. Combining these
facts, we see that P* = 0 if and only if 0 ¢ ¢ (Q)°. These results will be used fre-
quently in the sequel.

For any square matrix B and scalar 6, let o;(B) = o(B) — {8}.

Although Q is singular when P* 5 0, we show below there is a matrix function
H, defined for p £0¢(Q)° and having a rational representation on its domain,
for which B,(Q) = p "P* 4+ H, for p £ (Q)°. The matrix function H, is called
the reduced resolvent of Q [22, page 40]. In the remainder of this section we shall
develop a number of its properties, many of which appear in [22, pages 36 ff].

LemMa 5. (a) There is a unique (common) solution H, of the two systems

' I — I-p* I —
( [ =[] [ ]
if and only if p € 00(Q)°. Moreover, H, has a rational representation in p on oo(Q)°.

() If pe, (Q), then p *P* is finite and R, = R,(Q) satisfies
(18) H,=1[I — PR, = R, — p'P* = R,[I — P*].
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PROOF For brev1ty we note only that the unique solution to (17) is g1ven by
= R,(Q)(I — P*) for pea(Q)° — {0} and (recalling 0 eo(Q — P*)°)
=Ro(Q — P*)(I — P*)forp = 0.

LEMMA 6. If p,nea0(Q)°, then

(19) H,—H,= (n— p)H,H, (resolvent equation )
and

(20) HH,=HH,.

Ifneai(@) and 1 ea((n — p)H,)", then p £ 60(Q)° and

(21) Hy=[I — (n = p)H | 'Hy, = HJ[I — (4 — p)H,]™"
Ifneoo(Q) and |o((n — p)H,)| < 1, then peay(Q) and

(22) H, = 300 (0 — p)"H,SM

If p£ao(Q)", then

(23) H™ = (-1)" (nf)“ H,,, n=12":-
Ifp # —1and [c(8(P — P*))| < 1 where 8 = (1 + p)7, then p & a0 (Q)° and
(24) H'™ = 3 (W@ - PY),  wo= 0, 1,

On letting H = H,,

(25) H =35 0@ —P*  (Cn+1), n=01,---.

Proor. The formulas (19)-(23) follow readily from Lemma, 5.
The hypothesis of (24) 1mp11es lea(B(P — P*)) which, by Lemma 5, is
equivalent to peo(Q — P*)° C a (Q)°. Also from (16)

H, = R,(Q — P*) — BP* = Ry, (P — P*) — gP*
— Z OB'L-I-I(P P*) ﬁP* — ::°=06i+1(Pi _ P*),

which verifies (24) for n = 0. Differentiating both sides of (24) (forn = 0)
with respect to p and using (23) establishes (24).

To prove (25) recall on settmg B = P — P* that 1° of Lemma 4 holds. Thus -
Ri(P — P*)"" = Z,=0( (P — P*) (C n + 1), which, in view of (16)
and H""' = Ry(P — P*)""' — p* , establishes (25) and completes the proof.

By combining (18) and (22) we obtam the promised Laurent expansion of
R,(Q). The reader should note the probabilistic interpretation (24), (25) of the
powers of H appearing in the expansion.

THEOREM 2. If p # 0 and |o(pH)| < 1, then p e ¢(Q)° and

(26) R, (@) = o 'P* 4 35, (—p)"H™™.
The next lemma shows that P* + pH inherits many of the properties of B, (Q)
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for all small enough p > 0. The result enables us to avoid examining the chain
structure of P in the sequel.

LemMA 7. For all small enough p > 0, the matriz P* + pH is non-negative, has
posttive diagonal elements, and s nonsingular.

Proor. From Theorem 2 and the fact R, (Q) = D _i=8 P’ for p > 0, we have

I = limpsor 1 4+ p)™' = lim inf,n0r R, (Q) = lim inf,.ep [0 'P* + H]

so p 'P* 4+ H, and hence P* + pH, is non-negative and has positive diagonal
elements for all small enough p > 0.

The nonsingularity of P* 4 pH follows from the fact 0(p) = det [P* + pH]
is a polynomial of degree S and so has finitely many real roots or vanishes iden-
tically. The latter possibility cannot occur since 6(1) = det R, (P — P*) = 0,
which completes the proof.

4. Discount optimality: discrete parameter. In this section we resume con-
sideration of the model of Section 2. We assume throughout that [P (g)|| = 1
for all g ¢ F without further mention. Also suppose there is a (possibly ) negative
(real) rate of interest p, —1 < p < . We suppress the dependence of the
discount factor 8 = (1 + p)~" on p in the sequel for simplicity.

The S-vector of expected total discounted returns starting from each state and
using the policy 7 = (i) is V,(x) = D18 P " (x)r(fy) provided the series
> ¥=1B8YP¥ () converges. Since p > —1, V,(r) can be expressed in the form
(1) by replacing P (f) and r (f) everywhere in (1) by BP (f) and 8r(f). Thus all
results of Section 2 immediately apply to the discount problem. In particular by
Corollary 4, the series D y—18"P" ' (-) converges for every policy if and only
if it converges for every stationary policy. This is evidently always true if ¢ > 0.
It is also true when p < 0 is large enough in the transient case, i.e., where every
stationary policy is transient. The reader is warned that we have found it con-
venient to depart from the customary definition of V,(r) used in the literature,
the usual formula being here multiplied by 8.

Discount optimality. For each n = —1,0, 1, ---, we say = is n* discount
optimal if
(27) lim inf,,op |o| [V, (=) — V,(x)] = 0, for all =.

The limit inferior is, of course, componentwise. Similarly, we say == is ™

discount optimal if for some ot >0,
(28) V,(@*) — V,(x) 20 forallmand 0 < %p < p".

Notice that n~ discount optimality (—1 = n < ) is defined, and so will be
discussed in the sequel, only in the transient case, even though this presumption
will not always be explicitly stated.

It is clear from (27) and (28) that if = is n* discount optimal (—1 < n < ),
then =¥ is m™ discount optimal for —1 < m < n. Thus the sensitivity of n* dis-
count optimality increases with n.
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We remark that in the transient case, —1* discount optimality is uninteresting
since then lim,.o [o|V,(x) = 0 for all 7 so every policy is —1* discount optimal.
It follows that — 1~ discount optimality is of no interest because it is defined only
where every policy is optimal. On the other hand —1% discount optimality is
sometimes a useful criterion when there are nontransient policies. Since pV, ()
(p > 0) is the interest one receives in each period with an initial investment of
V, (), one can think of pV, () as the average expected reward per period equiva-
lent to the initial lump sum V,(x). From this viewpoint, the —1* discount op-
timality criterion seeks to maximize this equivalent average expected reward
as p | 0. The main objection to this criterion is that it is not very sensitive. For
example, suppose 8 = 2, there are two actions in state 1, and there is only one
action in state 2. The immediate reward in state 1 from action 1 is 0 and from
action 2 is 10°. The immediate reward in state 2 is 1. Either action in state 1
moves the process to state 2. Once the process reaches state 2, it stays there. In
this example both stationary policies are —11 discount optimal but it is clear
that the policy which takes action 2 in state 1 is preferable.

In the transient case a policy is 0 discount optimal if and only if it maximizes
the expected infinite horizon return Vo (). This is because then V,(r) is contin-
uous in p at p = 0. The notions of 0" and «* discount optimality were introduced
by Blackwell [5].

The criteria (27), (28) are concerned with situations where the interest rate
approaches zero, or equivalently, the discount factor approaches one. As was sug-
gested in [34] it is also of interest to consider situations in which the discount
factor approaches a, 0 < a < ||P(f)|| ™ for f ¢ F. This possibility is easily reduced
to the situation already discussed by simply replacing each P (f) and 7 (f) respec-
tively by aP (f) and ar (f). When this device is employed we are in effect express-
ing a discount factor 8,0 < 8 < [|P(f)||™ for f & F, differing from « in the form
B8 = (1 4+ p) "o In this event p = ap™ where p* is the difference between the in-
terest rates determined by 8 and . Thus p is simply a convenient rescaling of the
difference between the interest rates. The criteria (27), (28) are, of course,
invariant under such scale changes.

Denote by D, the set of f ¢ F for which f* is n* discount optimal, n = —1, 0,
1, - - - . Below we shall characterize these sets and develop algorithms for finding
an element of each. To this end, for each f ¢ F let Q(f), P*(f), and H (f) denote .
the matrices defined in Section 3 associated with the substochastic matrix P (f).
Theorem 3 and Lemma 8 below are established in [30] where P (f) is stochastic
and p = 0. We merely state the generalizations here since the proofs are similar
to those in [30].

Characterization of discount optimal policies. Since V,(f°) = R,(Q{))r ()
when |¢ (8P (f))| < 1, we may use Theorem 2 to give a Laurent expansion of
V,.(f°) in p about the origin.

TueorEM 3. If feF, |o(pH (f))] < 1, and [s(BP (f))| < 1, then

(29) Vo(f?) = 22%-a (£0) "y (),
where y%(f) = £P*(f)r(f) and 4. (/) = F"HO"r(N),n = 0,1, -
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Notice that if —1 < p =< 0 in Theorem 3, then |¢ (8P (f))| < 1 implies P (f)
is transient and P*(f) = 0. Also observe that y, (f) = (—1)"y."(f) for all n.

If C is a real matrix, we say C is lexicographically non-negative written C' > 0,
if the first nonvanishing element of each row of C is positive. Similarly, C is called
lexicographically positive, written C > 0,if C > 0 and C # 0. We write C > (> )B
orB< (X)CifC — B> (»)0.

For feF, let Y., (f) = WE(), -+, ¥n (f)) forn = —1, V,*(f) = 0 for
n < —1,and Y*(f) = 5@, p0 (), -+ ).

Blackwell [5] has shown that D.,' is nonempty where P (f) is a stochastic
matrix for each f¢ F. An alternate constructive proof of this result is given in
[30]. Essentially the same proofs show that D" (D, ) is nonempty where P (f)
is substochastic (transient) for each fe F. It is also clear that D% D Dy* D
-+ D D,* and so are all nonempty. Since D,* is nonempty, it is immediate from
(29) that Dn:‘: = {f:fepa Yni(f) > Yni(g) for all gEF} forn = -1, 07 )
and D= = {f:fe F, Y*(f) > Y*(g) for all g ¢ F}.

It is shown in [30] that if P (f) is stochastic for each f¢ F and if f, g ¢ F, then
Y*(f) = Y*(g) if and only if Ys*(f) = Y5 (g). This result and its proof remains
true if P (f) is substochastic for each f ¢ F. It follows from this fact that Ds* =
D&, = --- = D"

Ezample with F = D_y* = D™ = --- = D&, # Ds* and, for odd S,
Ds'nDg” = . Let state S + 1 denote the stopped position. In state s, 1 < s <
S + 1, there is only one action and the process moves to state s 4+ 1 with prob-
ability one and receives a reward «,. In state 1 there are two actions. Action 1
takes the process to state 2 with probability one and earns o, . Action 2 takes the
process to state 2 with probability 3, leaves the process in state 1 with probability
1 and earns 1. Let f* and ¢* be the stationary policies that take actions 1 and
2 respectively in state 1. Let V,’(-) denote the first component of V,(-).
Then V,'(f*) = Zf'=16iai = 28(1 — B)°" where we now let a;, o, -+, as
be the coefficients in the expansion of the last polynomial. Also V,’ (3°) = (2 —
8)"V, (f*) so

o "V, () — V, (4™)] = 267" (@2 — )™ (1 — B)|1 — B[

Thus
limgoos [o| [V, () — V, (6™)] = 0, n < S;

=2(x1)5 n=32;

= o (+1)° n>S;
whence {f, g} = F = D% = ... = D&, # Dg"and, forodd S,Ds" nDs = .
We remark that by considering a K state version of this example and adding
S — K = 0 dummy states, we can achieve F = DX, = ... = DE, = Dy* —
Dgn = -

Policy improvement method for finding S* discount optimal policies. Suppose
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loBP(f))| < 1 for all f and let
(30) v,(g,m) =71(9) + Q@WV,(x) — oV,(x) = (L 4 p)[V,(g, 7) — V,(x)].

Notice from Lemma 1 that

(1) Ve(g®) = Volr) = R, (Q(9))0, (g, m).

The policy improvement algorithm developed in [30] for finding S* discount
optimal policies depends on the policy improvement method for maximizing
V,(+). In order to determine whether a stationary policy f* maximizes V,(-),
Theorem 1 tells us to examine whether v,(g, f°) < 0 for all g ¢ F. Since we are
here interested in small values of |p|, it is natural to use (29) to express v, (g, f*)
as a Laurent series in p.

To this end for f, g e F, let ro(g) = r(g), r.(g9) = 0 for n = 0, y%(f) = 0,
and for n = —1,

(32) ¥ (9, 1) = 1a(9) + Q9)ya" () F yia ()

and ¥,*(g, f) = (Z1(9,1), -+, ¥a" (9, f)). Also let ¥, *(g, f) = Oforn < —1
and G.*(f) = {g:geF, ¥,*(g, f) > 0} for all n. Observe that ¥, (g, f) =
(—=1)"a" (g, f) for all n. Let ¥*(g, f) = (¥%1(g, ), ¥ (g, ), =+ ).

The next lemma is obtained by combining Theorem 3 with the above defini-

tions.
LemMa 8. If f, g F, o (opH (f))| < 1, and [s (BP (f))| < 1, then

(33) 0,(9, 1) = 2on—1 (£0)"¥a™ (g, 1)
RemARK. It is immediate from (33) on setting ¢ = f that ¥*(f, f) = 0 for
fePF.

Suppose f, g F, and [¢ (BP (- ))| < 1 for f and g. We say g is an improvement
of f for p if v, (g, f°) > 0. If there is no improvement of f for p, then v, (g, f°) < 0
for all g £ F so by Theorem 1, f* maximizes V,(-).

It was shown in [30] that ¥* (g, f) = 0if and only if ¥5*(g,f) = 0. By combining
this fact with Lemma 8, one sees by a straightforward generalization of results in
[30] that the following are equivalent: (i) f e Ds™; (ii) Gs™ (f) is empty; and (iii)
there is no improvement of f for all small enough #+p > 0. This characterizes the
set Ds™. One also sees that G5™ (f) is the set improvements of f for all small enough
+p > 0. Moreover, g ¢ Gs*(f) implies Ys*(g) > Ys=(f).

The above discussion suggests the following policy tmprovement method for
finding an element of Ds*. Let foe F be arbitrary and choose f; e Gs*(fiy),

¢ =1, .-+, N, inductively until an integer N occurs for which Gs* (fx) is empty.
Then fy &€ Ds*. The procedure for finding an element of D" is the one given in
[30].

This algorithm is also a method of finding an element of D,* for n < S since
D,* D Ds*. However, it is natural to expect that the algorithm can be terminated
more rapidly if one merely seeks an element of D,* (n < §). This is the case.
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The precise result depends upon obtaining a characterization of D,* analogous to
the one given above for Ds*.

Characterization of n™ discount optimal policies. For this purpose, we need a
preliminary lemma which expresses the difference Y*(g) — Y*(f) in terms of the
test criterion ¥*(g, f).

LemMA 9. If f, geF, then

YnE(g) — ya=(f) = £P*(WEn(g, ) + 2ime (FL*H(9)""¥ia (o, 1),
n=—2 —1,0 --.

Proor. Since yn (f) = (—1)"ya"(f) and ¥u™ (g, /) = (—=1)"¥u" (g, f), it suf-
fices to give the proof for .t (g) — yn'(f). From Theorem 3, (31), Lemma 8,
Theorem 2, and y72(g) — y2(f) = 0, we have for all small enough p > 0 that

Doyt (9) =yt ()]
= V,(¢") — V.(f") = R, Q9 v (9, 1)
[p'P*(g) + X" (—1)"H (@) I 5=10"¥a" (g, 1]
= Y r 2 p"P*Wialg, ) + 22 (—1)*H @) i (g, )

Equating terms of the first and last series completes the proof.

In the remainder of this section, we freely drop the superseript = for notational
simplicity whenever no ambiguity results. Also let D_, = F.

REMARK. Observe from Lemma 9 that ¥,.1(g, f) = 0 implies Y.(9) = Y. (f).
Conversely from (32), Y,(g) = Y.(f) implies ¥, (g, f) = ¥.(g, g) = 0. If ¢°
is transient, then by Lemma 9 and the above remarks ¥, (g, f) = 0 if and only
if ¥,(g) = Y.(f). These facts will be used frequently in the sequel.

TaroreEM 4. Suppose fe F andn = —2, —1, -+ /S — 1.

1°. If GEn (f) s empty, then f & D,*.
2. If f e D, then G, (f) is empty.

I

Proor. The proof of 1° is by induction on n. The result is trivially true for
n = —2. Suppose it holds for the integer n — 1 = —2, and consider n. Since
Gy (f) is empty, G, (f) is empty. Thus, by the induction hypothesis fe D, 1.
It suffices therefore to show that if g & D,—1, then Ay, =< 0 where Ay, =
ye(9) — yp(f)-

Wehave Y, 1(f) = Ya_i1(g) 50 ¥pri(g, f) = ¥ui(g, g) = 0. Thus by Lemma
9 (recall P*(g) is presumed to vanish when =+ is — below)

(34) AYn1 + pAyn = [P * (9) + pH (9)I¥n + p¥nia] — P2H (9)¥n1

where ¥, = (g, f) for all k. Since Vo1 (g, f) < 0, we have ¢, + p¥ni1 < 0 for
all small enough p > 0 so from (34) and Lemma 7, pAy, = Ay,—1 + pAy, =

—0°H (¢ )¥n41 for all small enough p > 0. This implies Ay, < 0 and completes the
proof of 1°.
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The fact that 2° holds follows by contraposition from Theorem 5 below, which
completes the proof.

ReMARK 1. Weaker forms of assertion 1° of Theorem 4 and of Theorem 5
below were established (with =+ being + ) for the cases » = —1 and n = 0
respectively by Blackwell [5] and Veinott [34] by different methods.

REMARK 2. Forn = 8 — 1, the assertion 1° of Theorem 4 can be strengthened
to fe Ds* .

REMARK 3. In the recurrent case, i.e., when the diagonal elements of P*(f)
are positive for all f & F, the converse of 1° of Theorem 4 (with == being + ) also
holds. To see this notice that if Gi41(f) = &, there is a smallest index k < n + 1
for which G;7 (f) s &. Choose g € G (f). Then from Remarks 2 and 3 following
Theorem 5, Yi—1(9) > Yia(f), so f£D,*. One immediate consequence of this
result is that in the recurrent case Diy = Ds".

ReEMARK 4. In the transient case, the converse of 2° of Theorem 4 also holds
(c.f., Remark 3). The proof follows the proof of 1° of Theorem 4 on noting that
Ay, = H(g)¥» < Osince H(g) = Ro(Q(g)).

Improvement of an n™* discount non-optimal policy. The next theorem gives a
method of choosing a policy that increases ¥, (f) lexicographically.

THEOREM 5. If f, ge F and WE (g, f) = O, then Y o(g) = YE,(f); if also
g€ G (f) n G (f), then Yo =(g) > Yo (f),n = —1,0, .-+, 8.

Proor. Since ¥,_1(g, f) = 0, by Lemma 9 we have Y, »(f) = Y,2(g). Also
because g &€ G, (f) n Gupa (f), ¥uta(g, f) > 0 and ¥, > 0 where ¥ = ¥ (g, f)
for each k. Thus ¥, + p¥nya > O for all small enough p > 0. Combining this fact
with (34) and Lemma 7, we have that

(35) AYn + pAy. = 0 for all small enough p > 0,

where Ay, = yx(g) — y»(f). Moreover, the inequality in (35) is strict, for if not,
since (Yn, Ynta) > 0, we have from Lemma 9 that

0 = Ayns = P*(gWn < P*(gWnnr.
Thus by (34) for all small enough p > 0

0 = Ayus + plyn = [P*(g) + pH (9)¥n + pP*(9)¥ns1 = [P*(g) + oH (g)n

which is impossible because of Lemma 7 and ¢, > 0. Hence (Ayn—1, Ay.) > 0,
which completes the proof.

ReMARK 1. If ¥,_1(g, f) = 0 and ¢ € G, (f), then it is easy to modify g (while
retaining these properties) so g € Gnia (f). All that is required is to set g (s) = f(s)
whenever the sth row of ¥, (g, f) vanishes. If this is done then g ¢ G5(f) also.

ReMARk 2. If G,_1(f) is empty and g &€ G, (f), then ¥,1(g, f) = O.

RemARk 3. In the recurrent case, ¥i_; (g, f) = 0 and g ¢ G.* (f) imply Y7_1(g)
> Y71_1(f). To see this, observe from Lemma 9 that Ayf_; = P*(g)¢a" (g, f) > O.

REeEMARK 4. In the transient case, ¥,_1(g, f) = 0 and g ¢ G, (f) imply Y. 1(g)
= Y,a(f) and Y.(g) > Y.(f). The first assertion is immediate from Lemma 9.
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The second assertion also follows from that result by observing that Ay, =
H(g)¥» > 0 since H(g) = Ro(Q(9)).

A computing strategy. The above results suggest an efficient way of carrying
out the policy improvement method to find an element of Dy, —1 = N < 8.
We do not consider the case N = S since the procedure we suggest for finding an
element of Dg_; automatically shows that element to be in Dy also.

An iteration begins with an fe F and ann, —1 = n = N + 1, for which
Gn1(f) is empty. (Initially f is arbitrary, and » = —1 which & is + andn = 0
when +is —.) If » = N 4 1 and G, (f) is empty, then f ¢ Dy and we are done.
If n < N 4 1 and G, (f) is empty, replace n by n 4+ 1 and start a new iteration.
Finally, if G.(f) is not empty, choose an element g of that set satisfying ¢ (s)
= f(s) whenever the sth row of ¥, (g, f) vanishes; replace f by g and n by m
where m = n if either n was decreased in the last iteration, orn = —1 and +
is +,orn = 0and £ is —, and m = n — 1 otherwise; and start a new itera-
tion.

Replacing # by m in the last step of the above iteration is justified as follows.
By Theorems 4 and 5, f € D1 50 g € D,,—; and hence G,.—1 (¢) is empty as required
to start the next iteration.

The above algorithm first maximizes y—; (- ); then it maximizes y,(- ) subject
to Y_1(-) fixed at optimum; then it maximizes y; (- ) subject to Yo (- ) fixed at
optimum; and so forth. This feature of the method permits the computations to
be performed quite efficiently. To illustrate, suppose we have at hand an f¢ F,
an n for which G, (f) is empty, and the matrix Y, i (f). In order to ascertain
whether or not G, (f) is empty, we must compute y, (f). An efficient way of doing
this will now be given.

Since ¥(f, f) = 0, Y () = (Y=, to, ---) satisfies (y—» = 0)

(36) £ Yo — QN)yn = 1. (f), n=—10,---

The next result implies that Y (f) is the unique solution to (36).

LEmmA 10. Suppose n = —1, feF, and yn1 = Yna(f). Then (Yn, Y1) =
W (), ynta(f)) satisfies the nth and (n + 1)th equations in (36). Conversely, if
(Yn , Yni1) Satisfies those two equations, then yn = Yn (f).

Proor. It suffices to prove the converse. Premultiply the (n + 1)th equa-
tion by £=P*(f) and add the result to the nth equation. Using (15) and the fact
[—Q() + P*(f)] is nonsingular completes the proof.

The method for computing y.(f) given in the above proof is not efficient. We
sketch a procedure requiring about one half as much computation. First, deter-
mine the recurrent classes and transient states of P(f). Then apply the procedure
to be given below for determining the components of y.(f) for states in each
recurrent class. Finally, solve (36) for the components of y.(f) for the transient
states. With this method the total computational effort required to compute
¥a(f) is at worst little more than that required to solve a single system of S linear
equations in S unknowns.

The above discussion permits us to consider only the case where P(f) = P is
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stochastic and irreducible. Let @ = Q(f), u = r(f) F yna(f), v = rapa(f), w =
¥a(f), and £ = yn1. Then we must solve

37 —Quw = u
(38) 4w — Qzr = v.

Let Q" denote the first S — 1 columns of Q. For any S-vector 2z, denote by 2° its
first S — 1 components and by zs its Sth component. Since Q1 = 0, if (w, z)
satisfies (37) and (38), then so does (w, x + A1) for all \. Thus we can and do
assume zs = 0. Similarly, if w satisfies (37), then so does w + A1 for all . Thus,
(87) and (38), together with s = 0, are equivalent to

37 —Qw =u
(38) +lws — Qz° = v F (’:)

where the S-vector w' is defined by w’ = w® — 1%ws. Application of Gauss’
elimination method to (37)" in effect premultiplies (37)" by a lower triangular
8 X S matrix E (in product form). Since P is irreducible, the last row of EQ’
vanishes while its first S — 1 rows form an upper triangular nonsingular matrix.
This permits w’ to be determined. Now if we apply the same steps of the elimina-
tion method used in solving (37)’ to the first and last columns in (38)'—in effect,
premultiplying (38) by E—the last equation in (38)" can be solved uniquely for
ws because the last row of EQ’ vanishes. The desired result is then

U (f) = (g”) + Tus.

Fized points. Recall from Corollary 2 that if |o (8P (f))| < 1 for all f ¢ F, then
V, = max, V,(r) is the unique fixed point of ®, where

(39) ®,V = maxer [Br(g) + BP(9)V]

for each S-vector V. Moreover, V = V, is the largest (smallest) S-vector satis-
fying V = ®,V(V = ®,V). We shall now give analogous results for the more
sensitive discount criteria which we have studied in this section.

LetY = (?/—1,?/0, T )) TY = (Oyy—lryoy e )ra'ndr*(g) = (O,r(g),0,0, e )’
and define the operator &* by -

®*Y = maxyer [r*(g) F TY + P(g)Y]

where the maximum is here a lexicographic maximum. Let Y= = Y*(f) where
f e Ds*. An application of Lemma 10 yields

COROLLARY 7. Y™ is the unique fized point of ®™.

Let Y be the set of sequences Y = (y,) for which p"y, — 0 asn — « for some
p > 0 depending on Y. Evidenctly Y is a linear space. Then it is easy to see from
the corresponding result about V, that ¥ = Y™ is the lexicographically largest
(smallest) element of Y satisfying ¥ < ®*Y (¥ > ®*Y).
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The above results characterize Ds* in terms of the fixed point of ®*. We now
give the analogous characterization of DX, forn < 8.

Let Yﬂ = (y—ly Yo, °°°, yn), TYﬂ = (0) Y, -, yﬂ—l)) rﬂ*(g) = (0) T(g)’
0,---,0) (n + 2 columns), and define the operator ®,* by

®R*Y, = maxger [ (g) F TY, + P(g)Y,]

where here again the maximum is a lexicographic one. Let Y, = Yi_,(f)
where f ¢ D¥_; . From Lemma 10 and a slight extension of Theorem 4 we get

CoROLLARY 8. Y, = (Ya_1, yn) 18 a fized point of R,™ for some y, if and only
’ifY,....l = Y’,'f_l,n = 0, 1, "',S — 1.

b. The continuous parameter case.

Preliminaries. We now turn to the continuous time parameter version of our
Markovian decision process. Our treatment closely parallels and exploits, in so
far as possible, the results in the discrete time parameter case. Following Zach-
risson [36] and Miller [27]-[29], suppose a system is observed at each time ¢ = 0.
At each observation the system is found to be in one of S stateslabeled 1,2, - - - , 8
or to have “stopped.” Each time the system is observed in state s, an action a is
chosen from a finite set A, of possible actions and a reward rate r (s, a) is received
per unit time. The transition rate from state s at time ¢ to state « (#s) when ac-
tion a is taken at time ¢ is denoted by ¢ (% | s, @) = 0. Similarly, ¢(s | s, a) = 0is
the transition rate out of state s and q(s | s, @) — Zuq (% | 8, a) = 0is the transi-
tion rate into the stopped position. Once the process is observed to have stopped,
it remains stopped and earns no rewards.

Let F = X5 A,. A policy is a function 7 = (f;) which maps each ¢ £ [0, =)
into an element f; of F and which is Lesbesgue measurable, i.e., the inverse image
of each element of F under = is Lesbesgue measurable. Using the policy = = (f;)
means that if the system is observed in state s at time ¢, the action chosen at that
time is f; (s), the sth coordinate of f; . Let f° = (f) be the policy, called stationary,
with value f everywhere. If = is a policy, denote by =’ its restriction to the interval
[0, ¢). Similarly, f* is the restriction of f* to the interval [0, £). If = = (f.) and
7* = (g,) are policies, let (z*, #*) denote the policy (h.) defined by A, = f, for
0 <u<tandh, = gufort < u, ie., v is used for ¢ units of time and #* is used
thereafter. Similarly, let ‘= = (', #, --+) be the periodic policy which uses =*
repeatedly every ¢ units of time.

For any f ¢ F, let 7(f) be the S X 1 column vector whose sth component is
r(s, f(s)), and let Q(f) be the S X S infinitesimal generator matrix whose suth
element is ¢ (u | s, f(s)) for s ## u and whose ssth element is —g(s | s, f(s) ). Evi-
dently Q(f)1 < 0 where 1 is a column of +1’s. Also let P(f) = I + Q(f).

Given a policy = = (f.), the infinitesimal generators @ (f;) uniquely determine
the transition function of a step-type continuous parameter Markov chain as
follows [27]. Since Q (f,) is bounded and Lesbesgue measurablein ¢ = 0, a standard
result [6] of differential equations shows that there is a unique § X S matrix
function P (t, u, #) = P (¢, u) that is absolutely continuous in % (2¢) and satisfies
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the system of differential equations

(40) 2 P(tw) = P(t, wQ(L), 0<t=<u,
a.e. subject to the boundary condition

(41) P t) =1, 0=t
Moreover,

42) P, w) = P(t, u)P (u, w), 0=t=u=w.

Since the off diagonal elements of @ (f.) are non-negative, P (- , - ) is non-nega-
tive by a result of Kolmogorov [17, pages 207 ff]. See also [1] and [36, pages 237-9]
for simplifications and extensions. The same proof shows the diagonal elements
of P(-, -) are positive.

Integrating (40) and using (41) gives

(43) Ptu)=1I+ f;‘P(ty w)Q (fo) dw, 0=t=u

Thus because @ (f»)1 £ 0and P(-, -) = 0, we see from (43) that ||P (¢, u)||
Also since the integrand in (43) is uniformly bounded,

(44) limayo supizo [P(t, ¢+ k) — I] = 0.

We call the unique matrix function P (¢, u, w) defined above the (substochastic)
transition function determined by . As Miller [27, page 13] has pointed out, we
can then invoke a result in Dynkin [13, page 160] to assure that there exists a
step-type continuous parameter Markov chain with that same transition func-
tion. It will be convenient in the sequel to let P (¢, #) = P (0, ¢, w).

We say that = is transtent if f o P(t, ) dt converges. Since we can restrict at-
tention to step-type Markov chains, one sees (e.f., Miller [27]) by combining
Lemma 1.10 from Dynkin [13, page 21] with Fubini’s theorem that if 7 = (f;) is
transient the S-vector V (w) of expected total returns starting from each state,
given by

(45) V) =[5 P@ =) () dt,

converges absolutely.

Until further notice we shall drop the hypothesis that |[P (- )| < 1, though we -
retatn the assumption that P(-) = 0. The definition of a transient policy given
above is equally valid in this case. Of course, as in the discrete time parameter
case, we must then give up our interpretation of the elements of P (- , w) as prob-
abilities.

We digress briefly to review a few known facts about square matrices that will
be needed in the sequel. If B is a square real matrix, then the off diagonal ele-
ments of B are non-negative if and only if ¢** is non-negative and has positive
diagonal elements for all ¢ = 0[1]. If either of these equivalent conditions holds,
then B1 < 0 if and only if ||¢*’]| < 1 forall ¢ = 0 [17, page 205].

IIA
[
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If © is a set of complex numbers, denote by e” the range of the exponential
function on € and by |©| the supremum of the moduli of the elements of Q. If B
is a square complex matrix, then [|¢”]| < e!”! and o (¢®) = ¢” @ s0 |0 (¢®)] = |¢* ®|.
For such a matrix it is known that the following are equivalent: (i) [¢*®| < 1,
(i) [|l¢*’|| < 1forsomet > 0, (iii) €** — 0 as¢— o, and (iv) [ ¢”* dt converges
absolutely. These conditions imply that B is nonsingular and —B™ equals the
integral in (iv). If also B is real and has non-negative off diagonal elements, the
above four conditions are equivalent to: (v) —B is nonsingular and has a non-
negative inverse. If further B1 < 0, the five conditions given above are equivalent
to: (vi) ||”’] < 1forall¢ > 0and (vii) B is nonsingular. Several of these results
follow easily from

T d T
(46) e’ —1= —emdt=[f eB‘dt:lB, T zo0.
o dt 0
Thus [if Q(f)1 =< 0], f* is transient if and only if Q (f) satisfies any one of the
conditions [()-(vii)] (i)-(v) given above.

Equivalent discrete and continuous parameter processes. As Howard [20, page
113] suggests, by choosing an appropriate time unit, we may assume with no loss
of generality that P (f) = I + Q(f) = 0 for all f ¢ F. (This can be achieved, for
example, by multiplying @ (f) and r (f) for all f ¢ F by a sufficiently small posi-
tive number.) We shall impose this assumption in the remainder of this paper
without further mention. The assumption permits an equivalence (c.f., [20, page
120]) to be established between the continuous and discrete time parameter cases
with common given data Q (f) and r (f).

From (i)-(v) given above and their discrete parameter analogs in Section 2,
it is clear that f* is transient in both the continuous and discrete parameter cases
or in neither. Moreover, if f* is transient, then V (f*) = —Q (f) "7 (f) is the ex-
pected return from f* in both the continuous and discrete parameter decision
processes. We refer to this observation as the equivalence principle in the sequel.

Mazximal expected reward. Under the hypothesis that |[P(f)|| < 1 for f ¢ F,
Howard [20, page 118] showed that there is a stationary policy maximizing V (- )
over all stationary policies using his policy improvement method. In this case,
Rykov [31] and later, independently Miller [28], showed that V (- ) assumes its
maximum over all policies among the stationary policies. We show here that these
results continue to hold under the weaker hypothesis that every stationary policy
is transient.

The next lemma is basic to what follows (c.f., Lemma 1). It is the infinite hori-
zon analog of a result of Miller [29].

LemMma 11. If # = (g.) and =F = (f,) are transient, then

“47) Vir) — V(@*) = f;oP(t, T (g:, %) dt
where v(g, =) = r(g) + Q(g)V (z*). If also = = ¢, then
V(™) = V) = [I — P@] v, ©*).
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Proor. We have fort = 0,
V', o*) = [§ P(u, m)r(g.) du + P({t, =)V (z*).

A computation shows
% V(' ©*) = P, n)v(g,, %) ae. t = 0.

Integrating over the non-negative half line completes the proof.

Now Lemma 2 and Corollaries 1 and 2 continue to hold in the continuous time
parameter case because of the equivalence principle. Define V* to be the maximal
expected stationary reward exactly as in the discrete time parameter case.

Let @& (¢) be the operator which assigns to each V ¢ E® the S-vector R 1)V = V (t)
where V (-) is the unique absolutely continuous solution of Bellman’s [2], [4,
page 321] differential equation

(49)  LV®) = maxes (o) + QOV®), L2 0, V(0) = V.

It follows from (48) that
49) RE)R() = RE + w), 0=tu and ®RO) =1

s0 ®(¢) is a nonlinear one parameter Abelian semi-group [19]. (Actually (49)
holds for ¢, u unrestricted so ® (¢) is a one parameter Abelian group.) By a trivial
extension of a result of Miller [29], we may choose ¢ = f; maximizing the right
hand side of (48) so that f, is piecewise constant. Moreover, & (t)V is the maximal
expected reward over ¢ units of time where V is the terminal reward. Thus ® (¢)
is monotone (nondecreasing).

On defining positive similarity and invariance as in the discrete parameter case
and using some obvious definitions, we see that Q(f) = BQ(f)B™, P(t, =) =
BP(t, 7)B™', #(t) = B®&(t)B", and when = is transient, V (z) = BV (). More-
over, Lemnma 3 holds in the continuous parameter case by the equivalence
principle.

LevMMa 12, max,||P(t, )| < e “ ™ for every t = 0 where a = max, ||P(g)].

Proor. Since from Miller’s theorem [29], there is a piecewise constant policy
maximizing P (¢, - )1, it sufficies to establish the result for each stationary policy -
*, say. We have

”P(t,fw)” = ”eQ (f)t” = e—t”eP (f)t” § e[nP(f)l—llt,

which completes the proof.

Recall the definition of ® from Section 2.

COROLLARY 9. Suppose every stationary policy is transient. Then ® )V — V™ as
t — . Moreover, for each a for which max,le (P (9))| < a < 1 and each V, there
is a constant K such that || ¢)V — V¥|| < Ke ““ ™ fort = 0. Also if ®V = V(®RV
SV),then®(@) T V@RV | V¥ ast— w.

Proor. Because of Lemma 3 and invariance, it suffices to prove the result
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under the hypothesis max,||P (g)]| < a < 1. To begin with let = and 7 respec-
tively maximize the ¢-period rewards with terminal rewards U and V. Then

Pit,xm)(U—-V)2REU — @)V = P(, =) (U = V),
so by Lemma 12,
(50) [®REU — &V < e U = 7V, t20.
Letting U = ®&(w)V and using (49) yields
lo¢ 4+ w)V — &@OV] < e “R@)V = V.

Since ® (w)V is bounded in 4 = 0 by Lemma 12, it follows from the above ine-
quality that ® ¢)V — V', say, ast — o. Also because of (50), & (¢) is continuous,
whence by (49)

V' = liMyse R )R @)V = RE)V.

Thus d/dt® )V’ = 0 for ¢ = 0 so from (48), ’ = ®V’. Hence, by Corollary 2,
V' = V*, which proves the first assertion of the Corollary. The second assertion
of the Corollary follows from (50) on setting U = V* and using ®R(¢)V* = V*.

Since there is a piecewise constant policy maximizing the ¢-period expected re-
wards [29], it suffices to prove the last assertion for the case where F' contains a
single element g, say. Then d/dt® (t)V = ¢®P RV — V] from which the desired
result follows, completing the proof.

CoRroLLARY 10. The following four statements are equivalent.

1°. Every (some) stationary policy is transient.

2°. Every (some) periodic policy is transient.

3°. Every (some) policy s transient.

4°. For some t > 0, |[P(¢, 7)|| < 1 for every (some) m.

If also |P(g)|| £ 1 for all g & F, the above are equivalent to

5°. For everyt > 0, |P(t, 7)| < 1 for every (some) .

Proor. The proof that 14’ are equivalent is an obvious analog of that for
the discrete time parameter case in Corollary 4.

Suppose now ||[P(g)|| < 1forall g ¢ F. Then 5° = 4°. Moreover, 1° = 5’ read-
ing with “some”. Now on reading with “every”, suppose 1° holds. Then 5° holds
for every stationary policy. Combining this fact with Miller’s theorem [29] which
implies that there is a piecewise constant policy maximizing P (¢, - )1 (and hence
[P, -)|) over all policies, completes the proof.

As in the discrete case, it is evident that the equivalence of 1° and 2° of Corol-
lary 10 can be restated as follows.

CoROLLARY 11.

minyle” @ @| £ o (P (¢, 7))["" = max,|e’ @@

for every t > 0 and w. Moreover, the upper (lower ) bound is attained for every t > 0
by any stationary policy = = g for which g achieves the maximum (minimum) on
the right (left).

It follows from Lemma 11 and Corollary 10 that Theorem 1 continues to hold
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in the continuous parameter case. Also Corollary 6 follows from Theorem 1,
Corollary 1, and Lemma 2 just as in the discrete parameter case.

Discount optimality. In the remainder of this paper we assume that |[P (¢)| = 1
for all g ¢ F without further mention. Also suppose there is a (possibly ) negative
(real) rate of interest p, — 0 < p < .

The S-vector of expected total discounted returns starting from each state and
using the policy = = (f:) is

Vo(x) = [5 e PP, m)r(f.) di,

provided the integral [ e **P(t, ) dt converges. For fixed p, V,(r) can be ex-
pressed in the form (45) by replacing Q(g) everywhere in (45) by Q(g) — pl.
Thus all results given above immediately apply to the discount problem. In
particular the integral [ ¢ **P (¢, - ) dt converges for every policy if and only if it
converges for every stationary policy. This is always true if p > 0. It is also true
for large enough p = 0 in the transient case. Moreover, if p > —1 (which can
always be achieved by choosing an appropriate time unit), then V,(f*) =
R,(@Q(f))r(f) holds for both the continuous and discrete parameter problems
when |¢ (8P (f))| < 1, or equivalently |¢ %" © “’| < 1. If these conditions hold
for all f ¢ F, then it is immediate that f° either maximizes V,(-) in both cases
jointly or maximizes neither.

We can define discount optimality in the continuous time parameter case by
(27) and (28) just as for the discrete time parameter case. Evidently, n~ discount
optimality is defined only in the transient case and we assume this whenever
discussing this criterion in the sequel even though we do not repeatedly state the
fact.

Now there is a stationary ™ discount optimal policy in the continuous time
parameter case (Rykov [31] proved this directly for the case o using Black-
well’s [5] method), viz., any stationary o™ discount optimal policy in the cor-
responding discrete time parameter model. And any such policy is n* discount
optimal forn = —1,0, 1, - - - . It follows without loss of optimality that we can
restrict attention to stationary policies. Hence, all results in Sections 3 and 4 on
existence and computation of stationary discount optimal policies carry over im-
mediately to the continuous time parameter problem. In particular, Miller’s
results [28] on 0" discount optimality follow at once. ,

The reduced resolvent. There is, however, an alternate interpretation of the re-
duced resolvent H, in the continuous time parameter case which we explore
briefly. Of course, this result is not necessary for the theory given above, al-
though it does provide an alternate path of development.

Let @ be the infinitesimal generator matrix of a finite state continuous time
parameter Markov chain. We retain the innocuous assumption that P = @ + I
= 0. Also assume, of course, that Q1 =< 0 (or equivalently, ||P|| < 1). Let
P(t) = e%. It is well known [17], [11, page 236] that P (¢) converges as { — ©
to a matrix P* satisfying P*P(t) = P(t)P* = P*P* = P* for t = 0; hence,
P*Q = QP* = 0.

The next lemma generalizes results in [24]. See also [12], [14], [19], and [22] for
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thorough treatments of resolvents and semi-groups in a more abstract setting.
We permit p to be complex in the following.
Lemma 13. If p % —1 and if |o (¢ "[P(1) — P*])| < 1, then p £ 0o (Q)° and

(51) H = f ;L—'e_"t[P(t) — P* di, n=01---.
o !
Proor. Let 8 = (1 4+ p) . For T = 0,

oI — Q + P*| {BP* + fo ' ¢ "'[P(t) — PY dt}
= p* ’ — Ol ermQle g p S
(52) - P* + fo (oI — Qle it — P fo o dt

= —fT 4 e P gt + P¥e T
o dt

I— *'[P(T) — PY.

Now for rational T, ¢ *"[P(T) — P*] = {¢*[P(1) — P*]}" which converges to
the null matrix as 7 — « through the rationals because of the hypothesis of the
lemma. Since this is so, the right hand side of (52) converges to I as T — o
through the reals. Thus the first bracketed matrix on the left of (52) is non-
singular s0 p £ 0 (Q — P*)° C ¢4(Q)°. Premultiplying (52) by R,(Q — P*) and
letting T' — o shows

R,(Q — P*) = BP* + [5 ¢ *P(t) — P dt.

Hence the integral on the right must be H, so (51) holds for n = 0. Differentiat-
ing (51) (with n = 0) with respect to p and using (23) completes the proof.

REMARK. We remark that the hypotheses of Lemma 13 are satisfied when
le™| < 1 since {¢*[P(1) — P*|}* = ¢ *"[P(n) — P*] — 0 asn — o whence
l|o ([P (1) — P*])| < 1. This gives a simpler proof of the fact that [0, «) <
o(Q — P*)° than the corresponding proof for the discrete time parameter case
given in Lemma 4. Notice also that when p = 0, the analog (25) of (51) in the
discrete time parameter case is more complex than (51).

In this paper we have not considered policies in which the action taken at
each time is possibly randomized and dependent on the past history of the proe-
ess. It is known [7], [8], [9], [10], [31] that for a fixed interest rate p, there is
nothing to be gained from using such policies. Thus, the same is true for n*
discount optimality criteria.
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comments on an earlier version of Section 2 of this paper. In particular, he ob-
tained Lemma 3 and added the left hand inequality in Corollary 5 using different
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us to improve our earlier proofs of Corollary 3 and the “every” part of Corollary
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