The Annals of Mathematical Statistics
1969, Vol. 40, No. 5, 1542-1556

ESTIMATION OF PARAMETERS IN A TRANSIENT MARKOV CHAIN
ARISING IN A RELIABILITY GROWTH MODEL!

By M. DuBMAN AND B. SHERMAN

Rocketdyne, North American Rockwell Corporation

1. Introduction. We consider the following reliability growth model. Initially
a device has probability p of failure. We subject it to a sequence of trials, making
no changes if there is no failure. If there is a failure on any trial, then changes
are made in the device which cause the probability of failure on the next trial
to be reduced by the factor 8, where 0 < B < 1. Thus if there have been k
failures the probability of failure on the next trial is pB°. Let y; be the number of
failures up to and including trial ¢, with yo = 0. Then y;, % = 0,is a Markov chain,
which may be regarded as a random walk on the nonnegative integers with the
transition probabilities

(1) Pupi=k+1]yi=k) =ps, Pl ="k|lyi=1k)=1—ps.

In this paper we prove that the likelihood equations for the Markov chain
yi, © = 0 have solutions,  and $, which converge in probability to the true
parameter values, po and By, and which are asymptotically jointly normally
distributed.

The Markov chain (1.1) is clearly transient, and we may regard this work as
an example of the theory of estimation in chains of that type. Billingsley [2] has
developed a general theory of estimation in Markov processes but his results do
not apply here since his basic assumption is that the Markov process possesses a
unique stationary distribution.

An estimation problem for a sequence of independent but not identically dis-
tributed random variables & which is closely related to the estimation problem
for the Markov chain (1.1) is arrived at by defining & , £ = 0, to be the number
of times state % is occupied in the infinite sequence yo, %1, ¥2, - - - . Clearly, the
random variables £ so defined are independent and have the geometric distribu-
tions

(1.2) P& = z) = pB*(1 — pB*), r=12 .

The sequence & , k = 0 provides an alternative description of the reliability
growth model considered here, in that for any k = 1 the partial sum
£ + & 4+ -+ + &_1 represents the first trial (¢) for which the accumulated
number of failures (y:) equals k. In this paper we first consider the estimation
problem for a sample &,k = 0, 1, -+, n — 1 and prove that the likelihood
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equations have roots, p and 3, which are jointly consistent and asymptotically
normally distributed. We then prove the corresponding results for a Markov
chain sample y:,7 = 1,2, - -+ , N by showing that if we take n to be the integral
part of —log N/log B, then the likelihood equations for the Markov chain
sample, when suitably normalized, differ from the likelihood equations for the
sample &,k = 0,1, - -+ ,n — 1 by terms which are asymptotically negligible (in
probability ).

The method of proof used for the independent sequence & , k£ = 0 is an ex-
tension of the proof of Aitchison and Silvey [1] who treat the situation of inde-
pendent and identically distributed random variables having a density f(x, 6)
where 0 is a vector parameter whose components are subject to restraints. For
the sequence & , k& = 0 we are concerned with a parameter 6 = (p, 3) which has
two components; there are no restraints (which simplifies matters) but the ob-
servables & are not identically distributed. Hoadley [8] has developed a general
theory of maximum likelihood estimation of vector parameters in situations
where the observations are independent but not identically distributed. His ap-
proach is similar to that taken by Wald [14] and Wolfowitz [15] who treat the
independent and identically distributed cases. In [8], [14] and [15] the authors
prove that the maximum likelihood estimator of a vector parameter converges in
probability (or in Wald’s treatment, converges with probability one) to the true
parameter value. For the sequence &, ¥ = 0, however, the assumptions of
Hoadley do not appear to be satisfied.

For a discussion of other reliability growth models we refer to [3], [9] and [13].

We wish to thank the associate editor for his very detailed and extensive
critiques of earlier versions of this paper. His efforts amounted very nearly to a
collaboration.

2. Summary. The following notation is used in the paper. Column vectors and
matrices are designated by boldface letters. If x is a vector with transpose
x = (X1, %, - ,%)and A = (a;)isad X d matrix, then x| = [ iz
while ||A]| stands for the Euclidean matrix norm ||A|| = [>_% -1 a:;]'. We use the
notation o, and O, , discussed by Mann and Wald [11], Chernoff [4] and Pratt
[12]. For example, if X, , » = 1 are random vectors, X, = 0,(1) means that ||x,||
converges in probability to 0 as n — c«, while x, = 0,(1) means that the
sequence |[Xa||, » = 1 is stochastically bounded (see Feller [7]). That is,.
X, = 0,(1) if for any given ¢ > O there exist a constant K. > 0 and a positive
integer n such that P (||xs|| = K.) < 1 — eforalln = n, .

We consider now the maximum likelihood estimation of the parameters p and
B for the sequence of independent random variables & , k¥ = 0 where & has the
geometric distribution (1.2). Let 6 denote the two-dimensional parameter
0 = (p, B) and let ¢ (without subscripts) stand for the n-dimensional random
point £ = (%0, &1, ** , &n1). The likelihood function of £ is denoted by L (¢, 6)
and its logarithm is given by

2.1)  logL(68) = 2iz llog (pB*) + (& — 1) log (t — pB*)l.
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Let po, 8o, and 6 denote the true values of p, 8, and 6. In order to avoid con-
sideration of trivial special cases, we assume

(2.2) 0<p<1l 0<B<IL

In Section 3 we prove the following theorem concerning the existence and asymp-
totic properties of solutions of the likelihood equations

(2.3) dlog L(£6)/0p = 0, dlog L(£6)/98 = 0.

THEOREM 1. Subject to (2.2), there exist random variables 6, = (Pu , Ba) such that

(a) With probability tending to 1 as n — o, 8, satisfies the likelthood equations
(2.3).

(b) b, — 8y = 0,(1). .

(¢) The random variables n} (pn — po) and n* (B, — Bo) are asymptotically jointly
normally distributed with zero means and variance-covariance matrix

4py’ — 6p0 Bo
(24) =
— 6po Bo 128,

It is of interest to note that the . can be chosen so as to satisfy the addi-
tional property.

(d) With probability tending to 1 as n — «, 8, mazimizes L(%, 6) for 6 ranging
over a certain neighborhood U, of 6y (where Un, — {60} asm — ). A proof of (d),
which is omitted from the present paper, can easily be constructed by modifying
appropriately arguments of [1, Section 4].

The method of proof used in Section 3 for Theorem 1 is a generalization of the
Taylor expansion procedure of Aitchison and Silvey [1]. This procedure, as
applied to the problem of proving the existence of cons1stent solutions of the like-
lihood equations for estimating a vector parameter 0 = (6,,0,---,04),isin
turn a generalization of Cramér’s proof [5, Section 33.3] for a single real-valued
parameter and may be described briefly as follows. Starting from the likelihood
function L(z, ) based on a sample £ = (z1, %2, -+ Z.) of independent
and identically distributed observations, one expands 9 log L(z,0)/30n,
m = 1,2, -+, d about the true parameter point 6, up to quadratic terms. After
normalizing the expanded equations (multiplying by 1/n), one shows that as
n — « the constant terms converge in probability to 0, the coefficients of the
linear terms (when arranged in a matrix) converge in probability to a symmetric
negative definite matrix and the coefficients of the quadratic terms are sto-
chastically bounded. It follows that for 8 belonging to a sufficiently small neigh-
borhood U; = {6:]|6 — 8|| < &} of the true parameter point 6, and for n suffi-
ciently large one may apply a result (Lemma 2 of [1]) equivalent to the Brouwer
fixed point theorem toconclude that the likelihood equations will (with prob-
ablhty arbitrarily close to 1) have a solution 8 belonging to the neighborhood Us .

In Section 3 of this paper we adapt the Aitchison and Silvey procedure to ac-
count for the lack of identical distribution of the random variables &, k = 0 in
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the following way. The likelihood equations (2.3) are expanded about the true
parameter point 6y up to quadratic termsbutnow we normalize the expanded equa-
tions by n~" and n™’, respectively. In addition, the fixed neighborhood Uj is re-
placed by neighborhoods U (3, ») which depend on n and which we define as
follows. Given n and 7 = (71, 7o) where 7; and 7, are real, let

@252) pr=po(l+m), B =B+ mnT"), 6= (p,8)
Then we take U (8, n) to be the elliptical neighborhood
(2.5b) U@, n) = {6::]] = 8}.

It is shown that when the expanded, normalized likelihood equations are con-
sidered for points belonging to U (5, n) and as functions of 7, and 72, the coefli-
cients with respect to 71 and 7. behave asymptotically as do the corresponding
coefficients in the case of independent and identically distributed observations.
We then apply Lemma 2 of [1] to establish the existence of solutions 8 of the like-
lihood equations which belong to the neighborhoods U (6, ») for sufficiently small
6 and sufficiently large n.

The asymptotic normality (part (¢), Theorem 1) of the solutions of the like-
lihood equations (2.3) is proved in a similar manner by making the appropriate
modifications in the arguments of Section 5 of [1].

We consider now the problem of jointly estimating the parameters p and g for
the Markov chain y; (¢ = 0, yo = 0) with the transition probabilities (1.1). The
likelihood function of y = (41,42, - -+ , yv) is denoted by L* (y, 6) and its logar-
ithm is given by

(2.6) log L*(y, 0)
= 2050 [(Wern — yi)log 08") + (1 — yaa + y:) log (1 — p8*)].

In Section 4 we prove the following theorem concerning the existence and asymp-
totic properties of solutions of the likelihood equations®

(2.7) alog L*(y,0)/op =0, dlog L*(y, 6)/98 = O.

TuroreM 2. For given N let n = n(N) denote the integral part of
(—log Bo) "(log N). Then, subject to (2.2), there exist random variables.
by = (pw ﬂAN) such that

(a) With probability tending to 1 as N — o, by satisfies the likelihood equations
2.7).

(b) by — 6o = 0,(1). X

(¢) The random variables n* (py — po) and n}(8 — Bo) are asymptotically
jointly normally distributed with zero means and variance-covariance matrix T given
by (24).

The method of proof used for Theorem 2 is as follows. Starting from the

2 A result similar to (d) of Theorem 1 above also holds for the Markov chain y; , 7 > 0.
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Markov chain y; with transition probabilities (1.1) we define & fork = 0,1,2, - - -
to be the number of times state & is occupied in the infinite sequence
Yo, ¥ ,Yz, + - . Itis clear that the random variables & so defined are independent
and have the geometric distributions (1.2). The independence of the &, k£ = 0 is
a consequence of the basic properties of the Markov chain that yo = 0 and
yia — yi = 0 or 1. It is also easy to see that (cf. (2.1))

(28) log L*(y,0) = 2 4% [log (p8') + (& — 1) log (1 — pB’)

+ OV — 205" E) log (1 — pB™™).
In Section 4 we prove that for N — «
(2.9) yv = —log N/log Bo + 0, (1).

Let n denote the integral part of —log N/log B, . Using (2.9), we subsequently
show that

(2.10)  supswe.m [n'8/dpllog L* (y, 6) — log L&, 0)]] = 0,(1),
SUPseu.m [0 0/3B[log L* (y, ) — log L(£, 0)]] = o0,(1).

The result (2.10) permits us to establish Theorem 2 by making simple modifi-
cations in the arguments used in Section 3 to prove Theorem 1.

It is worthwhile noting that the existence of consistent solutions of the likeli-
hood equations (2.7) may be proved without explicit reference to the & by means
of a Taylor expansion procedure applied directly to the left sides of (2.7). This
alternative proof is carried out in [6] and uses the following results. For N — o,

(2.11) E(ys™) = O(log" N), m=12--;
(2.12) yn(—log Bo)/log N = 1 + 0,(1).

The proof of (2.11) is straightforward. The result (2.12) follows from (2.9) or,
alternatively, from the asymptotic results

(2.13) E(yx) = —log N/log o + O(1),
E@ys®) = (log N/log B)* + O (log N).

Proofs of (2.13) are given in [13] with the aid of the following explicit expressions
for the first two moments of yy . Let mp = 1 and for k£ = 1 let

mo= 1% @ = B0%),  m= D i B’ (1 — BT
where we assume 0 < 8y < 1. Then

E(yy) = 2= (=17 @ )meapo,

E@yy') = E(yx) + 2 i (=1 @) meameps”.

3. Proof of Theorem 1. Throughout this section we use 6, = (p., 8;) to de-
note an arbitrary point of the neighborhood U (s, ») defined by (2.5). Also
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we assume that 0 < § < &, where § is fixed and is sufficiently small
(o < min {1, p, " — 1,8 " — 1} will do) so that p, and B, are bounded away
from O and from 1 for ||z|| < & and » = 1. This assumption is possible by virtue
of the hypothesis (2.2). We now begin the proof of Theorem 1 with the following
lemma which is comparable to Theorem 1 of [1] and which establishes the exist-
ence of solutions of the likelihood equations (2.3).

LemMA 1. Let € be a given positive number less than 1. If & > 0 1s sufficiently small
and n sufficiently large, say n = n (3, €), then the likelihood equations (2.3) will,
with probability exceeding 1 — €, have a solution 6 = (p, B) which belongs to the
interior of the netghborhood U (8, n) of 6, .

Proor. It is convenient (in order to obtain symmetry in explicit expressions
for Taylor expansion coeflicients) to consider instead of (2.3) the equations

31) h(¢ 0) = pldlog L(¢ 6)/dp] = 0,
L(¢0) = Bolog Lt 6)/96] = 0.

These have the same solutions as (2.3) in U (3, n) since, by assumption, p > 0
and 8 > 0if 6 = (p, B) e U(8, n). Following the Taylor expansion procedure
discussed in the previous section, we expand the left sides of (3.1) about 8 = 6, up
to quadratic terms in p and 8, and then we multiply the resulting equations by
n~" and n%, respectively. When this is done we are able to write (3.1 ), considered
for points 6, ¢ U (3, n), in the form

(3.2) N "lm(% 0:) = am(60) + Tibm(B0) + Tbmi1(B0) + 2'Cn(0,™)c = 0,
m =1, 2,

The various coefficients that occur in (3.2) are identified as follows. For
m = 1,2

(3.3) am (@) = 0 "lu (£, 6),

where from the definitions of /4 (£, 6) and I, (¢, 6) and from (2.1) we have
(3.4) Ln(t,0) = 250 K" (1 — &) (1 — pB°) ™

Also

bi(®) = n'p[dh (£, 6)/3p],
(3.5) b2(6) = n”*Bloh (5, 6)/88] = n~*plok &, 6)/dp],
bs (6) = n°Blok (&, 6)/36]
and from (3.4) we have, after simple computations, that form = 1, 2, 3
(3.6) bm(0) = 27" 2205 KL — &)pB (1 — B
The matrix C,, (f) is defined for arbitrary 6 to be the 2 X 2 matrix
3.7 Cn(0) = (cmii0))
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whose components are given by
emu(0) = 0 "po'[0%Im (£, 6)/0p"),
(3.8) em12(8) = Cmyn (0) = 1" poBold’lm (£, B)/0pB],
Cmin (8) = 0" B0"[0"lm (¢, 6)/06°).
From (3.4) it is easily seen that
e (8) = 207" 2050 KT (1 — &) (pa8*)* (1 — pB*)7,
(39) cm(®) = (Bo/B)n " 200 K" (1 — &)pe8* (1 + p8) (1 — p8")7,
emn(0) = (p/po) (Bo/B)n ™" 200 K" (1 — &)poB”
A+ Dps* + k- 110 — pa*)7

In (3.2) the matrices C»(8), m = 1, 2 are evaluated at random points 6,” lying
on the line segment joining 6, with the point 6, . Clearly, 8, and 6,” belong to the
neighborhood U (5, n) for any choice of 6, .

We prove below that for given ¢, with 0 < ¢ < 1, there exist a 6 > 0 and a
positive integer n (3, ¢) such that if n = n (5, €) then equations (3.2) will, with
probability exceeding 1 — ¢, have a solution # = (71, %) satisfying ||%]| < §,
where 2 = (#1, 7). This is the same as proving Lemma 1, since for points
0, e U (3, n) equations (3.2) are equivalent to the likelihood equations (2.3)
under the transformation r — 6, defined by (2.5a). Thus, given such solutions #
of (3.2) we obtain corresponding solutions § = (p, 8) e U (5, n) of (2.3) which
satisfy the conclusions of Lemma 1 by defining § = 6; ; that is,

(3.10) p=p(l+%), B=p~A+2m"), b= (8).

In order to carry out the program just described we require the following
results concerning the asymptotic behavior of the coefficients in (3.2). As N — «,

(3.11) an(b) = 0,(1),m = 1,2,

by b
(3.12)  bw(bp) = by + 0,(1),m = 1,2, 3, where B = < >

- is a negative definite matrix,
(3.13) SUp % <io [|Cm (6:)]] = Oy (1).

Proofs of (3.11)-(3.13) are given below. At this point we shall use these results
to prove the existence of solutions 7 of (3.2) along the lines of [1]. Let

a:(6) b1(6) b2(6)
a(d) = , B(g) = .
ax(6) b2(8) bs(9)
Then we may write (3.2) in the vector form

1 = C(0.)%
(3.14) f(z) = a6) + B() = + 5| | o =0.
= Cy(6.2)x
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We now refer to Lemma 2 of [1], a result which is equivalent to the Brouwer
fixed point theorem and which is stated here for convenience as

ProrosiTioN 1. Let f (x), withx' = (21,2, -+ - , %), be a continuous mapping
of {x:||x|| < a}, where a > 0, into R* which satisfies x'f (x) < 0 for every x such that
(x|l = a. Then there exists a point & such that ||| < a and £(X) = 0.

We wish to apply this proposition to show that (3.14), hence (3.2), has a root
7 satisfying ||z|| < 8, provided 4 is sufficiently small and = is sufficiently large. To
this end we first note that (3.11)-(3.13) imply

(3.15) f(z) = Bx + 0, (1) + [l<["0, (1)
and, therefore,
“(z) = ¥Br + 0, (1) + [|=]]° 0,(1).

Let N\ denote the maximum eigenvalue of the matrix B. Since B is negative
definite we have Ay < 0 and

(3.16) Jf(e) = Nollel® 4+ 0, (1) + [|=]° 0,Q1).

From (3.16) it is clear that for given ¢, with 0 < e < 1, there exist a6 > 0 and a
positive integer n (3, €) such that

suppti—s TE(x) < N 4 0,(1) 4 8°0,(1) < 0
with probability exceeding 1 — e provided n = n (8, €¢). Then the conditions of

Proposition 1 are satisfied and (3.14) has, with probability greater than 1 — ¢,
a root # such that ||£]] < 6. This completes the proof of Lemma 1, except for the
verification of (3.11)-(3.13).

To prove (3.11) we first note that the independent random variables & have
means E (&) = (piBo’) " and variances Var (&) = (1 — poBo) (poBo”) 2. Thus,
using (3.3) and (3.4), we have E[a.(6o)] = 0 and

Var [an(80)] = 7" 20 B 21 — poBo) T = n (1 — po) Tt — 0

as n — . These results clearly imply (3.11).
In a similar fashion we find from (3.6) that E[b.(6)] — —1/m and

Var [bm (60)] — 0 for m = 1, 2, 3. Hence, bn(8) = —1/m + 0,(1) and (3.12)
holds with
by b 1 %
(3.17) B= = — .
by bs 11
2 3

Recalling the assumption concerning §; made at the beginning of this section,
we conclude from an inspection of (3.9) that there exists a constant K > 0 not
depending on 7, & or » such that

lem i 6:)] < Kn™" 32570 &poB.”
form = 1,2and4,j = 1, 2. Now 8, = Bo(1 + =n ") and, therefore, (8,/8)" <
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Q4+ n") 2efork=0,1,---,n — 1. Thus, if K’ = Ke, we have (for
=l = &)
(3.18) lemsi70:)] < K'n™" 20050 fipoBe” = G (£).

The right side of the inequality (3.18) has mean K’ and variance tending to 0 as
n — . Hence G(¢) = K' + 0,(1) and (3.13) follows. This concludes the proof
of Lemma 1. We now proceed to the proof of Theorem 1.

From this point on we suppose that é is small enough and = (8, €) is sufficiently
large for Lemma 1 to apply. Let § and # be as in the proof of Lemma 1 and set

1 ‘V,Cl(o'rl)
D(6:) = —B(&) — 35| , o)
< C2 0,2

Since # is (with probability greater than 1 — €) a solution of (3.14) we have,
using (3.10),

<Po_1(ﬁ — Do) > <n_lll(£, 00))

(3.19) D(6) = a(f) = .

Bo 'n(B — Bo) 7 "l(& 6o)

From (3.12) and (3.13) it follows thatD (6,) = — B + 0,(1) + ||| O, (1). Since
the matrix B is nonsingular, we may assume that ¢ is sufficiently small and 7 (3, €)
sufficiently large so that if ||<]| < § and n = n(3, €) then the conclusion that

D (§) is also nonsingular may be added to Lemma 1. This being so, we have, upon
multiplying (3.19) by #!D ™ (8),

po 'n*(p — po) (g &)
(3.20) = D'(d) .
“n"*(B — Bo) n"""1a(£, 60)
Using the results obtained so far and arguments similar to those in Section 5 of

[1], it is not difficult to construct a sequence of random variables 8, which satis-
fies parts (a) and (b) of Theorem 1 and which also satisfies the following. Let

P.=D" (On) if the inverse exists and let P, = —B™ otherwise. Then asn — «,
we have P, = —B™' + 0,(1) and, with probability approaching 1,

po 0" (Pn — Do) . Pl (g, 8)
(3.21) . = Pal .

Bo_lnalz(ﬁn - 60) n_8/2l2(‘§7 00)

From (3.17) we have

(- 4 6
B! = .
6 —12

Using (3.21) and appealing to a theorem of Cramér [5, Section 20.6] extended to a
multivariate situation we may conclude that part (¢) of Theorem 1 is also satis-
fied by the sequence 8, once we prove
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LemMA 2. The random variables n 'l (£, 6o) and n~i, (¢, 60) are asymplotically
Jointly normally distributed with zero means and variance-covariance matrix —B.
Proor. Given real constants ¢; and c., set ¢’ = (c;, ¢;) and define

Zn = em (g, 00) + e (£, 6o).

From the continuity theorem for multivariate characteristic functions it follows
that Lemma 2 holds if for every choice of ¢; and ¢; (not both zero) the random
variable Z, is asymptotically normally distributed with mean 0 and variance
o= — ¢Bc = o' + 165 + ¢.’/3. Note that ¢ > 0 whenever ¢ = 0 since the
matrix B is negative definite.

Fixing ¢ # 0, we have from (3.4)

Zn = EI?;;)I fnk )
where
tae =1 (e + ekn ) (1 — &poBo’) (1 — poa) .

The random variables {ue, £ = 0,1, -+ , » — 1 are independent with means 0,
and is is not difficult to verify that asn — o

(3.22) Var (Z,) =0, =o +0(1), 2% E|tul> =0Q).

Thus, if F., denotes the distribution function of {.x/cx , then for every ¢ > 0 we
have

S [z AP (z) £ (1/eon®) Db E |tul* — 0

as n — . From the normal convergence criterion given in [10, Section 21.2] it
follows that Z,/o. converges in law to the standard normal distribution N (0, 1).
Consequently, since ¢, — o, Z, converges in law to N (0, ¢°). This completes the
proof of Lemma, 2.

4. Proof of Theorem 2. We begin with a proof of the asymptotic result (2.9)
which is restated here as

LemMma 3. Suppose (2.2) holds and for any positive integer N let n = n(N) de-
note the integral part of (—logBo) (log N). Then if y:(i = 0, yo = 0) s the
Markov chain with transition probabilities (1.1), with (p, 8) = (po, Bo), we have
for N —

(4.1) yv = n + 0,(1).

Proor. For & = 0 let & be the number of times state k is occupied by the
Markov chain. Define S = 0 and Sy = & + & + - + &, k= 1. Let
we = E (Sk). We shall first show that for any given e satisfying 0 < ¢ < 1 there
exists a constant K. > O such that fork =1, 2, ---

(4.2) P(Sy 2 mK.) = ¢/2,
4.3) P(Sk < m < ¢/2.K7Y)

In words these results assert that the sequence Si/ux, & = 1 is stochastically
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bounded (above) and also stochastically bounded away from 0. The first result,
i.e., the existence of a K. > 0 for which (4.2) is satisfied, is a simple consequence
of the Markov inequality [10] according to which one has P(X = a) < o 'E |X["
for any random variable X and for any choice of constants @ > 0, »r > 0. Upon
taking X = Si/m:, @ = K. and r = 1 in the Markov inequality, we obtain (4.2)
provided only that K. < /2.

To prove (4.3) we note first that for arbitrary a > 0 one has

(44) PE<a)SPEa<a)<1— (1—pb)

Since the random variables £; are geometrically distributed with means (pe8y°)~",
we have

(4.5) pe=E@Sk) =po (B0 — 1) B — 1).
Thus if K > 0,
(1 — poBo )F ' Sexp[—K /(1 — Bo)] as k— .
Upon taking @ = wK. ' in (4.4) we obtain
(4.6) lim Supesew P(Sy < wK. ") <1 — exp [—K.'/(1 — Bo)].

We now choose K. > 0 so that K. satisfies the previous requirement K. < ¢/2
and so that, in addition, the right side of (4.6) is no larger than ¢/4. Then we
may conclude that (4.3), as well as (4.2), holds for all sufficiently large k. By
increasing K. if necessary we may further conclude that (4.2) and (4.3) hold for
allk = 1.

We shall now use the results (4.2) and (4.3) just established to prove that for
given e satisfying 0 < e < 1 there exist a positive integer N and a constant J. > 0
such that if N = N, then

4.7) Plyv <n —J.) = ¢/2, Plyv>n+J) £ ¢/2.

The inequalities (4.7) imply P (lyx — n| > J.) < efor N = N, and, since e is
arbitrary, (4.1) follows.

Beginning the proof of (4.7) we note first that for ¥ = 0 one has yx > % if and
only if Sir1 = N. Hence, if J is a given positive integer and if N is sufficiently
large so that n > J, then

48) Plyv<n—J)=PSus>N) =P8 = tns{N/pns})
and also
49) Plyw>n+J) =PSuss1 = N) = P(Spprpn = Bntsii{ N /bnrsia}).

Now from (4.5) and from the definition of n as the integral part of
(—log Bo) " (log N) it is easily seen that

(4.10) N/ung Z po@B ' — 1B ", N/pnra = B’
Given e satisfying 0 < ¢ < 1, let K. > 0 be such that (4.2) and (4.3) are satis-
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fied for all £ = 1. Next, choose a constant J. > 0, say a positive integer, so that
for J = J. the right sides of the inequalities (4.10) are, respectively, larger than
K. and less than K. ™. Finally, select N. sufficiently large so thatn — J. > 0
when N = N.. Then if N = N. we have from (4.8) and (4.2)

Plyv<n—J.) = P(Sn—JE = ﬂn—J‘Ke) = ¢/2
and from (4.9) and (4.3)
Plyx >n+J.) £ PSuyscr S pars nKT') < /2.

This completes the proof of (4.7) and, therefore, of Lemma 3.

Henceforth in this section n will be used to denote the integral part of
(—log Bo)*(log N'), where N is the number of observations Y1, Y2, , Yy O
which the likelihood function L*(y, 6) depends. Also, ¢ will stand for the n-di-

mensional random point £ = (&, &, -+, £&.1). From (2.8) we have
(4.11) log L*(y, 0) = log L, 6) + u(y, £, 9),
where

(4.12) u(y, & 06) = sgn (yw — n) 27EGEN log (p67)

+ (& = Dlog (1 — pB)] + (VW — 2457 &) log (1 — pB*™)
and where sgn (z) denotes the signum function. Thus if
(4.13) wi(y, §0) = plou(y, §0)/9p],  w.(y,&0) = Blou(y, £,6)/98]

and if i(§, 8), L(§ 0) are as in (3.1), we may express the likelihood equations
(2.7) in the form

4.14)  n'pldlog L* (y, 0)/9p] = n [t 6) + wi(y, £ 6)] = 0,
n B0 log L* (y, 6)/08] = n"[L(t, 8) + we(y, £, 8)] = O.

For given 6 and N, let U (5, n) denote the neighborhood of the true parameter
point 8o = (po, Bo) defined by (2.5). Let & be as in the preceding section. We

now prove
LemMMa 4. For N - «
(415) SUpPgv(sg,n) ln_mwm (y’ E’ 0)] = 0p (1), m = 1, 2.-

Proor. From (4.12) and (4.13) we may write

0" wn (Y, £ 0) = vn' ¥, £, 0) + va’(y, & 0),
where
4.16)  va' (y, £0) = —n "N — 2 gy pBY (1 — pgt)
and
(4.17) va2(y, & 0)
= sgn (yy — n)n " PGS A — £p8)) (1 — p8)7



1554 M. DUBMAN AND B. SHERMAN

and where the sum over j in (4.16) is taken to be 0 if y» = 0. It is easily seen that
there exists a constant K; > 0, not depending on &, such that for 6 ¢ U (60, n)

(4.18) [om' (g, £, 0)] < 7 [Ky(yw/n)" (1 + 07 )'¥NBY].
In arriving at (4.18) we used the inequality

Syy = EIJ{ZO_I =N
which follows from the definition of the &; in terms of the Markov chain y; . Now
Lemma 3 implies that as N — o

419) yv/n =1+ 0,(1), (L +n)" =e+0,(1), NB™ = 0,(1).

Thus, the expression enclosed within brackets in (4.18) is stochastically bounded,
and we conclude that for N — «

SUPseu o) [Um (U, & 0)] = 0p(1).

In order to complete the proof of Lemma 4 we need only show now that a
similar result holds for v, (y, £ 0). From (4.17) and (2.5a) it follows that for
points 6 € U (8, n)

4.20) |ow’ (y, £, 0)]
< 01— p) (A + yw/n)" Hlyw — vl + 20 4+ 7)Y 25 poBe’}]

where the sum over j ranges from j = min (n, yy) toj = max (n, yy) — 1. The
number of terms involved in Z£p80 is equal to |yx — n| and, by Lemma 3,
|yx — n| is stochastically bounded. Also, since £ (E,) = (poBy’) 7", it follows from
the Markov 1nequahty that P (g,poﬁo’ = a) < a ' for any a > 0. Thus, the sum
over j in (4.20) is stochastically bounded. From the first two results in (4.19)
it then follows that the entire expression enclosed within brackets in (4.20) re-
mains stochastically bounded as N — «. Hence,

SupOeU(éo,n) |1)m2 (Z/, E; 0)' = OP(]')‘

We shall now sketch a proof of the Markov chain version of Lemma 1.

LemMMA 5. Let € be a given positive number less than 1, and for given N let n de-
note the integral part of (—log Bo) *(log N). If 6 > 0 is sufficiently small and N
sufficiently large, say N = N (3, ¢€), then the likelihood equations (2.7) will, with
probability exceeding 1 — e, have a solution 6 = (p, B) which belongs to the interior
of the neighborhood U (8, n) of 6, .

Proor. We consider (4.14) for points § = 6, belonging to U(§, n), where
8 < &, and we expand n "L (£, 6:), m = 1, 2 about 7 = (11, 2) = (0,0) asin
(3.2). Then, using the notation introduced in Section 3, we may write (4.14) in
the form

n—lwl(y; E;G‘r)
(4.21) *(2) = (=) + =0.
n—2w2(y; E:o‘r)
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From (3.15) and (4.15) it follows that for N — o
(4.22) £*(x) = Be + 0,(1) + ||2]* 0, (1).

The rest of the proof of Lemma, 5 is essentially the same as the proof of Lemma 1.

Upon modifying the arguments of Section 3 in the appropriate manner we are
able to use Lemma 5 to construct a sequence of random variables 6y = (9w, Bx)
which satisfy parts (a) and (b) of Theorem 2 and which also satisfy (with prob-
ability approaching 1 as N — « ) an equation of the form (cf. (3.21))

po ' (Pxy — Do) . n (g 60) + n Py, & On)

(4.23) . = Py s
Bo 'n"*(By — Bo) 1 l(E 00) + nPwe(y, & On)
where Pv = —B™ + 0,(1). Now from the proof of Lemma 4 above it is clear
that (4.15) may be strengthened to
(4-24) SUPe:v 39,m) In_mem (y’ £ 0)' = op(]-): m = 17 2.

Consequently, the random variables
n_}ll (E; 00) + n_%wl (yy E’ 9N)) n_gb (E: 00) + n—%w2 (y’ E’ 9N)

have the same asymptotic joint distribution as do n (¢, 60) and n L (%, 6,).
An application of Lemma 2 of Section 3 and the multivariate analogue of the
theorem of Cramér [5, Section 20.6] mentioned earlier, now permits us to con-
clude from (4.23) that the random variables éy = (9~ , f~) satisfy part (c) of
Theorem 2.
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