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THE GROWTH OF A RANDOM WALK!

By CuArLES J. STONE

Uniaversity of California, Los Angeles

1. Introduction. Let X;, X., ---, be independent, identically distributed,
nondegenerate, real-valued random variables and set S, = X; + Xo + - -+ 4+ X5,
n = 1. It is important for some applications to know whether for all ¢ > 0

T = min [n | S, > enl]

defines a random variable which is finite with probability one. This is equivalent
to knowing whether .

(1) P (im SUppaw Sa/n = ©) = 1.

Of course if X; has mean zero and finite variance, the law of the iterated loga-
rithm implies that (1) holds. Also if X; has finite positive mean, (1) is a conse-
quence of the strong law of large numbers.

It was shown by the author in [2] that if X; has mean zero, then (1) holds.
More generally it was shown that if S, is recurrent (which is necessarily the case
if X; has mean zero), then (1) holds.

The author conjectured in [2] that if S, is nonnegative infinitely often with
positive probability, then (1) should hold. In this paper we will show that this
conjecture is valid and can even be strengthened. Specifically we will prove the

following
TureorEM. Either (1) holds or
(2) P (liMpaw Su/nt = — ) = 1.

As an immediate consequence of this theorem, we obtain the conjecture of [2]:
CoroLLARY. If

3) P(S, = 0i.0.) > 0,
then (1) holds.

2. Proof. We first prove the corollary to the theorem. We assume that (3)
holds and will prove that (1) holds. Because of the known results summarized in
the introduction, we can further assume that S, is a transient random walk and
that EX," = EX; = =.

Let 1 denote the distribution of X; and let & denote the characteristic function
of u (characteristic functions of other probability measures will be denoted simi-
larly). Let P denote a compact neighborhood of the origin such that 4 () = 1
for 8 ¢ P — {0}. Then, as is well-known,

-(4) [e RO/ — 2(6))) db < oo
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and
(5) limg. 6°/ (1 — RA0)) = 0.
It follows from (4) and (5) that
) Jel0l/11 — 4@)] do < oo.
To verify (6) it suffices to show that
@) Jrlol R/ —£06))) do < o
and
@®) J2 10113/ — £@))] db < <.

Equation (7) follows immediately from (4). To obtain (8) write P = Pyu P,,
where :
Pr={0eP 0] [3a06) =1 — Ra))

and

Py={0eP|o] [32(6) > 1 — Ra6)}.
Then
9) 0] 3@/ — 2@)) = RA/A = 406))), 0eP,
(10) 6] 131/ — 26)))] = 161/134 ©0)], 0eP,,
and by (5) and the definition of P,
(11) supaece2 0]/1J40)] < .

Clearly (4), (9), (10), and (11) yield (8).

We can find probability measures » and ¢ on R such that u = (v 4+ ¢)/2,
7(0) = 1if and only if 4 (@) = 1, and ¢ has mean zero and finite positive variance
o’. We would like to be able to state that if the random walk induced by u satisfies
(3), then so does the random walk induced by ». This seems hard to do directly,
but a slight detour will yield the desired result.

For the detour, let 6, denote the probability distribution that is concentrated
at the origin and set ¥ = (» + &)/2. We will prove that if the random walk in-
duced by u satisfies (3), then so does the walk induced by y. It will be trivial to
go from ¢ to ».

By the standard zero-one law, (3) is equivalent to

(12) P(S, = 0i0.) = 1.

It is a well-known result of fluctuation theory (Spitzer [1]) that (12) is equivalent
to

(13) 2naan 'P(S, 2 0) = w.

The key to the proof of the theorem is the following
Lemma. Let T, be the random walk generated by y. Then

(14) Dt P(T, 2 0) = .
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Proor or LEMMA. Let F,(x) = P(S, = z) and G, (z) = P(T. = z). Let
k(z) denote a symmetric probability density having finite second moment and
whose Fourier transform £ () has support in P. It is well-known that

(Folx+1) — Fo@))/mt and (Gu(x + 1) — Gu(x))/n}
are bounded uniformly in z and » and hence that
n(Fu(z) — Fn(0))/(al + 1) and n'(G.(@) — Gu(0))/ (x| + 1)

are bounded uniformly in z and #. Thus (13) and (14 ) are respectively equivalent
to

(15) S (2, Fa(@)k(z) dz = oo
and .
(16) Dna w20 Gu(@)k(z) de = .

In order to show that (16) holds (knowing (15) holds), it suffices to show that
for some 0 = M <

(17) X e\ (2, (Fa(z) — Gu(@))k(z) da| = M, 0=\<1.

The proof of (17) proceeds by use of Fourier analysis. Since it = (» + &)/2
andy = (» 4+ 1)/2,it follows that 4 — ¢ = (¢ — 1)/2.Set f(8) = 2 (8) — ¥ (0).
Then f(8) = 0(6°) as 6 — 0. A standard Fourier inversion formula yields that

Zok@)(Fa(@) — Gu(@) — Fal@ +y) + Gu(z + y)) de
= (2m)7 [Z k@)@ (0) — ¢"(0)) (@)™ (1 — exp (—18y)) db.
By letting y — « we see that
To k(@) (Fa(@) — Gu(@)) dz = ()" [0 k(0) (6" (6) — ¥"(0)) (#6)™" db.

An application of dominated convergence justifies summing on n to obtain for
0s\1<1

i N [20 k(@) (Fu(z) — Gu(z)) do
= 2m)7 [Z. k@) log [(1 — N (0))/(1 — Na(8))](48) ™ do
= 2r)7 [Zo k@) log [1 + (W(8)/(1 — Ma(0)))](48)™" de.

In order to verify (17) it is now enough to know that [» [6]/|1 — 4(8)| d8 < oo,
which is just equation (6). Thus (17) holds and the proof of the lemma is now

complete.
It follows from the lemma that
(18) P(T, = 01i.0.) = 1.

_Let U, be the random walk induced by ». Since ¢ = (v 4+ & )/2 induces the ran-
dom walk T, , a simple probability argument together with (18) yields

(19) P(U, =z 01i0.) = 1.
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To proceed from (19) to (1) one need only follow the procedure given in [2].
For completeness we repeat the argument.

Let U, be a random walk induced by ». Let ¥, be a random walk induced by ¢.
Let j(n) be the sum of # independent binomial random variables taking on the
values 0 and 1 with probability % and set k() = » — j(n). We can assumethat
the processes U,, V, and j(n) are independent of each other. Set W, = Ujw
+ Viw . Then the process W, has the same probabilistic structure as S, . By
the zero-one law in order to obtain (1) it suffices to show that for any N

limMpow P(Wa/n' = N forsome n = m) > 0.
Set r(m) = min[n = m | j(») = 3n/4 and U(n) = 0]. Clearly r(m) is finite
with probability one. Now U (r(m)) = 0 and k(v(m)) = 7(m)/4. Thus
P(W./n* 2 N forsome n = m) = PViumy/(r(m))} = N)

2 P (Vicromn/ (b (r(m)))! = 2N)
which approaches 1 — ® (2N /o) as m — « by the central limit theorem. Here ®
denotes the standard normal distribution function. This completes the proof of
the corollary.

Similar arguments allow us to strengthen the corollary to the theorem. Suppose
(1) does not hold. Then by the corollary

(20) P@S. = 0i.0.) =0,

where S, is the random walk induced by u. Let T, be the random walk induced
by (u + 8)/2. Clearly

(21) P(T, z 0i0.) =0.

Let ¢ be a nondegenerate probability measure having mean zero and finite positive

variance o*. Let U, be the random walk induced by (4 + ¢)/2. It follows from
(21) by the proof of the above lemma that

(22) P(U, =z 0i0.) = 0.

Essentially the same probabilistic construction used above to prove the corollary
now shows that (2) holds. This completes the proof of the theorem.
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