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ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIONS
IN MULTIPLE LINEAR REGRESSION'

By Hira Lar Kour?
Unaversity of California, Berkeley

0. Summary. In the multiple linear regression model a class of confidence
regions based on rank statistics is constructed. The asymptotic behavior of the
center of gravity of a region corresponding to the Wilcoxon type rank statistic
is considered.

Section 1 consists of assumptions, introduction and notation. Section 2 con-
sists of a monotonicity lemma. A uniform continuity theorem for Wilcoxon type
linear rank statistics is proved in Section 3. This and the monotonicity lemma
are used to show that the regions are bounded for large sample size, with large
probability. Section 4 gives the asymptotic normality of the above mentioned
quantity and defines a consistent estimator of ([f2(z)). Finally, the Appendix
contains some results on relative compactness of some stochastic processes
which are used in Section 3.

1. Notation, assumptions and introduction. Suppose we are observing a double
sequence {Yi,1 = ¢ = n} n = 1 of independent random variables such that

(1.0) Prob [V = y] = F(y — Xin0) i=1,--+,n,
where 4
Xin = (@an(1), =-+ , Tin(p))
is the vector of non-random regression scores,
0 = (6, - , 0p)

is the parameter vector of interest.

Our problem here is to use the rank statistics to construct a certain confidence
region and study the asymptotic behavior of its center of gravity. For this we will
need the following assumptions in the sequel.

In (1.0) cdf F is not known but is assumed to be a member of the class of dis-

tributions
Fo = {F; (i) F is absolutely continuous,

_ is absolutely continuous and
(1.1) (11) (x) f(z )bounded

(iii) f(x) = f(— ),

i) [~ (CEY s < ).
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In the sequel we shall write z;, for ;(») v=1,---,p 4=1,--,n. Thisdoes
not mean that x;, are independent of n, but rather dependence on n is suppressed
for the sake of convenience.

Let

Xn=((xw)) V=]_’--.’p;i= 1,...,7]/.

We need to assume that

(1.2) lim (malxléign wfl’)/( Z:C;l SU% ) =0
forally = 1,2, --- | p.
(1.3) lim»7'X,'X, = £

exists and is positive definite matrix, where the limit of a matrix is the matrix
formed by the limit of each entry in the matrix. All limits in this paper unless
otherwise stated are taken asn — .

For any two sets A, B, A A B will stand for their symmetric difference. By
£4¢(X) we will mean the law of a r.v. X when 0 is the true parameter point. For
a set A, A° denotes the complement of 4.

For a known distribution function @ ¢ &, , define the score function

(1.4) Y(u) = —¢'(G(u+1)/2)/9(G(w +1)/2), 0 = u = 1L
Also define

(1.5) Yo(u) = (i/(n + 1)) fori — 1/n<u=i/n,1 1= n
Assume

(1.6) lim [o' [Yn(u) — ¢(w) du = 0.

Let R:, be the rank of |V, among {Vin, 1 < ¢ < n}.
Let yo = (Yin, -+, Yun) = Y, = y denote the sample.
Define

(17) Snr(yn) = "_IZ?=1$ivl//n(Rm/(n -+ 1)) sgn(Ym) Yy = 1, e, Dy

where

sgn (z) =1 if z=0,
= —1 if z<0.
Let
(1.8) S.' =8 () = (Sua(¥n)s -+ » Sup(Yn))s
Ma(yn) = 184" (yn) 20 'Su(yn),
~ where
(1.9) S, = 07X X [0 () du.

To test the hypothesis Hy:0 = 0 in the model (1.0), the test statistic M, de-
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fined above is used. The test is to reject the Hy if M,(y,) = ko where k. is so
determined as to yield the level « test. For a small sample, k. can be determined
by an ordinary permutation technique, because under Hy all {Yi,1 = ¢ < n}
are i.i.d. and consequently the test based on M, is distribution free.

Adichie, in [1], considered the class of test statistics defined above by (1.4),
(1.5), (1.7) and (1.8) for the case p = 2, z4 = 1, 1 = 7 £ n and arbitrary
Zia, 1 = 7 £ n. For this case he gave the asymptotic distribution of M, under
both the hypothesis Hy and contiguous alternatives. Generalizing his result to
general p in a straightforward fashion, we shall state the following lemma, with-
out any proof.

LemMA 1.1. Under the conditions (1.2) and (1.3) on the regression scores and
(1.6) on the score function Y and for F & T

L(MA(Y) I Hy) — Xp2~

where x, is a chi square variable with p degrees of freedom.

Thus for large n, k. can be computed from chi-square tables.

Clearly, to test the hypothesis H(8,):0 = 0, , where 8 is some known vector,
one would use the test statistic M,(y. — X.0): the statistic M, based on the
ranks of {|Yi# — Xibo|, 1 = ¢ =< n}. From now on we will invariably write
Mu(Yn , 0), Ma(0, y), M,(0) or M,(y, — X.0) for the test statistic M, based
on the ranks of |Y, — Xi6|. The same will apply to {S..,, 1 < » < p}.

Define the confidence region

(1.10) Rn(Yn) = {0:M,(0, y,) = kao}.

This confidence region has confidence coefficient 1 — «. We shall assume that «
is fixed and

(1.11) 0<a<l,

so that for all n, k, stays bounded away from 0 and . This follows from Lemma
1.1.

Note that, since for each sample point ¥, the sequence of sets {R,(y.), n = 1}
is Lebesgue measurable because for each ¥, the sequence {M,(y., 0) n = 1} is
Lebesgue measurable in 0, it makes sense to talk about the Lebesgue measure of
®Rn(Y»). Let N denote p-dimensional Lebesgue measure on p-dimensional Eu-
clidean space. Define

(1-12) én(yn) = ()\[Gin(yn)]}_lfm,.w,.) tk(dt)

where the integral is supposed to be the vector valued integral.

(1.10), (1.12) define a class of 8,’s, one corresponding to each y. If the score
function ¢ is monotone, and if p = 1, « = O and zi; = 1 for 1 = ¢ < n, then
it is easily seen that the corresponding 6, is the Hodges and Lehmann [8] esti-
mator of the location parameter in one sample problem. The same applies to the
ease when p = 1,24 = 1forl1 =7 = m,and zq = Oforn, + 1 = ¢ < n.
Adichie in [2] gave a class of estimators for the case p = 1 using Héjek [7] type
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statistics—the linear rank statistics based on the ranks of the original observa-
tions and not of their absolute values. If we take p = 1, « = 0 and assume ¥ to
be monotone, as is done by Adichie [2], and use S,; defined by (1.7), then it can
easily be seen, in view of the following Lemma 2.2 that 8, in this case reduces to
an Adichie type estimator for 6; . Therefore, this motivates defining 8, as a vector
estimator of 8. But it is not clear whether for small n 8, is well defined, i.e.,
whether it has or has not a coordinate of indeterminate form.

However, we have been able to show here that if y(u) = 4,0 < v < 1, then
under some regularity conditions n*®, is bounded for large n with large proba-
bility and )\(n*m,,,(yn)) has finite and positive limit in probability. Consequently,
n%8, is well defined for large n with large probability. The main idea of the proof
is to approximate M,(y, , on ), uniformly in 6 in a bounded set, in probability
by a smoother statistic and to use this, plus Lemma 2.2, in conjunction with a
form of Cauchy-Schwartz inequality to show that for large n, the region 2R (Yn)
covers parameter points too far from the true parameter point with very small
probability. This method automatically yields the asymptotic normality of
n*d, and the convergence of the Lebesgue measure of 2 ®n(yn) in probability to a
finite and positive limit.

It is believed that this asymptotic result will remain valid for a class of score
functions ¥ which are monotone, square integrable and havefirst two integrable
derivatives.

For the rest of the paper, therefore, we shall assume ¢(u) = v, 0 = v = 1.
Regions corresponding to this will be called Wilcoxon Type regions.

2. Invariance of ®, and a monotonicity lemma.
Levma 2.1. For any vector b and all n

(2.1) ®Ra(Yn + Xab) = Ru(yn) + b

with probability 1. Consequently, if 8,(y,) is well defined, and if the underlying dis-
tribution F is symmetric around 0, then 8,(y,) is symmetrically distributed about
the true parameter point 0.

Proor. The proof of (2.1) is immediate, and that of (2.2) follows by noting
that M,.(—y, — X.0) = M,(y. + X.0) with probability 1. This terminates the
‘proof.

To conclude this section we shall prove a monotonicity lemma for a linear rank
statistic S when p = 1. This lemma will be used in the following section to derive
the claimed asymptotic theory.

Let 6 be a real number. Let {z;, 1 < 7 < n} be any real numbers. Define

(2.3) 8(6) = 2t aiRisgn (Vs + 6x:)

where R, is the rank of |Y; + 6z, among {|Y; + 6z ,1 = 7 < n}.

+LemMa 2.2. S(6') = 8(6") for all those §', 6" (6’ = 6”) for which S is well
defined and for all {Y;, 1 = ¢ = n} such that Y; = Y ; for © £ j. (Well defined
here means ‘no ties’.)
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Proor. Let
Y/ =Y+ 06z, Y/ =Y+ i=1-,n.

Let R/ and R, denote the ranks of |¥,'| and |Y,”| respectively. The proof will
be split into several cases.
Case 1. Suppose there is only one change between the sets of ranks {R.}
and {R."}. Then

(24) Ril = le,, Rj, = Ri” and Rh, = Rh” h # ’i, ]
Also assume that
(2.5) sgn (V) = sgn (Y), i=1 - ,n.

Under (2.4) and (2.5)
(2.6) S(6') — 8(8") = z{R; — R} sgn (Y)) + 2R,/ — R;"} sgn (V")
= (R — R/){wisgn (Y/) — z;sgn Y},
Without loss of generality, suppose

(2.7) R/ > R/, implying R, > R, (by (2.4)).
Therefore,
(2.8) R — R/ > 0.

It remains to show that the second factor of (2.6) is nonnegative. (2.7) and
(24) = |Y| > |Y | and |Y/| > |V]| & V" sgn (V) > V" sgn (Y,") and
Y{sgn (Y/)> Y sgn (YJ) = (6 —0") (zisgn (YJ') — 2;s¢n (YS)) 2 0,
which implies ‘

(2.9) zisgn (V) — z;sgn (¥V,) 2 0,

because 8’ — 6" = 0.
Combining (2.8) and (2.9), we get S(6') — S(8”) = 0 under (2.7), and simi-
larly if R;” < R.”. This concludes Case 1.

Cask 2. Here assume one sign change between sets {Y} and {Y,”} and no
rank change. Say
(2.10) sgn (Y) = sgn (Y), ¢>1, and sgn (Y,) # sgn (V).

Then, since R’ = R
(2.11) S(6') — S(6") = xRy {sgn (YY) — sgn (¥,")}.

1=17=n,

0= 2, = 0for (§/ — 6") = 0. Therefore z,R, {sgn (Yy) — sgn (¥,")}
2z:,R; = 0. Hence S(6') — S(¢”) = 0.

In general the interval from 6" to 6’ may be split into steps 0" = 6, < 6, <
6, = 6 such that from 6: to 6., there is either (i) exactly one rank change and
no sign change or (ii) exactly one sign change and no rank change.

Without loss of generality suppose Y1' = 0 and Y, < 0; then (8" — 6" )z, =
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To see this, suppose on the contrary, no matter how small § is, there is always
an interval [0, 6 + &) containing at least one rank exchange and at least one sign
exchange. Then there must exist § < 6™ < 0 + 6 and 1, 7, k (7 7) such that
Vi — 6"z = |Y; — 6", Vi = 6%, = |V — Vi(zifoe)| = |V, — Yi(w,/z2)|
which can happen with probability zero. This concludes the proof.

It might be remarked that the above lemma remains true for a class of statis-
ties S = D zap(Ri/(n + 1)) sgn (Y; 4 62;) where ¢ is a nondecreasing score
funection.

3. A uniform continuity theorem for linear rank statistic. In this section the
statistic Mn(y., 0) will be approximated in probability by another quadratic
form, uniformly in @ in a bounded set. Also it will be shown that the parameter
points too far from the true parameter value do not give us much trouble. These
results will be used in proving the claimed result in the following section.

Because of (2.1) of Lemma 2.1, there is no harm in assuming that the true
parameter point is 0. Let P, denote the probability distribution generated by
{Yin,1 = ¢ < n}, which are i.i.d. F, that is, 0 is the true parameter point.

Since M, is a quadratic combination of S, , » = 1, -+, p, we will first ap-
proximate S,,, v = 1, - -+, p. Define for a p-vector t, and real z, the functions
(3.1) pu(t,z) = (W) 2t 20l (Ve — Xint < 2) sgn (Vin — Xint),

v =1, , D
(3.2) Fnn(t, ) = 8un(t, ).

Here I(A) is the indicator of the set 4, and sgn () is defined by (1.7).
Also define

(3.3) Ha(t, Jo]) = (n + D)7 2 I([Vin — Xant] £ J2)),
(34) H.(, lz|) = eH.(t, |2]).

& in the above definitions denotes the expectation under P, .
By X..t we shall mean Xt = Z,’,’:l Z 3t . Define for t,

(3.5) [t = 220 [t
In view of (3.1), (3.3), we can write
(36) Snl‘(t) = fco Hn(ty |CI?| ) dlhll'(t7 1;'), v = 17 L, D

where z is the integrating variable. This representation is of the Chernoff-Savage

type where the function u.,(t, - ) gives mass n"z;, sgn (Vi — Xinl) to the point

Yin — Xint and H,(t, -) gives mass (n + 1)~ to the point | Vi — Xnd.
Define

(3.7) An(t) = [20 Ha(t, |2]) dign(t, ), p=1,--,p.

Forana,0 < a < «, define V,(a) = {t; |t| < an™® and V(a) = {t, [t| £ a}.
Also define , = {F; F is absolutely continuous and 7’ = dF = fis absolutely
continuous and bounded, vanishing at most at a finite number of intervals.}
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TurorEM 3.1. Let {Vin, 1 = 7 =< n} n = 1 be the sequences of independent rv

asin 1.1. Let F ¢ F, . Assume that {x , 1 < 1 = n,1 = v £ p},n = 1, satesfy
(1.2) and (1.3). Then for every ¢ > O there exists m., which may depend on F
and {x:}, such that n > n, yields

(3.8) Pn[Supt,evﬂ(a) n%I {Snv(t) - Anv(t)} - (Sm'(o) - Anl’(o)} I g 6] Se

forany 0 < a < o« and forany v = 1, --- , p fized.

Proor. Since the proof for each » = 1, -+, p is the same, we fix » and will
drop it from the suffixes of statistics. Thus by u. we will mean u,, for some »
and so on.

We have the following decomposition of S,(t) — 4.(t).

Sa(t) — An(t) = [Ze Ha(t, |2]) dun(t, @) — [Z0 Ha(t, |2]) dia(t,z)

= [Ze Ha(t, [2]) dlum(t, @) — Pa(t, )} + [Zo {Ha(t, [2])

(3.9) — Ha(t, [2])} dia(t, 2) + [Zo {Hu(t, |2])
— Ha(t, |z])} dlpa(t, z) — Ea(t, @)}
= Bu(t) + Bna(t) + Ra(t) (say).
We will show that for every e > 0

(3.10)  Palsupiev,w n[Bni(t) — Bai(0)| 2 ¢ <
and that
(3.11) Pa[supuev, nl|Ra(t)] = € < e

2
=

for n =2 n., 7= 1,2,

m

Consider the difference
2} {Bas(t) — Bna(0)} = nl[[Zw {Ha(t, |2]) — Ha(t, |2])} dia(t, z)
— [20 {Ha(0, |g]) — Ha(0, [2])} dEa(0, 2)].
Let
(3.12) Za(t, [2]) = nM{Ha(t, [o]) — Ha(t, [2])).
It is easy to see, withsgn (z) = I(x = 0) — I(x = 0), that
(3.13) ma(t,z) = 0" Dot zu{F(z + Xut) sgn (z) — 2F(Xut)I(z = 0)}.
(3.13) and (3.12) yield
n*{Bys(t) — Bna(0)}

w7 Dt zal e 2a(t, |2|) sgn (2) dF (z + Xinl)

~ [22Z.(0, |2]) sgn (2) dF(2)]
=0 D a2 {Za(t, | — Xint]) sgn (z — Xint)
— Za(0, |o|) sgn (2)} dF (z)].
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And therefore
SUD¢ev,,(a) n%|Bn2(t) - an(o)l

(8.14) =" i wllsups supev,@ {|Za(t, [v — Xat]) — Za(0, [o — Xant])|
+ 1Zn(0, o — Xint]) — Za(O0, |2])| + 124(0, |z — Xint])|
2P, [0 = Y £ Xl or Xt Y = 0]}].
Observe that
(3.15)  SUP_w <z <+o SUPLev, @) MAX1 <4 <n [ Za(t, |2 — Xint]) — Z4(0, |z — Xil])|
S SUP—w 50 540 SUPEev,@ [Za(t, [2]) — Za(0, |z])]

which tends to zero in P, probablhty by (52) of Theorem A5.
Also, if 8, = @ max; < <n || Xin[n 7,

(3.16) maxi <i <n SUP—w <z <+w SUPteV,(a) IZn(O’ |x - thl) - Zn(O’ |x|)l
S SUPjyi—izi =5, [Za(0, [y]) — Za(O, [x])]

which tends to zero in P, probability because by assumption 8, — 0 and be-
cause Z,(0, |z|) is a standard empirical cumulative process with continuous
Gaussian limit (see [3], e.g.).

Furthermore,

(3.17)  mMaXi<i<n SUP—w <z 54 SUPev,w |Zn(0, |2 — Xint])]
S SUP—w <z <4 |Zn(07 21,

and by (53) of the Appendix the right hand side is bounded in P, probability
for large n. Finally since /' has bounded density, and since

SUPtsv,(a) MAX1<i<n ]th| — 0,
we have
(3.18) SUPuv, @ MaX1<icn Pal0 £ Vin £ Xt or Xl = Vi < 0] > 0.

Combining (3.18), (3.17), (3.16) and (3.15) with the condition (1.3), we
have (3.10) for B,. term.
Next, consider the remainder term

WR.(t) = 0} [Zo (Ha(t, |2]) — Ha(t, [2])} dipa(t, ©) — Balt, )},
JZe {Hu(t, [2]) — Ha(t, 2])} dLa(t, z),

where
(3.19) La(t, ) = nf{ua(t, z) — Ealt, z)}.

.+ We shall integrate the R,(t) term by parts. To see that the integration by
parts is justified here, see Apostol [0].
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Note that by definition of H,(t, |z|) and L.(t, z)
(3.20) Pu[supeev,@ ime,te [Ha(t, [x]) — Ha(t, Jz|)] = 0] = 1 for all =,
P,[supiev,@ |La(t, =) = 0] = 1 forall =,

and SUPsv,@ |Ln(t, + )| has a limiting distribution. Therefore, integrating
by parts the n’R,(t), for every ¢ > 0, one gets

(3.21) Sy, @ N|Ra(t)| = SUDLev,@ [[Ze La(t, z) d{H(t, |z|) — H(t, |z])}]
with P,—probability at least 1 — eforn = n. . Let

(3.22) Ru(t) = [¢ La(t, z) d{Ha(t, &) — Ha(t, 2)},
(3.23) Rus(t) = [YwLa(t, ) d{H.(t, —x) — H.(t, —2)}.
Define, for 0 = y = 1, )

(3.24) H,7\(t,y) = inf {z > 0; Ha(t,z) = ¥},

H,7\(t,y) = inf{z > 0; H.(t, z) = y}.
By an ordinary substitution process one sees that
(3.25)  Ru(t) = [§{La(t, H, (%, ) — La(t, H,7M(t, y))} dy,
(3.26) SUPwv,@ |Rui(t)]
< SUPo <y <1 SUPLev,@ [ Ln(t, Ha (1, 9)) — Lalt, Ha (L, y)]-

However, by Theorem A6 of the Appendix, the right hand side of (3.26) tends
to zero in P,—probability asn — . Therefore for every ¢ > 0

(3.27) P,[supiev,@ |Bu(t)] = € < e for n = n..
Similarly, it can be shown that for every ¢ > 0

(3.28) P.[supiev, @ |[Bu2(t)| = ] £ € for n = n..
Moreover, note that

(3.29)  SUPwr,@ P |Ra(t)] S SuPv,@ |[Ru(t)] + Supeer,@ [Rua(t)].

Combining (3.28), (3.27) and the above remarks, (3.11) follows. Finally, the
proof for the B, term uses integration by parts, Theorem A4 and a slight varia-
tion of Theorem A6. We terminate the proof.

Our next objective is to approximate the function A4,,(t) by a linear function
of t.

LemmA 3.1. Define

(3.30) F = Fo 0 {F; [%SUPucscw |f (z — 8)| dF(2) < w}.

Assume F ¢ §. Also assume that the regression scores {x.}) satisfy conditions (1.2),
(1.3). Then

(3.31) lim Supev, @ 7|An(t) — A,,(0) + 2t'A,,(0)] = 0
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forany0 < a < wandallv =1, -+, p.
Here
(3.32) £, (0) = 07 Dotz Xine [Zu () da.

Proor. Recall that
Any(t) = [Z0 Halt, [2]) dBas(t, 7).
It is easy to see from the definition that
(333)  Ha(t, o)) = (n 4+ 1)7 2 (F(Ja] 4+ Xint) — F(—|o| + Xint)}

After some simple algebraic manipulations, using the definitions of H, given by
(3.33) and @, given by (3.13), one can see that

(3.34)  Aw(t) =n7" 2 2 [Z{F(z 4 (Xa — X))
— F(—z 4+ (X + Xp)t)} dF (z).
Taylor’s expansion around t = 0 of the integrand above yields
(3.35) {F(z + (Xin — Xja)t) — F(—2 + (Xin + X))}
= {F(z) — F(—2)} — 2X;tf(z) + Rui(t, 2) — Ruis(t, z)

where
(3.36) Ruis(t, #) = (Xin — X))t (Xin — Xja)f (& + £(Xin — X)),

Ruij(t, ) = (Xin + X )t (Xin + X3 )f (& + E(Xin + X)),
where ||£]| < ||t|| and £ may depend on t, n, z. Let
(3.37) en(t) = 070 2ty 2oim1 B [Zeo Ruis(t, v) dF(2).
Then
(3.38)  supuv,@ nlea(t)] < a'ntn 2ol D0 leal | X — Xl

X Sup g gan-t [T |f (2 + (Xin — X)E)| dF ().
By (3.30),

(3.39) lim supysy san—t [ 2o |f (2 + (Xin — X3)E)| dF (2)
< lim ffoo SUpP £ <an—* lf,(x + (Xin — X)) dF(z) < o

uniformly in 1 < 2,5 < n.
Also, by (1.2), (1.3)

lim 3 i feal [ X — Xl n "o
(340) < lim (maxigiign [Xin = Xonll -0
dim (07 i X ol [ Xin = X)) = 0.
» Combining (3.40), (3.39) and (3.38), we have
(3.41) lim SUpev, @ nilea(t)| = 0.
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Similarly, if
e (t) = (n7%) 2im1 2i=1%5 [Z0 Russ(t, ©) dF (z),
then
(3.42) SUPtev,@ Nle. (1) = 0 as n — o.

Recalling the definition of 4,,(0), and combining this with (3.41), (3.42), (3.35)
and (3.34), it follows that

lim Supuvn(a) n%IAm,(t) - Anv(o) + 2t/Anv(O)|
= lim SUP¢ev, () nglen(t) - en,(t)l = 0.

This concludes the proof.

Next define
(343) 8u(0) = 07 2t 2af2F(|Vi]) — 1} sgn (Yin)
(3.44) Tu(t) = 8 (0) — 2A%,(0)t. y=1, -, p.

Adichie [1] under the assumptions (1.2) and (1.3), has shown that for every
e>0

(3.45) lim P,[n*S,,(0) — S,,(0)] = ¢ = 0.

Combining (3.4) with Lemma 3.1 and Theorem 3.1 we have
CoroLLARY 3.1. Under the assumptions of Theorem 3.1 and Lemma 3.1, for
every e > 0 there exists ne such that n = n. yields

Po[SUDicvo@ 1|Sn(t) — Tuy(t)] 2 €] < e

forallyv =1, --- ,nandany0 < a < .
TuroreM 3.2. Under the conditions of Theorem 3.1 and Lemma 3.1, for every
€ > 0 there exists an ne such thatn = ne =

(3.46) Pn[supteVn(a) IMn(Yn ) t) - T”(Yn ) t)l ; 6] é €
forany 0 < a < o, with
(3.47) To(Ya,t) = 0V, (Yo, t)Z, 'Vau(Va,\ t),

Vi (Yo, t) = (Tua(Ya, t), -+, Tup(¥a, 1))

T (Y, , t) being defined by (3.46).
Proor. Note that

(348) | Ma(t) — Tu(t)] < wH[Su(t) — Va(t) {2 n'Su( Y , t)]
+ |2 VLY, )|}

where ||-[| is defined by (3.5).
_ Since the vector n!S,’(0) = 7}(8.1(0), -+, Sap(0)) is known to have limit-
ing normal distribution (see [1]) with covariance matrix 2., therefore, by
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Theorem 3.1, Lemma 3.1 and Corollary 3.1 it follows that both the quantities
SUD¢ev,@ M2 Sn(Ya, t)] and suprev,@ |[7°2n Va(¥a, t)|| have a limiting
distribution. Moreover, again, by Theorem 3.1

PoSUpev, @ 1'][Sa(t) — Va(t)]| = ] < ¢ forevery ¢ >0 and n = n..

The proof is concluded.
After some algebraic manipulations one can see that if

(3.49) 8./(0) = (8(0), -+, 8:5(0)) and
(3.50) b(f) = 6(JZ=f'(2) dv),
then
(3.51) Ta(t) = n(8a(0) — b(F)Zat)Za " (84(0) — B()Zt).
Define
(3.52) Du(yn) = {0:Tn(yn, 0) = kdf.
One can easily see that (see Cramér [4])
(3.53) NnDa(ya)) = (wka)”*/{T((p/2) + 1P [Zal}
where T'(z) is standard Gamma function, |(Z.)] = determinant of Z, . Since

for FeFy,0 < b(f) < o and since k. > 0 and |=.| has a limit and is positive
by (1.3), it follows that

(3.54) 0 < lim Mn!D,(yn)) <

with probability 1. Furthermore observe that the center of gravity of D, is given
by

(3.55)  Ba(ya) = DTS (0)27

This will be used later to derive asymptotic normality of 8, .

We are now ready to turn to the problem of boundedness of the regions
'R (yn). We begin with the following definitions. Define fora — o <y £ 4+
and a vector 0 such that ||6]| = 1, the functions

(3.56) (7, 0) = n'[0'8.(0) — by0'=.0]/(0'2.0)
(3.57) ha(y, 8) = nl[0'S.(v0)]/(0'2.0)}

where b = b(f) defined in (3.50).

Assume that the conditions of Theorem 3.1, Lemma 3.1 hold.

LeMMa 3.2. For every e > 0 and a given d > ko there existsan a, 0 < a < o,
large enough such that n = n. implies

(358) Pn[inf||0||=1 inf|‘7|=an_’l Igﬂ('y’ O)I 2 d] = 1—- €,
(3.59) P[inf gy =1 inf|yj=an- [ha(7, 0)] 2 d] 2 1 — ¢
(3.60)  Pulinfiyi<an=t |gn(y, )] = O for every [0 = 1] =1 — ¢



1962 HIRA LAL KOUL

and
(3.61)  Py[infiyj<an=3 [ha(v, 0)] < € for every ||0] = 1] 2 1 — e

Proor. We begin by proving (3.58) and (3.60). By definition S,'(0) =
(8,1(0) - -+ 8,,(0)), where S,,(0), » = 1, ---, p are defined by (3.43) which
are the sums of independent random variables, and by the Lindeberg central
limit theorem, lim £(n}2,7*8,(0)) = N(0, 1). Therefore n}||S,(0)|| has a limit-
ing distribution.

Also note that since lim Z, is a positive definitive matrix, there are two con-
stant 7 > 0 and K < o such that

(3.62) 0<7=< (0ZH)! =K<
uniformly for all @ such that (6] = 1. Therefore, for any ||6]| = 1 we have
(3.63) bR 0'S(0)]0'=, "0 < b nYS.(0)]].

Hence, combining this with the above remark, we have that for every ¢ > 0
there is a constant ¢ > 0 large enough such that for n = n.

(3.64) P.linfs)=1b7(0'2,0)}0'S,(0)| = ¢c] = 1 — e
Choose
(3.65) a=d+ec

Then using this choice of a and the definition of ¢, and (3.63) one can easily
see that

Py[inf o1 infjyj—an—4 |gn(7, 6)] = D]
> P,[inf o)1 |0'Z.0) "} [6'S,(0)[b™" — a(6Z,0)| = d]
> P,linfye;-1 b'(0'2.0)"}6'S,(0)| = cK /7]

1 — e

We shall next establish (3.60). By the definition of g.(v, ) it is obvious that
over-all infimum of g, is zero and is attained at the point

(3.66) vi(0) = [0'S,(0)][0'=.0]" d .

(3.60) will, therefore, follow if we show that there exists an a, 0 < a < o« large
enough such that

(3.67) P.llvi(0)] < an™? forevery |6 =121 — e

However, in view of (3.63) and the fact that b'n![|S,(0)| has a limiting
distribution, it follows that for every ¢ > 0 and n = n. there exists a ¢ such that

€ = P,[supoy—1 [n']6'S.(0)[][6'=.0] 0" > ¢]
P.n*|lv1(0)] > ¢y for some |0] = 1]
1 — P.n'y1(0)| < ¢n forevery [o] = 1).

v

- (3.68)

]

I
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Therefore for a given by (3.65), (3.67) holds in view of (3.68). This completes
the proof for (3.60).

To see that the other two claims are true we make the following observations.
From the definitions of ¢, and %, and Theorem 3.1, Lemma 3.1, one can see that
for every e > 0 there exists n. such that n = n. yields

(369) Pn[linf|‘l|<an—§ Ign('Y; 0)] - inf|1|<¢m—’} |hn(7’ 0)‘ | é €

forevery |0 =11=1— ¢
and

(3.70)  Pu[linfiyi—em=t,101=1 |gn (7, 0)] — Infiyi—an—t,yo1=1 |[hn(7,0)| | S ] = 1 — ¢

forany 0 < a < .

Now if we choose 0 < a < « so as to satisfy+(3.58) and (3.60) then by
(3.69), (3.61) is satisfied and by (3.70), (3.59) is satisfied for the same a. The
proof is terminated.

LemMa 3.3. For every € > 0 and a given d > k, there exists an a such that

(3.71) Poinfiy zan-t, 1011 [9n(y, 0)] 2 d] 2 1 — ¢,
(3.72) Pyinfiyizan=t,101=1 [hn(7, 0)] 2 d] 2 1 — €
forn = n..
Proor. By definition g.(v, 8) is a monotone function of v for every ||| = 1.

Therefore (3.72) holds, in view of (3.58) and (3.60). On the other hand, #,
can be rewritten as (0'2,0)'h.(y, 0) = ni(n + 1) Dty dmRmsgn (Vi —
vdin) where din = 0Xi, and R, is the rank of |V, — v dia|.

To this statistic we can apply monotonicity Lemma 2.2 so that h.(y, 0) is
also monotone in v for every ||8]| = 1. This plus (3.60) and (3.61) imply (3.72).
This proves the lemma.

TaEOREM 3.3. Assume the conditions of Lemma 3.1, Theorem 3.1. For every
e > 0and a given d > k. there exisits n. and an a, 0 < a < o large enough such
that

(373) Pn[inf"a" >an~% Mn(Yn , 0) = d] =1- €,
(3.74) Pulinf o) 2an=3 Tu(Y2,0) Z2d] =2 1 — ¢

oralln 2 n..

Proor. Assume n = n. so that Theorem 3.1, Lemmas 3.2 and 3.3 hold. Now,
for any vector @ in a direction there is another vector 6* in the same direction
and a real number y such that ||6%|| = 1, and

(3.75) 0 = vo*.

Also from Rao [10, page 48], we have, because lim Z, is positive definite, for any
“vector 0, for n = n.

(3.76) M, (0) = [n'0'S,.(0)[%/(0'2.0)
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and
(3.77) Ta(0) Z [n'6'(S.(0) — b(f)Z.0)"/(8"Z,0).
Therefore in view of (3.75), (3.77), (3.76) and the definitions (3.56) and
(3.57) it is enough to prove (3.72) and (3.73), after noting that
[y; inf oy zan—t Ma(y, 8) = d]
= [y; infiy zan—t Ma(y, v0%) 2 d for every 0% = 1]

and the similar relation for the T, statistic. The proof is terminated.
The immediate consequence of Theorem 3.3 is that for every ¢ > 0 there
exists an n. and 0 < @ < «, such that

(3.78) Puy; n'®a(y) C V(@) =1 — ¢
(3.79) Puy;n'Da(y) C V(a)] 2 1= ¢

for all n = n., and hence there exists a constant k¥ < o, depending on a, such
that

(3.80) Ply; N\n*@a(y)) < k) =1 — for n=n..

4. Asymptotic normality, and efficiency. The asymptotic normality of né,
will be derived by approximating it by 78, in probability. For this we need to
show that the Lebesgue measures of the two regions n'®,(y) and n'D,(y) are
close to each other in probability. The nature of 2D, (y), together with Theorem
3.2, enables us to conclude this fact. We begin with the following definitions.
Define for random sample y and a constant a, the sets

(4.1) Wa(y) = n'®Ru(y)An‘Da(y),

(4.2) K.(a, t) = {y; subuv,@ [Ma(y, t) — Tu(y, t)| = ¢
(43) Qu(a) = {y; Wa(y) C V(a)},

and

(4.4) Un(y, €) = {t, ke — € < To(y, tn™?) < ko + 24.

Lemma 4.1. If the conditions of Theorem 3.1 and Lemma 3.1 are satisfied, then
for every € > 0 there exists n. such that n = n. yields

Pulnd]8.(V2) — 6(V2)| 2 o] < €

where 8, is defined by (3.55).
Proor. We will first show that for every ¢ > 0

(4.5) Ply; N\(Wa(y)) S el =1 — ¢ for n = n..

From Theorem 3.2 it follows that for every ¢ > 0 there exists n. and an a,
0 < @ < « such that

(4.6) PuK.(a, ) n Qu(a)] = 1 — ¢
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and
(4.7) PolQn(a)l 2 1 — ¢

foralln = n,.

But for a y ¢ K.°(a, €) n Q.(a), a t belonging to W,(y) is such that for every
€ > 0 it belongs also to U.(y, €). Therefore, for every ¢ > 0 there exists n. such
that for n = n.

But because of the definition of T, it is easy to see that
(4.9) MU (Y, €)) = daf(ka + 26)"* — (ka — €)%,

where d, is a constant depending on n only through |3,| and hence by assumption
lim d, < . Obviously (4.9) can be made small for an arbitrarily small e. This,
plus (4.7), yields (4.5).

Therefore, in view of (3.8), we can conclude that

(4.10) Puly:Nn'@a(y)) — Mn'Da(y)}] 2 €] < ¢

for every ¢ > O and all n = n. .
And, since by (1.11) k. > 0, there exists a 6 > 0 such that

(4.11) Ply; N\n'®a(y)) 26 >0/ 21 — ¢

for every ¢ > O and n = n. .
Also note that

(4.12) lim A(#*Da(y)) = 6 > 0 with probability 1.
Now consider the difference
n[8u(y) — 8a(y)l|
(413) = Nn'R(¥) DAy )N Ra(y)) — N(n'Da(y))]
usquw I AN() + DAy )T [ [T (Waly)) dA(t).
By (3.78), for every ¢ > 0
(4.14)  Puly; [atguw [It]-dNE) S aA(0}Ra(y)) S aky < o] = 1 — ¢

where &y = MV (a)).

By (4.10), (4.12) and (4.9) the multiplier of the integral on the right hand
side of (4.13) is arbitrarily small with high probability. Combining this with
(4.14), the first term on the right hand side of (4.13) can be at most equal to
¢/2 forn = n. with P, probability at least 1 — ¢/2, for every ¢ > 0.

Similarly, by (4.6) and (4.7),

(4.15) Paly; [ I (Wa(y)) dh(t) S 2 1 — e

for n = ne and for every € > 0. Therefore, since A(n*D,(y)) has a finite limit
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with probability 1, the second term of (4.12) can also be made to be at most equal
to ¢/2 with P, probability at least 1 — ¢/2 for n = n. . This completes the proof.
We are now ready to state the main theorem of this section.
TeEOREM 4.1. Let {YVin 1 < 7 = n} n = 1 be the sequence of random variables
as given by model 1.0. Let {x.,} satisfy the conditions of (1.2) and (1.3). Let F ¢ &,
where F 1s defined in Lemma 3.1. Then

(4.16) lim £4,(n*(6, — 60)) = N (0, =7'(b(f))™").

(N stands for the multivariate normal distribution and > = lim 2,7%)

Proor. First of all, in view of Lemma 2.1, it is enough to prove (4.15) if
0, = 0. Under the assumptions made here, the conclusions of Theorem 3.1, Lemma
3.2, and hence of Theorem 3.2 and Lemma 4.1, hold. Therefore it is enough to
show that

(4.17) lim £o(n%6,) = N(0, Z7(b(f))7%).

However, by the definition 76, = n}(b(f)™2,78,(0), and the fact that we know
£0(n'8,(0)) — N(0, =),

we conclude that

Lo(n*8,) — N (0, Z7(b(f))™).

This proves the theorem.

Asymptotic efficiency. Essentially, under the conditions (1.2), (1.3) on the
regression scores and F ¢ &, Eicker [6] has proved that the asymptotic distribu-
tion of the least squares estimate n'6,* is N(0, £™). Actually, our conditions
imply his conditions. £ is defined by (1.3). By (1.9), we have Z, = 32, , because
Y(u) = u.

If we define the asymptotic efficiency of n'd,, relative to the least squares esti-
mator on the inverse ratio of their generalized limiting variances, and denote it
by e(F), then we have

(4.18) e(F) = lim b(/)(1/|2,7)/B- (1/|2.7)] = 3°(f)
= 12([2. f(x) da).

It might be noted that this is nothing but the asymptotic efficiency of the
M, statistic relative to the corresponding F statistic based on least squares esti-
mates. See [1].

A consistent estimator of ( [Z, f*(x) dz). Let

(4.19) b(f) = [Zaf(z) da,
(4.20) Kap = (B)IZPT((p/2) 4 1)(xXp,em) ™
'#Deﬁne

(4.21) BT = A0 ®Ru(y) )Ka,p -
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bi(f) defined by (4.21) is the proposed estimator of b;( f). That it is consistent
follows from (3.54), (4.10), and Lemma 1.1, which enables us to replace k. in
(3.53) by x5 -

APPENDIX

Notation here is the same as in Section 3.

Here it will be shown that the stochastic processes {L,(t,2), —®© =< z < o}
and {Z.(t, [z]) — o = x £ + «} converge weakly to some processes, uniformly
in te V.(a). For this we shall make use of the following known results, which
can'be found in Billingsley [3].

Let {V.(z) — 1 = « = +1} be a sequence of stochastic process. Define for
some 6 > 0

W”(Vn ) 6) = SUPs; <2 <2p, 3901 28 min {an(x) - V:n(xl)L |Vn(x2) - Vn(x)l}

TaEOREM Al. Let {V,.(z) — 1 £ 2 £ +1} be a sequence of stochastic processes
i D[—1, +1]. Suppose that

(1) L(Va(@1): - Valzr)) > L(V(21)- - V(zx))
holds for all continuity points of V. Suppose further that

(2) Pr{V(1) = V(1-)] = 0.
Suppose finally that for each ¢ > 0

(3) lim;o limpoe PIW' (Va, 8) = ¢ = 0;

then V, —p V. (For the definitions of D see [3].)

From the statement and the proof of Theorem 15.6 of [3] one can deduce the
following

TurorEM A2. Suppose there are two constants v = 0 and « > 1 and a nonde-
creasing continuous function Gy on [—1, 1], such that for each n, if 4 < t < 8,

(3") E[Va(t) — Va(t)|"[Va(t) — Va($)]"]
= [Gu(t) — Gu(W)]°[Ga() — Gu(D)]®
holds for all &, , ¢, ts .
Then for any ¢ > 0
(4) PW'(Va,8) =€) < ¢K(Z) + 2.))

where K is a constant independent of n but may depend on v and «, and where =,
and =" are the sums of the form D n_y [Gu(ti) — Gu(tis)* with —1 < & <
LS - StL=landty — 1 =25,k=1,--- 1.

RemARk. Expression (4) corresponds to (15.29) of [3].

We now consider the following stochastic processes. Define, for — o = z
-+ «, t a p-vector,

T(B) Wity 2) = n el (Y — bu(t) < x) — F(z + 6m(2)]

IIA
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with 8:,(¢) = 7 ' Xs, {cin} some constants. In the following, whenever con-
venient, we will write ¢ for t and 0 for 0’ = (0, --- , 0).

TrEOREM A3. If {24} satisfy (1.2) and (1.3), {ci} satisfy (1.2), and ' Sck, —
C’ < K' < »,and if F is absolutely continuous with uniformly bounded and
continuous density, then for each fized t

(6) {Wa(t, ), —0 22 = + o} 5p{L(z), —o =& = +=|

where L is a Gausstan process with continuous sample functions. Consequently for
every € > 0 and each fized t,

(7) limy,0 limye Pr [SUpjo—y) <n [Wa(t, 2) — Wa(t, y)| = €] = 0.

Proor. It is easy to see that W, (¢, x ) is a stochastic processin D[— o, 4 «]and
Wa(t, — o) = 0, W,(t, + o) = 0 hold, each with prebability 1 for all n.
Since t is fixed, we will suppress t in our notation, for convenience, and define

(8) Qu(z) = Wa(t, tan (372)), —1=z = +1.

Then @, ¢ D[—1, +1] for all n.
Under this transformation, since L is continuous at + «, it is enough to prove

(9) {Qn(x)) —l1=x= +1} —bp {Q(.’I?), —l1=2z= +1}

with Q(2) = L(tan (3wz)). This is so because tan (i) is a homeomorphism
between D[—1, 1] and D[— », + ], when D[—1, +1] is metrized by Skorhods
metric. For the definition of Skorhods metric see [3].

Thus it is enough to verify the conditions of the Theorem Al. We begin by
verifying (3). This we will do via (3) and (4). First we shall exhibit a v > 0,
and & > % and G, such that (3") holds.

Let

(10) g(z) = tan (37z), —1=ux = +1,
(11) ain = Ifg(r1) S YVin — 6in = 9(2)] — [pin(x) — pin(21)],

(12) Bin = Ilg(x) £ Yin — 0in S g(22)] — [pin(22) — Pin(2)],

with 6i;n = 8:in(t) and

(13) pin(x) = F(g(x) + 0in).

Recalling the definition of W, from (5) we can write, in view of (13), (12),
(11), and (10),

(14) [@u(z) — Qu(z1)] = 0 Zcinctin
(15) [Qu(22) — Qu(2)] = 7 ZCinBin -

Consequently, using the independence of {(aix , Bin), 1 = 7 = 0}, {@m, 1 =
4 = n},{Bin,1l =7 = n} and that a;, are independent of 8jn ¢ #j =1, -+, n
and that Ea:, = EBiy = 0,1 = 7 = n, one can see that
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(16) E[Qu(z) — Qu(@)[Qn(22) — Qu(x) = [ 201 ciEinBin

+ 2 Z Z:’;éj=l C%ncgnE’agnEﬁ?n + 2 Z;‘;éj=l cgnC?nEainﬁinEajnﬁjnL
Using 'the definitions (12), (11) and

(17) Gin = Pin(T) — Pin(71), b = pin($2) — pin(),
one can see that Eatuftn < 30inbin , BatnEBH < @ibjm , and EaimBunBapbin =
amb,-,, .

Consequently the right side of (16) is bounded by
B i1 Cininbin + 3 > D Eie1 CnCininb jn] = 30 (ZCintin )( D i Cinbin)-
But note that
Y Chan = 0T P (g() + ) — Fg(@2) + b))
and 2 Y abin = 020 GalF(9(22) + 8ia) — Fg(x) + 8in)l.

Consequently (3') is satisfied fory = 2, @ = 1 and Ga(2) = Y G F(g(x) +

din)-
Therefore (4) of Theorem A2 is satisfied.
However,

(18)  >oia [Gu(@k) — Gal@n1)]
< max; <k <r [Gn(2r) — G (%-1)] D1 Gl (1) — Gn(Ti1)].

Now note that by (1.2) and (1.3) max;<; <a 8in — 0 a8 7 — o, and that by
assumption, limy.e Yy = K < «. Define G(z) = F(g(z)) for —1 =
z = +1.

Observe that F continuous implies that G, and G are uniformly continuous
for all 7 and that limy.. Ga(z) = K'[G(z)] where K’ = limp.. 2 Cin -

Also note that for —1 =2, = -+ =2, = 1,

B Sit [Ga(@) — Gu(@e1)] = liMp [Ga(1) — Gu(—1)] = K’ < .
Therefore
(19) iy MK <k <1 [Ga(22) — Gu(@ic1)| 2oimt [Ga(22) — Ga(@aa)]
< K’ max; <k = [G(2) — G(r1)],

and now it is obvious that for 8 sufficiently small the right hand side of the above
can be made arbitrarily small for G being uniformly continuous. Hence by (4),
(18) and (19)

(20) limgo limnae Pr (W (Qn,8) = ¢ = 0 forevery e > 0.
Next we show that
. (21) limpsw £(Qu(z;), j=1,-++,k) = MVN.

MVN = Multivariate Normal law.
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Nowletd = (A, -+, M) be a k-dimensional real vector and Q, = (Q.(21),
-+« , @u(z1)). Then to prove (21), it is enough to prove (see [10])

(22) limp.e £(2'Q,) = Normal Law for every a.
However, N'Q, = ZLI AWa(t, g(xs)) = n_%ZLl CinZin With
(23) Zm = Zt:l )\s{I[Yin - 6m é g(xs)] - F(g(xs) + 61'”)}-

Note that {Z, , 1 = ¢ < n} are independent rv’s.

Under the condition of the theorem it can be shown that the Lindeberg-Feller
Theorem is applicable to the rv’s 3'Q, for every . Consequently (21) follows.
It is clear that (21) holds at all continuity points (21, - - - , %) of @ = L tan (37)
because L tan (ir) has continuous sample paths almost surely. Also the condi-
tion (2) of Theorem Al is then trivially satisfied. Thus; in view of (21) and (20)
and the above remarks, conditions of Theorem A1l are satisfied and hence the
consequences (6). (7) is a well known consequence in view of the Gaussian limit
with continuous sample paths. The proof is terminated.

ReMARK. The above theorem remains true also for the processes defined by

(24) Wn*(t) .’Z}) = n_%zg;l cin[I(Yin - am + )\in é x] - F(-’Z + 61;,, - >\'m)]

where Ain = €17 Xal, € > 0.

LemMa Al. If F is absolutely continuous and has absolutely continuous and uni-
formly bounded density f, and if the constants {z:} and {ci} satisfy the conditions of
Theorem A3, then for any fized &, ,

(25)  SUDla—yl <3 SUD {t—to1 za [Tn(t, @) — J(t,y) — Julte, ) + Ju(to, )| — 0
asn — « and then § — 0, for any 0 < a < « fized.
Tu(t, @) = 07 i canF (T + 8un(t)).

Proor. Note that
1iM 8UP [T (t, 2) — Ju(ty y) — Jullo, @) + Julto, )l

< limaw sUp (0712 canlF(2 + 80(t)) — F(y + (1)) — F(z + (o))

+ F(y + dum(t))]l
< Ty sup 07 i [owl [Xanll It =t [f2) — F(3)]

< ko supjy— <5 [F(y) — (=)

where k; = lim 7" )i~ |¢in| [|Xin|| < o, and which now can be made arbitrarily

small for small 6. Sup in the above inequalities up to the penultimate one is taken

overall 2, ¥, |y — | < 6 and all ¢; ||[r — &|| = a. The proof is completed.
LemMMA A2. Let the conditions of Theorem A3 be satisfied. Then for each fized t,

(?6) limp,e Pn[sup—oo <z <4 |Wn(t; .’ZJ) - Wn(o, a’)l = 6] =0

for every e < 0.



WILCOXON TYPE REGIONS IN MULTIPLE REGRESSION 1971

Proor. (26) will follow if we show
(1) limnse Pu[|[Wa(t,z) — W,(0,2)| = €] = 0 for every ¢ > 0, and that
(ii) for every e = 0

lims,o liMuse PoulSupia—y <5 |Wa(t, ) — W.(0, z)

For, if (i) and (ii) are satisfied, then the stochastic process {|W.(t, ) —
W.(0, z)] —w =< z = + o} is relatively compact, with degenerate process,
degenerate at zero, as its limit. However, from the inequality

SUpP|z—y| <h |Wn(t, x) - Wn((); ) — W, y) + Wa(0, y)l
S SupPeyi zn [Walt, ) — Walt, ¥)| + subloyi < [Wa(0, ) — Wa(0, y)|,

(ii) follows immediately by applying (7) to W.(t, ) and W,(0, z) separately
It remains to prove (i).
By definition

(27) Walt,z) — Wa(0,2) = 2D iy il I (Vin < z + 8ia(t))
—I(Yin £ 2) — pin(t, ) + pin(0, 2)}

where pi(t, ) is exactly the p.,(x) defined by (13). Notice in (13) pu(z) de-
pends on t through §;» = 8:,(t). Let

(28) Uu(l,z) = {I(Ym bin(t) Sz) —I(Yi S ) — pun(t, ) + Pin (0, 313)}.
(28) and (27) yield
(29) Walt,z) — Wa(0,2) = 07D 2y cinUa(t, ).

Now for each ¢, « fixed, Ui (t, z) are independent random variables and have
means zero. If we show that the variance of the above sum goes to zero, we will
have completed the proof in view of the Chebychev inequality. But

Var ({W.(t,z) — Wa(0,z)})
(30) =n"Y,  Var (Un(t, z))
= n 2t el Var (Ua(t, @) + 07 2" ad, Var (Ui(4, 2))

where Y7 and Y~ are the summations over those 7 for which 8:,(¢) = 0 and
dm(t) = 0 respectively.
Let 6:(t) = 0. Then,

Uin(t,z) = [I(2 < Yin £ @ + 0in(t)) — {pan(t, &) — pin(0, 2)}]
where 2 = max (&, 8:»(t) ). Consequently, in this case,
Var (Ua(t, ) = [F(z + 8:(t)) — F(2)I[1 = pin(t, 2) + pin(0, 2)I"
+[1 = F(z + 8 (1) + F(2)llpin(t, 2) — pin(0, 2)I",
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Now, since F is uniformly continuous and max;<i<x dm(t) — 0 as n — oo, it
can be easily seen that
(31) e, Var (Ui(t,z)) >0 as n— .

The case when 8;,(t) < 0 can be handled similarly. Therefore, combining the
above remarks, (30) and (31), we can conclude (i). This terminates the proof.

LemmA A3. Let the conditions of Theorem A3 hold. Then given an e¢ > 0, there
isan € > 0 such that for each Jized to

(32) limg.o limge PulSUpiz—yi <5 SUPji—toy < [Wa(t, 2)
— Walt,y) — Walto,z) + Walto,y)| = ¢ = 0.
Proor. Let i
Talty 4, 2) = 0 i call(Yin = 8a(t) S y) — I(Yin — 8an(t) < )]
and J,(t, y, ) = EJ.(t, y, x), so that
Wa(t,y) — Wa(t,z) — Walho, y) + Walh, y)
= [Ju(t,y, ) — Ju(to, y, )] — [Ja(t, y, 2) — Ju(ho, y, 2)].

Therefore, in view of Lemma Al, it will be enough to prove that given an ¢ > 0,
there is an € > 0 such that for each t,

(33)  lims,o limye PulSUP|o—y <6 SUD jt—tyy < |n(ty 4, 2)
- ,,(to,y,x)l = 6] = 0.
Without loss of generality let # < y. Assumecs,, = 0,1 =< 7 < n. Note that, with

(34) Nin(€) = supyep zer [0 (t)] = 072 || Kol
we have
(35) 8in(t) = 8in(to) + Nin(€), 1<i<n.

Combining (35), (36) and the fact ¢;, = 0, with z < ¥, one can see that
Ja(t y, @) — Jullo, y, )]
< n 7 calI(@ + Sin(l) — Naa(€), ¥ 4 din(t0) + Nin(€)]
— I(z + du(t), y + diu(t0)]}
(36) = 07 i calI(@ + bin(t) = Nin(€), @ + bin(t)]) + 07 e cinl I(y
+ 8in(to), ¥ + Binlto) + Ain(€)]}
where I(a,b] = I(a < Y4 = b) for any @ < b. Similarly one sees
(B7) Waltyy,2) = Jult,92)] 2 =0 2ims cinlI(m 4 in(to), & + Sin(to)
+ Mn(e’)]} - -%Z':‘Ll canlI(y + din(to) — N‘n(el), Y + 0am(b)]}-
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Now define stochastic processes
M,,(x) = n_’z?-l Cm{I(x + ain(to) - )\in(e’)’ z + ain(to)]

— F(z + dia(to)) + F(z + dim(ts) — Nin(€))}.
Observe that

(38) sup, [first term on the right hand side of 36| = sup, M.(z)
=+ sup. |n_*2?=l cnl F(x + 6in()) — F(z + din(to) — Mﬂ(el))}l-

Now observe that since F has bounded and absolutely continuous density f, we
have

sup, [0 cul F(z + 8in(to) — Nin(€)) — F(z + 8in(to)}]
€N 2 [cin] || Kinl| sUD f(2 + 8in(to))

’
= ek

IIA

where k. is such that
1iMpae 272 [Cin] || Xin| SUPs f(& + 8in(to) = kz,s

the existence of which is guaranteed by assumption.
So we choose ¢ such that ke < ¢/2. Next we will show that sup, | M.(z)| — 0

in P,-probability. B
First observe that for each z,

litpae Var (Ma(z)) £ liMpsw 070 chalF (2 + 8in(to))
— F(z + 8im(t)) — Ain(€)] = 0,

o0 that finite dimensional distribution 7 of M, tends to degenerate distribution,
degenerate at 0. Next observe that, for z < 2, (z > 2z is similarly handled )

|Ma(2) — Ma(z)
= W canlIle — Ain(€') + Sin(la), 2 + Sin(be)] — Ilz + 8ialto)
— Min(€), T 4 8in(to)] — F(2 + 8in(ts)) + F(2 — Nin(€') + in(to)
+ F(x + 8in(ts)) — F(@ + 8ia(ts) — Ain(€))}]
(39) = In—§2?=1 cn{Ilz + din(to), 2 + din(to)] — F(2 + din(to)
+ F(z + 8a(t))} — 0 2 i canlIle + 8in(to)
— Nin(€), 2 + dinlts) — Ain(€)] — F(2 + 8in(t) — Nin(€'))
+ F(z + 8im(to) — Nin(€))}]
= [ {Walto, 2) — Walte, z)} — {(Wa'(to,2) — Wa*(to, 2}

where W,* is defined in the remark after Theorem A3. This relation, conse-
‘quently, along with (7) and the remark after Theorem A3, gives us

SUP|z—y| <8 |Mn(x) - Mn(y)l —0
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in P,-probability asm — «, then § — 0. Therefore {M,(z); — 0 < 2 = + o} —)
0 and hence sup, |M,(z)| — 0 in P,-probability.

Therefore, if we choose an € such that ke’ < ¢/2, we would have then made
the first term of the right hand side of (36) arbitrarily small for arbitrarily small
¢, and large n. It may be shown similarly that for the same choice of e', the sec-
ond term on the right side of (36) can be made very small for large n. Again a
similar argument as given above will show that sup |right hand side of (37)] — 0
in probability. Thus we have proved the theorem whenc;, = 0,1 = ¢ < n. For
{cm} 1 < i < n, with variable sign, we use decomposition of ¢ = cin — Cin
into positive and negative parts and the result then follows because of linearity
of J, function in {¢:,} and the above argument for nonnegative {c:,}’s. The proof
is terminated.

LEMma A4. Under the conditions of Theorem A3, for every ¢ > 0 and any fized
0<a< o,

(40)  limgo liMpow Pa[SUPz—y| <6 SUPtev@ |Walt, ) — Wa(t, y)
- Wn(o’x) + Wn(o) y)l -2— e] = 0’

where V(a) = {t; [t]| < q}.
Proor. Given an ¢ > 0 choose an ¢ > 0 such that (32) is satisfied, the exist-
ence of which is guaranteed by Lemma A3. Also choose vectors t; ¢ V(a),j =

1, - - -, r such that for every t £ V(a) thereis a t; such that
(41) It =t = ¢
Then

P,[supjo—yi <8 SUPteva [Walt, z) — Wa(0,2) — Walt,y) + Wa(0,y)| 2
(42) < 2051 Pafsupey sup iy s |[Walt, 2) — Walt, y) — Walls, @)
+ Walti, )| Z ¢/2] + 251 Palsupiosi <5 [Wa(ts, @)
— Walti, y) — Wa(0,2) + Wa(0,y)| = ¢/2].

The first term of (42) goes to zero as n — «, by Lemma A3, and the second term
goes to zero as n — oo ; then § — 0, by (ii), which appears in the proof of Lemma
A2, This terminates the proof.

LemMA A5. Under the conditions of Theorem A3, given an ¢ > 0, there is an
€ > 0 such that for each fized x and to ,

(43) lim e Pr[SUP g e-tor <er | Walt, ) — Wallo, z)| = ] = 0.
Proor. Note that
Wa(t,z) — Walto, x)
(44) =0 lcnll(Yi £ 2 4 8u(t)) — I(Yin < & + (b)) — F(
+ 0i(8) + F(z + din(bo)]
= [Ja(t, 2) — Jalle, 2)] = [Ja(t, 2) — Jault, ).
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However,

SUP | e—tot et [Ju(t, 7) — Jullo, z)l

< SUPjetor e 02 el [F(2 + 8im(t) — F(2 + in(t))|
S €n7 i el | Kinl| sups f(2 + Sin(to))
< ks for large mn.

Thus, if we choose € such that ke < ¢/2 and such that

limnse PalSUP ji—toy ger |[Ju(t, ©) — Jullo, )| = €] = 0,

then (43) will be proved.
Again assume ¢;» = 0; then

SUp | 1—t91 < [Jn(t, ) — Julto, )]
S0 Y call(Yin — 8in(te) S @ + Nal(€)) — I(YVin — 8in(to) < )]
Y eid (@ < Vi — dim(te) £ 2 4 Min(€)) |
M¥ (@) + 07 2 culF(@ 4 Ma(€) + 0in(h)) — F(z + dinlto))].
where
M () = w2 calI(@ + 8in(to), @ + 8in(t) + Nin(e)]
— F(x + din(t) + Nin(€)) + F(z + din(t)}.

Now it is easy to verify that lim,.. Var (M,*(z)) = 0 for each z. Moreover, for
¢ given above, the second term is at most ¢/2. The lower bound on [J,(t, ) —
Jx(to , )] may be handled similarly. Again, for {c:} with variable sign, the de-
composition into negative and positive parts is used. The proof is terminated.
Lemma A6. Under the conditions of Theorem A3 for every ¢ > 0 and each x fized,

It

I

(4:5) limn-mc Pn[suptcV(a) |Wn(t7 x) - Wn(07x)| —2— 6] = 0

forany 0 < a < .

Proor. For any ¢ > 0 choose an ¢ > 0 such that (43) is satisfied. Choose
t1, -+, t. € V(a) such that for every t ¢ V(a) there is a t; such that ||t — t;|| <
¢'. Then,

P,[supevi sup|Wa(t, z) — W,(0,2)| =
(46) S 2 Palsupyeii ze [Walt, 1) — Wa(t;, 2)| 2 ¢/2]
+ 2 Pu[Wa(ts, 2) — Wa(0,2)| 2 ¢/21.

The first term of the right hand side tends to zero because of Lemma A5 and
the second term tends to zero as n — o« because of (26). Hence the lemma.

Finally, we are in a position to state one of our main theorems.

TueoreEM A4. Let F be absolutely continuous with absolutely continuous and uni-
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Sformly bounded density f. Also let {x:,} satisfy (1.2) and (1.3). Then for every e > 0
(47)  liMnsew PalSUP_ow <o <o SUPLv(e) |[La(t, ) — La(0,2)| = €] = 0.
As a consequence
(48) Hmn,e L(SUPsev, @) Ln(t, ), —0 S 2 = 4 )
=&(L'(zx), —o0 Sz = +w»);
(49) lim £(Sup, SUPev,@ La(t, 2)) = £

Jorany 0 < a < .
Here £ is law essentially determined by a Gaussian process concentrated on con-
tinuous functions and £ is a process determined by a Gaussian process with almost
all sample paths continuous.

Proor. In the W, process we now take

(50) Cin = Tiy, 1=17=n,
and then the relationship
(51) L.(tn} ) = Wa(t,z) — 2W.(t,0) if z =0,

—Wa(t, x) if 2<0

]

holds with probability 1.
The claimed result (47) will follow if we show that

SUpP |t) <a SUP|s—yl <8 ILn(m_%: r) — Ln(m_%, y) — La(0, ) + La(0, ?/)I -0

in P, probability and that the finite dimensional distribution of {|L.(tn %, &) —
L.(0,2)], —o = x £ + =} converges to degenerate distribution—degenerate
at zero, uniformly in all ¢ ¢ V(a). But the latter fact follows from Lemmas A5
and A6 and the relations (50) and (51), while the former one follows from (50)
and lemmas Al-A4. (48) and (49) are straight consequences of (47), and
{La(0,2), —0 = 2 £ 4+ x},n = 1, is relatively compact with a continuous
Gaussian limit, which follows again from (50) and (51) and Theorem A3 with
t = 0. The proof is completed.

Our next problem is to obtain a version of the above theorem for Z,.(t, |z|)

processes.
TurorEM A5. Under the conditions of Theorem A3 for any ¢ > 0

(62)  liMnocw PalSUP—w <o <0 SUPtev, @ |Za(?, |2]) — Za(0, [2])] 2 €] = 0.
Consequently
(53) My £(SUP, SUPtev, @) (Zn(t, |2])) = £1,
(54) liMpoe £(SUPsev,@ Za(t |2]), —0 S 2 S + o)
=&(Z(z); —o = v = +®)
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where £; 1s determined by a Gaussian process with continuous sample functions and
Z 1s essentially a Guassian process with continuous sample paths.
Proor. Again we will use the results about W,(t, ) processes. Note that if

(55) cin = 1, 1<¢{=n,
then
Za(tn ™ o)) = 07 2 AT Y in — 8ia (V)] S Jal] — BI[Vin — 8in(t)] < J2l},
(56) = Walt,z) — Wa(t, —z) if 2z =0,
= Wa(t, —z) — Wa(t,z) if z <0,
= Wa(t, [z]) — Wa(t, —lz]) —o <z <+
holds with probability 1.
Therefore

(57) Za(tn™, [al) — Za(0, lal)
= [Walt, [2]) — Walt, —[2]) — Wa(0, [2]) + Wa(0, —[z])].
And it follows that
SUPevey |Za(t0 5, [2]) — Za(0, |2])]
(58) = supwv |Walt, [2]) — Wa(0, |2])| + supeev [Wa(t, —|z[)
— Wa(0, —lz|)|
— 0 in P,—probability

by Lemma A6. This tells us that finite dimensional distribution of the processes
{|Zn(tn~%, |z|) — Z.(0, |z|)|}, » = 1 is degenerate at O in the limit, uniformly in
teVia).

Next we similarly observe that

sup |Za(tn 2, [2]) — Za(0, |z]) — Za(tn ™, [y]) + Za(0, [y))|
(59) < sup |Wa(t, [z]) — Wa(t, +y]) — Wa(0, |z]) + Wa(0, [y])]

where sup on either side is taken over all z, y; |z — y| < § and all te V(a). But
this tends to zero in P,-probability as n — « and then § — 0 by Lemma A4.
Thus, fluctuations of our processes are small, uniformly in ¢ ¢ V(a), in probability
for large n. Hence (52) (53) and (54) follow from this fact and the fact that
{Za(0, |z]) —0 £ 2z £ 4o} n = 1is a relatively compact sequence with a
continuous Gaussian limit.

From the above theorem and the well known Glivenko-Cantelli theorem for
empirical cumulatives, the following corollary may be concluded.
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CoROLLARY A5.1. For every ¢ > Oand any 0 < a < o«
(60) litnoco PalSUP2 SUPwv,@ 7 | Za(t, |2|)| = €] = O.

Butn*Zu(t, |e|) = Ha(t, |2]) — Ha(t, [2]).
Define for0 £y £ 1,

(61) H,\(t,y) = inf {x = 0; H.({, z) = y},
0,7t y) = inf {z 2 0; Ha(t,z) = y}.

Because of Corollary A5.1 we have
COROLLARY A5.2. For every e > 0,and an a,0 < a < «,

(62)  lim Pa[supo<y <1 SUPeev,@ [Ha (4, y) — Ha (8, y)| = ¢ = 0.

We now state and prove our last
THEOREM A6. Let the conditions of Theorem A3 and Lemma Al be satisfied.
Then for every ¢ > 0 and an a,0 < a < =,

1iMnocw PalSUDo <o <1 SUPLeva@ | Ln(ty Ha (2, ©)) — La(t, Hy (4, 2))| Z €] = 0.

Proor. From Theorem A4 it follows that for any n > 0 and ¢ > O there is an
e,y = Mo and a 8o = &, such that n = n, implies

Pu[sup; Supjz—yi <iy [Ln(t, ) — La(t, y)| Z €] S 0/2.
Similarly from (62) it follows that there exists n; = ni,,, such that n = n, implies
P[sup; supo<y <1 [Ha (8, y) — Ha (4 y)| 2 8] < 0/2.
Let
A, = [sup: supo<y<i [Ho(t,y) — Ha (4, y)| < 8 and
SUp; SUPjosi <5 [La(t, ) — La(t, 2)[ Z €]

Then for n = max (n, ns)
Pulsup: supo <y <1 |La(ty Ha (4, 9)) — La(t, Ha (4, )| S € Z Palda] 21— .

Note that sup; is over ¢ ¢ V,(a). The proof is terminated.

ReMark. All through the above discussion we assumed that our random varia-
able {Y i} are defined on [— «, 4 »]. This does not change anything in our basic
problem for P[Y: = £«] = 0.
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