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INEQUALITIES OF CHEBYSHEV TYPE INVOLVING
CONDITIONAL EXPECTATIONS

By C. L. MaLrows ANpD DoNALD RICHTER

Bell Telephone Laboratories and New York University

1. Introduction. Our results concern a real scalar or vector valued random
variable X and its associated probability measure P. By an “‘inequality of
Chebyshev type” we mean a bound on P(4) = P(X ¢ A) (for some given set A )
which is valid for all random variables having certain given moments. Such
inequalities can also be interpreted as giving bounds on certain functions of the
moments in terms of other moments and probabilities such as P (4 ). For example,
let X be real-valued with mean x and variance o® > 0. Let A be a set with measure
P(A) > 0,and let E(X | A) be the conditional expectation of X restricted to A.
It is shown below that

(1.1) PA)=/@ + EX|A) — u))
or equivalently that
1.2) |E(X|A) — ul S o(1 — P(A))/P(A)).

Our main interest is in the derivation of new results such as these, involving
conditional expectations. In Section 2 we apply the Schwarz inequality to ob-
tain several results, including (1.1) and (1.2). Section 3 develops analogous rela-
tions using the Hoélder inequality. In Section 4 we show how results such as (1.2)
can provide useful inequalities for the quantiles of a distribution. In Section 5
we use Markov’s method to derive further inequalities. Section 6 applies some
of the previous results to obtain bounds on the standard deviation of a sample in
terms of certain partial means of order statistics. Throughout, we point out
relations between the new inequalities and known results.

The authors wish to acknowledge their special debt to Professor Milton Sobel
who was a major participant in this research at an early stage [6]. With his
kind permission, we have incorporated his contributions into this paper. We
are also grateful to William L. Roach and R. B. Murphy for their useful sugges-
tions, and to a referee for suggesting several improvements to the exposition.

2. Results based on the Schwarz inequality. All sets introduced in this paper
will be assumed to be measurable. The complement of the set A will be denoted
A°. The conditional expectation of X in a set A will be denoted by E(X |A) =
f 42 dP/ f 4 dP; whenever this definition fails because P(4) = 0, the inequality
containing the symbol E (X | A) is to be understood to be asserted no matter
what (finite) point in the convex hull of A is substituted for E (X | A). The in-
dicator function of a set A will be denoted ¢4 ().
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First we shall derive (1.1) and (1.2).
THEOREM 2.1. If X is real-valued with mean u and variance o” then for any set

AwithP(A) =p>0
EX[A) —p)? =1 - p)/p

There is equality if and only if either p = 1, or the support of P consists of at most
two points.

Proor. Without loss of generality we may assume p = 0. Write f(z) = =,
g() = ¢a(@) —p.Then [fgdP = pE(X | A), [fdP =&, [§'dP = p(1 — p),
and the result follows immediately from the Schwarz inequality f fgdP =
([7dP [ ¢ dP)}. There is equality iff for some Ai, As, Mf(X) = Mg (X) ace.,
8o that either ; = 0 (and p = 1),0or X = A(1 — p) or —\p a.e.

Taking 4 = 0 and setting 8 = E(X|X = b), we have

COROLLARY 2.1.

(2.1) PX zb)=d/0@ +6)
with equality if and only if X has a two-point distribution, on 8 and —d”/B.

For comparison, the standard one-sided Chebyshev inequality (see, e.g.,
[71) gives (forb = 0)

(2.2) P(X zb) <o/ + ).

The similarity between (2.1) and (2.2) is striking; (2.1) is uniformly the stronger
result since 8 = b. Many of the standard Chebyshev inequalities can be sharpened
in this way by introducing conditional expectations, as we shall see throughout
the paper. Theorems 3.1 and 5.2 below give two generalizations of Corollary

2.1.
Forr =1, 2, - -- we have from Theorem 2.1

23) EX4) - EX)) = EX") - EX)))HA - p)/p.

Applying this to the variable |X|, with A = {z:x = b}, and rearranging we
have
CoroLLARY 2.2. If E(|X|") = ve, v = 1,2, --- then
P(X| 2 b) £ (n — »))r — »' + [E(XI"[IX] 2 b) — »J} 7"

Ford > V,’ﬁl, replacing the term in square brackets by " — », gives Cantelli’s
inequality (see, e.g., [7]).

With » = 2, (2.3) gives a bound for a conditional variance:

COROLLARY 2.3.

Var (X|4) S E(X*|4) S e+ (s — ») (1 — p)/p}

Now we generalize Theorem 2.1 by introducing & arbitrary sets. Our interest
is not so much in the general result as in some special cases.
. THEOREM 2.2. Suppose X 1is real-valued with mean u and variance o*. For any
sets Ay, ---, Ai, let p, = denote the vectors with components p; = P (4;),
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= p:E (X | A;) respectively, and let Q denote the matriz with elements Q:; =
P(A; n A;). Then for any real vector w,

W (r — up))’ = " (@Q — pp")w.

There is equality iff for some scalar A, Var \X — w'p (X)) = 0, where ¢ (x) s
the vector with components ¢4, (x).

Proor. Clearly f<de = p, f:ude =, f 0" dP = Q. The results follow
immediately from an application of the Schwarz inequality with f(z) = ¢ — &,
g@) = w'(p@) — p).

Several special cases of this result will now be noted. First, take k¥ = 2 and
choose w to satisfy w™p = 0. After some reduction of the conditions for equality
this gives

COROLLARY 2.4. For any sets A1, A,

pip2(B(X | 41) — E(X[4:)) £ o’ (m + p2 — 2P (d1n 4y)).

Both sides vanish if ¢ = 0 or if P(A1 0 A5°) + P (A n A;) = 0; if the righi-hand
expression is positive, there is equality if and only if X has at most a four-point
distribution with probability q; assigned to points x; (7 = 1,2, 3, 4) where

PL=q + g, (p1 + p2)xs = a1 + Pr2e,
P2 = ¢ + g, (p1 + p2)2s = P11 + po2,

meAinAS, xe A’ n Ay, x5 Ain Az, za € Ar° 0 AY°. (These relationships imply
Ty = l»‘-)

Notice that if 41, A, and p1, p2 or ¢1, g2, ¢s are prescribed, equality may not
be attainable. This is the case for example if p1 + p2 < 1 and A; and 4. are
overlapping or adjacent intervals, since this would imply 4 ¢ A1 U Az with ¢4 > 0;
orif 1 = g = g3 < %, since this would imply 23 = x4 with g3 > 0, g+ > 0.

We can obtain a result that does not involve P (4; n 4.) if we notice that for
any two sets P(4:) 4+ P(4:) — 2P(41n A;) = 2 — P(4:) — P(4,), with
equality iff P(41u 4;) = 1.

CoroLLARY 2.5. For any sets A;, 4,

Cpp(B(X | A1) — E(X|45)) £ o" min (1 + 92,2 — p1 — P2).

Both sides vanish if & = 0 or if P(A1u A;) (1 — P(A1n A4s)) = 0; if the right-
hand expression 1s positive there is equality only if X has at most a three-point dis-
tribution (1) on points x1 & A1, xs & Az and (pixy + pexz)/ (p1 + p2) € (A1 UAL)’
with respective probabilities p1, P2, 1 — p1 — P2 if p1 + p2 = 1, 0r (ii) on points
21e Ain Ay, 2 e A’ n Az and (a1 + pawe)/ (p1 + p2) € Arn Az with respective
probabilities 1 — pa, 1 — D1, p1+ P2 — 1ifpr +pe 2 L

Setting A2 = A;° in Corollary 2.5, or setting ¥ = 1 in Theorem 2.2, gives
Theorem 2.1 again.
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We get a different result from Theorem 2.2 if we choose w so that its elements
sum to zero. Taking k£ = 2, we obtain
COROLLARY 2.6. If A1, A» are disjoint,

P(EX A1) — p) — p(EX|42) — #))2 = 02(101 +p:— (0 — P2)2)-
Now take u = 0, A; = {z:x £ —b}, A, = {z:z = b}, and let
B =E(X|||X] z b).

Then poE (X | A2) — pifi(X | A1) = B(p1 + p2), and from Corollary 2.6 we find
COROLLARY 2.7.

P(|X| z b) = 4/8".
Since 8 = b, this is a strengthened form of the standard two-sided Chebyshev
inequality (see, e.g., [7]).

3. Results based on the Holder inequality. Using the Hélder inequality
I fgdP| < (JIfI" dP)’—l(f lgI’dP)" " (r + s = rs > 0) in an analogous manner,
we can obtain inequalities involving isolated absolute moments (and a con-
ditional expectation). We give two examples of this.

TaeoreM 3.1. If X is real-valued with mean u and rth absolute moment (about u)
ve, 7 2 1,and A vs a set with P(4) < 1, then

m,(PANEX|A) —ul < »"
where -
m.(p) = (@ +p A —p)) .

There s equality only if the support of P contains at most two points.
Proor. We may take u = 0. Suppose » > 1. From the Hoélder inequality with
fl@) =z,9(@) = ¢a(x) — v(0 < v < 1), and writing p for P(A4), we have

pIEXIA) = @A —v) + 0 —p)) .
Choosing v to minimize the right-hand expression, i.e.,
/A =)= /1 —=p)",
we obtain
PIEX|A <% @7+ A =-p))

which is equivalent to the result given. Nontrivial equality implies X = A (1 — v)
or —\y a.e. The case »r = 1 is easy (and analogous).

Notice that m,(p) is monotone in p. Simpler bounds for P (4 ) can be obtained
from the theorem by using the elementary inequalities

p = (m®)) 0<p<l1
(3.1) p £ 3m.(p) 0=p<1
p=1— (p/m@))"™ pPo=p<1
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We point out some special cases of Theorem 3.1. Taking» = 1 and ¢ = 0 in

the theorem gives
CoOROLLARY 3.1. If E(X) = 0, then

P(4) = 3E(X])/|EX|A).

Replacing X by X* — E(X?) in this corollary gives an alternative to Corollary
2.3.
COROLLARY 3.2.

E(X*|A) £ E(X*) + 3E(X" — E(X")|)/P(4).
A variety of results can be obtained by replacing X by X" — E(X") in the

theorem. Taking A = {z:z = b},b > 0 we have E(X"| A) = b". Hence
CoroLLARY 3.3. If p = P(X =2 b),b" > E(X") then

p= (m(p) = E(X" — EX")[)/ (0" — EX"))".

The case r = 1 is especially simple.
Our second application of the Holder inequality gives a result that generalizes
Corollary 2.7 and can be compared with Corollary 3.1.
TuaeorEM 3.2. If X s real-valued with rth absolute moment (about zero) v, ,
r = 1, then
P(4) = v/(B(X||4)).

There is equality only if P(X {0, a, —a}) = 1 with0ec A°, +ac A.
Proor. The case r = 1 is trivial. For r > 1, apply the Holder inequality with
f@@) = [al, g(x) = eua(x).

In the case A = {z:|z| = a}, this theorem gives a strengthened form of the
usual Chebyshev inequality p < »./a’.

4. Inequalities for quantiles. Suppose X is real-valued with mean p and
variance o*. We say that 6, is a p-quantile of X if

P(X <6,) =p=PX =06,).

Inequalities for 6, can be obtained from the results of Section 2. Thus, from
Theorem 2.1, taking A to be {z:z < 6,}, {x:x = 60,} in turn we find

1) w—o(Q—p)/p)sEX|X<6,)<6, 2 EX|X 2 0,)
<u+o@/A—p)

Similarly if p < ¢so06, < 6,, we can use Corollary 2.4 to show

42) 6,— 0, < EX|X26)—EX|X=6)<e0 + 01—

The outer inequalities in (4.1) and (4.2) have been obtained previously
(Moriguti [5]).

» Other inequalities for quantiles can be obtained from the results of Section 3;
thus setting v1 = E (|X — p|) and applying Corollary 3.1 twice we obtain

—n/pSEX|X<6,)<0,<EX|X20,)su+ i/ —p)
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For the median 6 , the outer inequalities give |03 — | < », which is stronger
than the oft-quoted result [§y — u| < ¢, and which can be proved directly very
simply; in fact by direct arguments

u— 6l SE(X —6) =wn=o.

If the quantitiesr = P(X < p) and s = P(X > u) are known, the above in-
equalities can be improved upon. For example, »; < ¢ can be strengthened to

n < 20(rs) (r + s)™ < o (see Majindar [2]). We treat in detail an improvement

of (4.1). For convenience take u = 0, and consider first the question of an upper
bound for 6, . If s < 1 — p, then 6, < 0. Assume s = 1 — p, so that 6, may
be positive; suppose 6, > 0. Denote P(X = 6,) by £ so that t = 1 — p, and
let{, = E(X|X = 6,) > 0. Then from Corollary 2.5 we have

(4.3) & — BEX|X <0)) =@+ )/
Since p = 0, t£, + rE(X | X < 0) £ 0. Thus

b — EX|X <0) 2 &+ thy/r =&+ 1)/
Now it follows from (4.3) that

r } r !
0<0”§£”§0(t(7—+r)> éa((l—p)(l—p+r)>'

Summarizing, we have proved

" ' >1-—
"<<1—p><1—p+r>> fELTh
0 s<1—np.

0

IIA

IIA

Similarly a lower bound for 0, is

vz =o(5)
AV ) A
0 r < p.

v

b,

v

For p = %, these results were reported previously in [3]. Weaker bounds were
given by Shah [8].

5. Results obtained by the Markov method. If a probability measure P
on a space X is known to satisfy certain moment constraints, and if 4 is a set
with indicator function ¢, , Markov’s method is to construct a function f, satis-
fying fa(z) = ¢4 (x) for all  in %X, such that E (f4 (z)) can be evaluated using
only the known constraints. Then

P(4) = E(pa(X)) = E(fa(X)).

In our applications, we assume that some conditional expectation is specified;
this gives a new flexibility in the construction of the function f, . The inequalities
obtained by this method can often be demonstrated to be sharp by constructing



1928 C. L. MALLOWS AND DONALD RICHTER

a measure P that assigns unit probability to the set where f4, = ¢4 . For a general
discussion, see [1].

Our first application of this method is straightforward.

TrarEoREM 5.1. If X 4s nonnegative with E(X) = 1, E(X|X = b) = B, then

P(X =2 a) < min (1, 1/a) 0<a<hbd,
< 1/8 b<a<s8,
= @—-0b)/Ba—-b) B=a

These inequalities are all sharp.

Proor. Wemust have 1 < 8,b < 8.8et ¢;(x) = 1iff x = ¢. We construct f(x)
to be linear in each of (0,b) and (b, ® ). We takef(x) = 1if0 < ¢ < min (1,b);
f@)==/aifl S a<bfx) = (@ — (@ — B)n(z))/Bifdb = a<p;and
f@)= (B—=>b)x+blx—B)(x))/B(a — b)if B < a. The inequalities in the
theorem follow at once. To prove sharpness, we need only observe that in each
case there exists a distribution satisfying the assumptions and with P(Q) = 1,
where f = ¢, throughout Q; it suffices to take @ = {a, 8} if 0 < ¢ < min (1, 8),
Q=1{0,a}if1<a=<bQ =1{0,B8}ifb =< a < pB,and Q{0,b, a} if 8 < a.

The technique used in obtaining the above theorem is of great value in more
complicated situations; in general, from a consideration of the forms of suitable
functions f, we are often able to guess at the form of an extremal distribution;
if a distribution of this form can be fitted to the given moments, the required
bounds follow at once. In the following theorem, which provides corresponding
results for unrestricted real variables, an awkward explicit construction of f can
be avoided.

TueoreM 5.2. If E(X) = 0, E(X*) = 1, E(X|X = b) = B, then

PX=za)=1 a < min (0, b),
<1/(1+d) 0=<a<hb,
<1/(1+ 8 b<a<B,

S (Q+b)/(@=b)a—c) B=ga

where for 8 < a, ¢ = c(a) s the negative root of
(5.1) Bd — (B —b)a—+ b8 — 1)c — B = 0.

These bounds are sharp.

Proor. Take f(z) = 1if @ < min (0, b); f(z) = A + az)’/(Q + &) if
0=a<bif@) = (1+2)°/(1+6) —28@—Be()/1+F)ifb=<a<p;
and if 8 £ a take f of the form A (¢) (z — ¢)’ — B(c) @ — B)es (z) with ¢ < 0,
A (c), B(c) > 0 chosen so that f(b) = 0, f(a) = 1. The first three bounds in the
theorem follow immediately; we can demonstrate sharpness by constructing dis-
tributions attaining the bounds concentrated on {b — 0, b, —1/b} if a < b < 0,
on {—1/b,b} ifa < 0 < b,on {—1/a,a} if 0 < a < b, and on {—1/8, B} if
b<a<pB.ForB<awefind P(X = a) < A(c)( + ¢’) and we have to choose
¢ to minimize this. We can avoid differentiation and simultaneously prove sharp-
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ness by constructing a distribution concentrating its probability at the three
points a, b, ¢ where f = ¢,. The moment equations reduce to (5.1), and
P(X =a) = (14 bc)/(@a — b)(a — ¢). Evidently A (c), B(c) could now be
determined explicitly, but this is unnecessary; E (f (X)) must equal P(X = a),
and the theorem is proved.

In our next application the conditions for sharpness are more subtle, and we
do not give a complete discussion.

TaroREM 5.3. If X = (X1, X2, -+, Xi)" s a k-dimensional random vector
with B (X) = 0, E(XX") = = positive definite, and if B is a set with E (X | B) = 8,
then

(5.2) P(B) = 1/(1 + 8'Z78).

This bound is sharp if 8 € B and 872"z # —1 for ol z ¢ B.
Notice that B is not required to be convex.
Proor. Denote the right-hand side of (5.2) by p. Choose

f@)= QA+ p8"27(x — B))" — 2pes ()BT (x — B).

It is easily checked that f = ¢z, E(f(x)) = p, and the inequality (5.2) follows
immediately. For z ¢ B, f = ¢p implies 827 (x — 8) = 0, while for z ¢ B’,
f = o5 implies 8”2 "¢ = —1. Under the assumptions stated in the theorem, the
construction of Marshall and Olkin ([4], page 1004) provides a distribution that
demonstrates sharpness. If 8 5 0, it assigns probability p to the point 2 = 8, and
distributes the remainder amongst k& points on the hyperplane B2 = —1.
If 8 = 0, the bound P(B) =< 1 can be approached as closely as desired by a dis-
tribution of this same form.

The following corollary is equivalent to part of Marshall and Olkin’s Theorem
3.1 ([4], page 1003).

CoRroLLARY 5.1. If B is convex

P(B) < supges (1 + 8727'8)7"
This bound is sharp.
Notice that if £ = 2, the bound in Theorem 5.3 is not necessarily sharp even
if B is convex, if the final requirement of the theorem is not satisfied.
As a final application of the Markov method and as an extension of Corollary
2.1, we present without proof a generalization of the one-sided 2m-moment
Chebyshev inequality (cf. [9]).

TeEOREM 5.4. If E(X") = p,y,r =1,2,--- ,2m, E(X|X 2 b) = B,and b s
larger than the largest zéro of the polynomial
0 1 zZ -z
1 1 1 L. fom 1 M1 Mem
QZ) == B wm m o pep| s BT e
Mm  MPmgl c HM2m
" Hm Bmpr ccc em
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then
PX =z 0b) = 1/Qs(8).
This inequality ©s sharp. (The Chebyshev bound is 1/Q;(b).)

6. Inequalities for the sample standard deviation. In this section we consider
inequalities involving a finite ordered set of numbers #; < 2, < --- < z,. To
avoid trivialities, assume z; < z, . We apply results from the previous sections
to the distribution defined by P(X = ;) = 1/n(f = 1,2, --- , n).

For integers r, ¢ (1 = r,t = n) define lower and upper means as follows:

—1 7 —1 n
U =1 D i, v =t D 1 T

We write & for 4, = v, , and s forn™" Z (z; — &) If we now define w, to be the
mean of any subset of r numbers chosen from z;, z,---, x., we have
ur < wr = v,, and from Theorem 2.1 it follows that

6.1) (w, — &) =1 ' (n — r)s.

Equality is attained iff w, = 21 = 2, and Zr41 = Zn, OF Wr = Tppy1 = T, and
Z1 = &n_, . Similarly from Corollary 2.5, if w, and w,” are the means of any two
subsets, we have

(6.2) (w, —w”)Y = () "nmin (r + ¢ 20 —r — 1)

and the conditions for equality are easily deduced.
Similar results may be obtained from the theorems of Sections 3 and 5.
The main result of this section is
TueoreMm 6.1. If r + t < n, then

m@, — ur) = 8 < M@ — u,)

where
m' = ri/n(r +t), M = max{n[n’/4], (n — 1)7*/W°, (n — 1)i*/n’}.

These inequalities are sharp.

We defer the proof until the end of the section.

If 1, ---, z, is regarded as a sample, then this theorem gives bounds on the
sample standard deviation s which are linear functions of the extreme order
statistics. These bounds are useful for routine checks of a computation, but may
also prove of value in providing approximate tests and confidence intervals when
some central sample values are censored. In the case r = ¢ = 1, the theorem
gives a well-known result (see [10]). When the sample is approximately Normal-
shaped, the tightest lower bound for s is obtained when r = ¢ = 0.27n, the bound
being then 0.81s; the tightest upper bound is obtained when r = ¢ = in} the
bound being = 1.76s, 2.06s, 2.34s for n = 25, 100, 400 respectively.
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We can use the theorem to give bounds for u, , v, separately; for example,
noting that v, — u., = n(v. — £)/(n — r), we obtain
COROLLARY 6.1.

g+ -t -1+ n - r)s

where t = max (r,n — r).

Of course, the right-hand inequality can also be obtained from (6.1). We con-
clude now with the

Proor or TuEOREM 6.1. The left-hand inequality follows from (6.2); it be-
comes an equality if &1 = &, Xt = Tns = 21+ 12,)/(r + 1), Tn y1-1= x, . To
prove the right-hand inequality, we suppose that #; < z, so that u, < v, ; since
the inequality to be established is invariant under linear transformations, we
may take u, = 0, v, = 1. Let = denote the vector (21, ---, z,), and set
X={zm<e= - £20,u = 0,0, = 1}. Writing g (z) for 3 (z; — Z)%, we
have to show that the supremum of g (z) for z ¢ & is nM”. Denote by e; the vector
whose first j elements are all zero and whose last n — j elements are all unity, for
J=20,1, .-, n. Define vectors y; forz = 1, --- , n — 1 as follows:

yi=1ri(eo—e)+e d=1--,r—1,
= e; t=7r,,n —
=t(n — i) e t=n—¢t+1,---,n—1.

Set Y = {y1, -+, Yn}. It is easy to see that the set X is compact and convex,
and that Y C &; furthermore, Y spans X since the weights w; , -+ , wa_y de-
fined by

wi=1§r_l(x,-+1—xi) 1:=1,"',7'—1,

= Ti1 — T t=1r,,n —

(n — O @ip1 — 1) t=n—t+1---,n—1,

satisfy > w; = 1, E w;y; = x. Thus the extreme points of % must be contained
in the set . Since g (z) is a positive definite quadratic form, it attains its maxi-
mum in the set Y. But

gy = @ = a7y t=1-,r—1,
=in —in"’ t=1r,,n —
= ((n —3)" —n M) t=n—t+1---,n—1;
from which the theorem follows readily.
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