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ON THE MONOTONICITY OF THE OC OF AN SPRT!

By Davip G. HoeL

Oak Ridge National Laboratory

1. Introduction. This paper presents a theorem which may be of interest to any-
one wishing to establish the monotonicity of the OC function of an SPRT. The
same theorem may also be useful in finding bounds on the probability of acceptance
when the actual value may be difficult or impossible to obtain.

In a well-known result, Lehmann [5], [6] established a sufficient condition for
monotonicity when the observations form a sequence of independent random
variables. This condition, simply stated, is that the distributions of the likelihood
ratios be stochastically monotone. This is in turn satisfied if the family of densities
possesses a monotone likelihood ratio. When the observations are not necessarily
independent, Ghosh [3] has given a sufficient condition for monotonicity; namely,
that the joint density of the observations possesses a monotone likelihood ratio.
For further discussion in this area the reader is referred to the paper by Hall,
Wijsman and Ghosh [4].

The theorem which is given in Section 2 of the paper is basically an extension of
Lehmann’s result to non-independent variables. It enables us to establish monoton-
icity for some problems in which Ghosh’s condition is not met. In Section 3 two
such examples of nonparametric type SPRT’s are given.

2. Monotonicity of the OC. Let X, = (X, ", X,,) be a random vector with prob-
ability density function p,e(x4,** -, x,,) which depends on the real parameter 6. Let

Pio,(X1,° ", X))
Piog(X 1,5 X))
be the sequence of log likelihood ratios which with the boundaries a, b define the

SPRT of the hypotheses Hy:0 =0, vs. H;:0 = 0,.
We will use the following

Z;=log i=1,2,-

LEMMA. Let H be a Lebesgue measurable function defined on the real line which is
nonincreasing and nonnegative. If F, and F, are two distribution functions on the real
line such that F,(x) = F,(x) for all x then [HdF, 2 [HdF,.

ProoOF. The result follows easily by considering |Hd(F, — F,) and constructing a
sequence of step functions increasing to H and finally by applying dominated
convergence.

In the following theorem we consider two sequences of distribution functions
F={F,} and G = {G,} and compare the probability of accepting H, when the
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distribution of (Z,, -, Z,) is F, with the probability of acceptance when the
distribution of (Z,,-**, Z,) is G,

THEOREM. Let F = {F,} and G = {G,} be two sequences of absolutely continuous
distribution functions, F, and G, being defined on n-space, satisfying

(1) Gn(zn l Zy5 "zn—l) ; Fn(zn| 215" "zn—l) and

(ii) G,(z, | Zy,° "y 2, 1) IS nonincreasing inz,," -, z,_,

or Fz,|z1," ", 2, 1) is nonincreasing inz,, "+, z,_ ,
for all n. Then Pglaccept Hy] = Prlaccept Hy).

In applying this theorem to establish that an SPRT has a monotone OC function,
we see that the requirement of a stochastically increasing “conditional” likelihood
ratio replaces the usual stochastically increasing condition used in the independence
case. An additional requirement, condition (ii), appears to be a natural one and in
most cases should not cause much difficulty.

A second application of the theorem is in obtaining bounds on the probability
of acceptance when the usual approximation techniques fail. For example, suppose
we wish to know the probability of acceptance, Pglaccept H,], but can not approxi-
mate it directly. It may be possible, however, to find a distribution G for the likeli-
hood ratios for which Pglaccept H,] is either known or can be approximated.

Further, if the conditions of the theorem are satisfied, we then have Pg[accept H,]
as an upper bound to the desired probability of acceptance, Pp[accept Hy].

PRroOF. Define the sets
A;={(z, " z)|b<zj<a for j=1,-,i—1 and z;<b}
Ci={(zy," z)|b<zj<a for j=1,""+,i}
andfori=1,---,n+1,let
0 B(za 20 = fima(Z0 s 2o DnEo 5 20| 20070020 )

where f, and g, are the densities associated with F, and G,, respectively. If it can
be shown that

)] Po(Ui-1 4) 2 P(Ui-, 4)

holds for all n then the theorem will follow. To accomplish this it will suffice to
show that

(3) Ph,(U’}:lAj)gPh,‘,,(US":lAj)
is satisfied fori = 1,---,nand all n because h, = g,and h,,, =f,. Forj <i
(4) Ph.‘(AJ') = Phi+ 1(AJ)’

therefore we need only to establish that
(5) Z'jl'=iPh,~(Aj)gz:‘=iPh.'+1(Aj)'
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We hereafter hold i fixed and let n be = i. Let I(-) denote the indicator function
and define
6 A;={z,,z)|b<z,<a for k=i, j—1, and z;<b}
forj=1i,---, n. This permits us to write
@) Z';'=iP(Aj) = jI(Ci— 1) UZZ’-:iI(Zj)dP(Zi, Tty 2y I Z;_ 1)} dP(z;_,)

where P represents either H; or H,, , the distribution functions associated with #;
and 4;, ., and where z; = (z,," "+, z;).
Next define

®) Kooy =[Y4_1(A)dP(z,|2,-,) and
KJ=5Kj+,dP(zj+1|zj) for i=i--",n=2.
Now from (1) we may write
® hiz1,m 5 2) = fio (- )91 | 202 D9uZiw 1, 20| 2)
hivi(z1,70 0, 2p) =fi—1(zi—1)fi(zi|Zi—1)gn(2i+1,'"sznlzi)'

We shall assume from condition (ii) that G,,(z,,‘zl,---,z,,_l) IS nonincreasing in
Zy," " 2,~1. If instead F,(z, | zy,° ", 2Z,_) is assumed to be nonincreasing we change
the definition of 4, in (1) and proceed in the same fashion. Now, if j = i, it follows
from the expressions in (9) that

h'(zj+1 |z) = hi+1(zj+1 |z) = gj+1(zj+1 Izj)
and therefore from condition (11) that P(z;,, |z ;) is nonincreasing in z;, -, z; for
j=1,

Deﬁne C,,_l = {(z;, ", ,,)|b<zk<a for k=1i,--,n—1} and let the set D
be the complement of (U=} 4;) U C,-,. Then the three sets J}=} 4;, C,-, and D
are mutually exclusive and exhaustlve On these three sets K, has the values 1,
P | z,-,) and 0. Furthermore, when z; increases, z,_, can never move from C,_,

to Uj= 1A or from D to €,_, or U" 1A It then follows that K,_, is non-
increasing in z,_,. Using this as a first step in an induction proof, it is readily

shown by means of the lemma that K is nonincreasing in z,* -+, z;.
Returning to expression (7), we may write

(10) YroiP(4) = [I(Ci—y) {[K;dP(z;|z;-,)} dP (z;— ).

Now from (9) we have

(11) Phi(Zilzi—-l):Gi(Zi'zi—l)

Ph;“(zilzi—l) = Fi(zilzi—l)
and thus by condition (i) and the lemma we obtain

(12) JKidP, (z;|2;-1) 2 [KidPy,, , (z:| 2:- ).
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Finally, since P,(z;~,) = P, (z;—,) we have from (10) and (12) that (5) is estab-
lished, which completes the proof.

3. An application. By way of illustration, we apply the theorem to the two-sample
sequential rank test given by Parent [7] (see also [1], [2], [4]). Employing Parent’s
notation we have two sequences of independent random variables {X;}, {Y;} and
we wish to test Hy:0 =1 against H,:0 =6, (6, > 1), where F is the univariate
distribution of the X’s, and F? is the distribution of the Y’s. It is assumed that the
observations are taken alternatingly as X,, Y,, X,, Y,, - and that the SPRT is
based on the sequential ranks of the observations. After n observations have been
taken and ranked, let J; equal 0 if the observation of rank i is a Y; otherwise J; is set
equal to 1. Parent then shows that

(13) Z,=log{n!0,*""Y[[i-,B;} -nodd
=log{n!0,*/[]\=,B;}  neven

where B;=Y"_,J;and 0 = 0,.

In order to show that this test’s OC function is decreasing in 6 we will establish
conditions (i) and (ii) of the theorem. To begin, it can be seen from (13) that z, is an
increasing function of x; and a decreasing function of y,. Also the sequence {Z,} is
transitive (see [4] for a discussion of transitivity) with respect to the ranks. Thus
condition (ii) can be shown to be satisfied.

Condition (i) is somewhat more involved. For n odd it follows from (13) that the
probability that the rank of Yy, ,, is equal to k, conditional on ranks of the first n
observations, is equal to

(14) C(0)=0]Ti- Bi/[[i=k-1(0+B)).

Now since {Z;} is transitive and Z; is a decreasing function of y; we have that for n
odd condition (i) is equivalent to

(15) Cjn = Zi=1 Ck(o)

being a decreasing function of 6 for all j (I £j £ n+1). This can be easily shown,
and also the case of n even is obtained by similar arguments.

Another nonparametric SPRT is given by Weed [9]. His test is based upon signed
ranks, and by using the same arguments as above, the monotonicity of the OC
function can be established. Clearly we do not have monotone likelihood ratios
for either of these two tests, and hence Ghosh’s method is not applicable here.

Finally, it should be mentioned that we have not established that the two-sample
sequential rank test which draws the observations in pairs ([1], [2], [8]), or in other
ways [4], possesses a monotone OC function (though of course such a test could be
interpreted as if observations came one at a time). One further point is that the
above proof of the monotonicity of Parent’s sequential rank test does not really

» depend upon the order in which the observations are taken. They must, however,
be taken singly and their order must not be affected by previous data.
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