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1. Introduction and summary. Let J be a finite non-empty set and let S(J) denote
the set of all finite sequences of elements of J. If s = (5, *",5,,)€S(J) and ¢ =
(tq, "+, 1) € S(J), then st will denote the combined sequence (8, "+, Oy 15 * s My)-
The singleton sequence (8) will be denoted by 6. The symbol s* will mean the
sequence ss and the symbols 53, 54, etc., are defined similarly.

Suppose {Y,} is a stationary process with state-space J. If seS(J) and has
length », p(s) denotes P[(Y,," -, Y,) = s]. The rank n(d) of a deJ is defined to be
the largest integer n such that we can find 2n sequences s, ", ,, 1, ", %, in S(J)
such that the n x n matrix || p(s; 8 ¢;)|| is non-singular.

Suppose now that {Y,} is a function of a finite Markov chain (hereafter
abbreviated ffMc). That is, let there exist a stationary Markov chain {X,} with a
finite state-space I and a function fon / onto J such that {Y,} and {f(X,)} have the
same distribution. Then Gilbert [5] has shown that n(5) < N(6) for all deJ, where
N(3) is the number of elements in f~'[{}]. If we can find {X,} and f in such a
way that n(6) = N() for all deJ, then {Y,} is said to be a regular ffMc. The
motivation for investigating the regularity property of a ffMc has been made clear
by Gilbert in the first and the last paragraphs of Section 2 of [5].

Fox and Rubin [3] have given an example of a process { ¥, } which has n(d) < co
for all 6 € J but which is not a ffMc. In the first part of this paper we expand their
example into a class of examples and show that some of these examples yield non-
regular ffMc. These examples are of a different nature than those given in [1],
Section 4. Further our method of investigation is different from that employed by
Fox and Rubin.

The second part of this paper is devoted to proving that an exchangeable process
which is a ffMc s a regular ffMc.

2. A class of non-regular functions of finite Markov chains. We will use without
comment the notation introduced in Section 1. Throughout this section J will be a
set having exactly two elements, namely, u and 8. Before we discuss our class of
examples we prove a simple lemma.

LEMMA 2.1. Let {Z,} be a stationary process with state-space J = {u,d}. Suppose
p, denotes the probability function for {Z,}. Then

(1 P1(5#j) = Zf:j Pl(éﬂké), and
(2) pi(e) = B+ X ;(n—j+ D)py(5p"),
where B =1lim,_, p,(u).
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“

PROOF. Since p,(1’) is nonincreasing in j, the limit 8 = lim., ,p, (1) exists. Now
it is easy to see that

(3) P8 = p, (W) —p, (™), and
4) p1(8u98) = py () — p (B’ ™).

From (3) we see that p,(5p?) — 0 as j — 0. Now (1) follows easily from (4). Using
(1) and (3), we see that

Pl(#j) = ﬁ+21?0=jp1(5:uk) = ﬂ'f'Zl?O:jZigo:k Pl(éﬂié)
= B+Y,= j(n—j+1)p,(0u"5).

This proves (2) and completes the proof of the lemma.

We will now state our class of examples. Let 0 <1 <14,0 <o <2r and o # 7.
Letc; = A/sin? (ji),j=1,2,-+5¢ = ) =, c;andd = [4(1 +Y %, jc;)]~". Suppose
{X,} is a Markov chain with state-space {0,1,2,---}, initial distribution
{m;,j =0} and transition matrix ||m/||, where mq =4d,mgo =1-c and, for
j= 1, m;=4dY % ¢, mo;=c;and m;;_, = 1. It is easy to check that {X,} is
stationary. Define f by f(0) = § and f(j) = u for j = 1. Let Y, = f(X,). Then {Y,}
is a stationary process with state-space J = {4, u}.

The process {Y,} introduced in the preceding paragraph will be discussed in
detail in this section. We first prove that, for this process, n(d) = 1 and n(y) = 3.
The first of these assertions follows easily because 6 is the image under f of exactly
one state of {X,}. To see the second assertion observe first that the result n(6) = 1
is the same as
(%) p(st) = [p(s6) - p(61)]/p()
for all se S(J) and te S(J). Recall that n(u) denotes the maximal rank of matrices
P of the form ||p(s;ut;)|| where s;€ S(J) and ;€ S(J) for all i and j. If any s can be
written as s’8s’’ then (5) shows that the constant p(s')/p(d) can be factored out
from the corresponding row in P. A similar argument holds for the #’s. Thus we
need consider only sequences s of the form du’ or p' and sequences ¢ of the form
wis or . Further, since p(du't) = p(u't)—p(u'*'1) for all 1€ S(J), the row corres-
ponding to s = du' is obtained by subtracting the row corresponding to s’ = p'*!
from the row corresponding to s” = p'. A similar argument again holds for the ’s.
It is thus seen that we need consider only the case where s; = ¢; = u’. The matrix P
thus equals || p(u'*7*1)||. Now it is easy to see from the definition of { Y, } that

(6) p(duls) = 4dc; = 4dAsin?(jia)

= dl"[z bt Ulj et sz],
where o, = exp [ia] and o, = exp[—ix]. Now p(u) - 0 as j— oo because {X,} is
irreducible and has positive recurrent states. Therefore Lemma 2.1 and (6) show
that

(7 p(d) = dY. 2 ;(n—j+ 1)[22"—(Ag))" = (20,)"]
= A, ¥+ A,(Je,) + As(1a,),
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where 4,, A, and A5 are non-zero constants. We are now ready to show that the
rank of the matrix P = ||[p(u"*7*")|| is 3. If 6, is taken to be 1, if A denotes the
matrix whose (i,j)th element is (}Laj_l)" and if B =diag(14,04,44,01,4A4,0,),
then P = ABA'. This shows that the rank of P cannot exceed 3. Further, if P; is the
leading 3 x 3 principal submatrix of P and if A; is the Van der Monde matrix
formed by the first three rows of A, then P; = A;BA;’. But B is clearly nonsingular
and A, is also nonsingular because g, 0, and o, are all distinct. Therefore P; has
rank 3. Thus n(u) = 3.

In the rest of this section, whenever {Y,} is a ffMc {Z,} with initial distribution
m and transition matrix M, we will write m as (m;, m,) and partition M into sub-
matrices M5, M;,, M,; and M, in the natural way. We will also assume that
every entry of m is positive. We need one more lemma.

LEMMA 2.2. Suppose {Y,} is a function of a finite Markov chain {Z,} with transition
matrix M. Let 1, be the nonnegative eigenvalue of M,, having maximal modulus.
Then A, < A

Proor. The nonnegative matrix M,, can be written (after a permutation, if
necessary) in the form ([4], page 75)

Alla 0: 0,'”’0

Ay, Azpy 0,-04,0
®) My, =| 720
Arl’ Ar2’ e Arr

where each A;; is square and is either irreducible or consists of a single zero entry.
We note that every eigenvalue of M, is an eigenvalue of some 4;; and conversely.

Suppose 4, > A and suppose that Ay is an eigenvalue of A4;;. Since A is positive,
sois A, and hence A, is irreducible. Since 4, is the positive eigenvalue of 4;; having
maximal modulus, it follows ([4], page 63) that A;; has at least one row sum =4,.
Therefore M also has at least one row sum >ll We show exactly in the same
way that M; must have at least one row sum =4,’.

Let m be ‘the initial distribution of {Z,}. Let a be the smallest entry of m,. It
follows from the paragraph immediately preceding the statement of this lemma that
o > 0. Now if e denotes a column vector of 1’s, then

) p()=m,Mi e 2o,/ !

Now A~ Jp(u) is seen to be bounded because of (7) and also unbounded because
of (9). This contradiction shows that 1; £ A. The lemma is thus proved.
We are now ready to prove the following theorem.

THEOREM 2.1. () If o is an irrational multiple of 2r, then {Y,} is not a function of
a finite Markov chain

(b) If « = 2nv|N, where v and N are relatively prime integers, then {Y,} is a
functlon of a finite Markov chain with (N+1) states. Moreover no representation
as a function of a Markov chain with less than (N + 1) states is possible.
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PROOF. (i) Suppose {Y,} is a ffMc {Z,} with initial distribution m and transition
matrix M. Then

(10) P(al‘j‘s) = mJMJuM{t;lMuﬁea

where e is again a column vector of 1’s. We can write M, (after a permutation, if
required) in the form (8). We note that the characteristic polynomial of M, is the
product of the characteristic polynomials of the A;’s. Applying Frobenius’
theorem ([4], page 53) to the irreducible 4;’s we see that M,, has a nonnegative
eigenvalue A, such that, for every eigenvalue A’ of M,,,, we have |1’| < 4,. Further,
if|l’| = A; then A’ = 4, exp[2ni€], where £ is rational.

Suppose M,, has s eigenvalues 4,,---, A/ of modulus ;. Then 4,/ =
A, exp [2ni, ], where &, is rational. Let n, = exp[2zi&,]. In the remainder of this
proof k will always run from 1 to 5. The Jordan canonical form of M, can be used

to show from (10) that
(11) p(6p’d) = A7 Y nda () +Q3)s
where ¢,(j) is a polynomial in j of degree at most equal to the number of rows in

M,, and Q is a sum of terms having as factors the jth powers of those eigenvalues
A" of M, for which |4’ < A,. From (6) and (11) we have

(12) (ll/'{)jZk g (N +A770(j) = d2 -0,/ —6))).

Lemma 2.2 shows that A, £ A. If 4, < A, then, as j — oo, the left side of (12) con-
verges to zero, whereas the right side oscillates. Therefore 4, = A.

Let ¢ be the highest among the degrees of the polynomials g,(j). Write q,(j) =
Y —oanj* and let b,(j) = ¥, ay,m’. Then (12) together with A = 4, shows that

(13) w=0 b (D" +277Q()) = d(2 -0, —a)).
We note that the b,(j)’s are periodic in j, because the &,’s are rational. Therefore,
if £ 2 1 and b,(j) # 0 for some j, the left side of (13) is unbounded in absolute value

whereas the right side is bounded in absolute value. It follows that 4,(j) = 0 for all
jwhenever 1 £ u < t. Thus (13) reduces to

(14) Zkakoﬂkj"‘l_jQ(j) =d(2—-0,/—0c,)).
(ii) Let a be an irrational multiple of 2z. Since the £,’s are rational, there is an
integer L such that L, is an integer for every k. Put j = nL in (14) and let n — c0.

Then the left side does not oscillate whereas the right side oscillates. This contra-
diction shows that { ¥, } cannot be a ffMc.

(iii) Let a = 27v/N, where v and N are relatively prime integers. Then (14) shows
that A7/Q(j) is periodic. But it tends to zero as j — c0. Thus A~/Q(j) = 0 for all j
and (14) reduces to

(15) Zk Ao ’7I¢j =d(2—a, —0a))).

1t follows easily from (15) that o, equals one of the n,’s. This means that Ao, is an
eigenvalue of one of the irreducible A4;;’s. Now Frobenius’ theorem shows that
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Ao1,46,%, -+, A0,", are eigenvalues of M,,. Since v and N are relatively prime,
these eigenvalues are all distinct. But then M, must have at least N rows and hence
{Z,} must have at least (N + 1) states.

We will now exhibit an (N+1)-state Markov chain {V,} of which {Y,} is a
function. The state-space of {V,}. will be {0,1,--,N}. Suppose {v,,-"",vy} and
||vij]| denote respectively the initial distribution and the transition matrix of {V,}.
Using the quantities introduced earlier in this section, we take vy = 4d, vy = 1 —c¢,
o1 = ¢;/(1=2"), vy = 4dc/(1-2Y), v;6 = (1—4"), v,y =AY, and, for 2<j< N,
vo; = ¢;[(1=2A"), v;=4dY > ;¢,/(1—2") and v;;_, =1. Using the fact that
cy = 0, we can check that {V,} is stationary.

Let W, = g(V,), where g(0) = 6 and g(j) = uforj =1, -+, N. Then we claim that
{Y,} and {W,} have the same distribution. To see this denote the probability
function for the W-process by p’. We want to show that p(s) = p’(s) for all se S(J),
where J = {u,6}. Clearly n(6) =1 for the W-process also. Therefore (5) and a
similar equation involving p’ show that it is enough to show that p(s) = p'(s)
whenever s = &/, u95, Sy’ or p/, where j = 1,2,-+. For s = 8/ or 8u/5, this verifi-
cation is easy. For the remaining two types of sequences, the required result follows
from Lemma 2.1, if it is noted that both p(u/) and p’(u/) tend to zero as j — co. This
proves part (b) of the assertions and completes the proof of the theorem.

COROLLARY. If oo = 2nv/N where v and N are relatively prime integers and N = 4,
then {Y,} is a non-regular function of a finite Markov chain.

ReMARK. The example given by Fox and Rubin in Section 2 of [3] uses 4 =4
anda = 2.

3. The exchangeable case. In this section J will be an arbitrary but fixed non-
empty finite set. Further {Y,} will be an exchangeable process with state-space J.
That is, for every k = 1, for every choice of distinct positive integers n ,, - -, n, and
for every choice of elements d,, - - -, 0, in J, the probability

P(Y;n =61’ Y Ynk=6k)
depends only on k and d,,- -+, ;. The purpose of this section is to prove that if

{Y,} is a ffMC then it is a regular ffMc. We first introduce some notation and

prove three lemmas.

- Recall from Section 1 that S(J) is the set of all finite sequences of elements of J.
Let H(J) be the set of all vectors & = {¢(5), deJ} such that £(8) = O for all 6 and
&(0) > 0 for some 6. Let H*(J) = {¢e H(J)|£(8) > O for all §eJ}. If J;<J and
&e H(J), then &|J; will be the vector {£(5)|SeJ,}. Finally, if s = (6, -, 8,,) € S(J)
and & e H(J) we use the symbol (s, £) to denote the product &(8,) x **+ x &(5,,).

LemMA 3.1. Given n distinct elements in H™ (J), we can find an s S(J) such that s
uses all the elements of J and the quantities {s,&,>,i = 1, -+, n are all distinct.

_PROOF. Let u = the number of elements in J. We use induction on . If J has only
one element §, then A, = £,(9) are all distinct. Therefore the singleton sequence &
is an eligible s. Thus the lemma holds for v = 1.
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Suppose the lemma holds for # = m. Let J have (m+1) elements. Let &, be a
fixed element of J and let J, = J— féo} Renumber &, -+, &, as &;;,j=1,""",n;,
i=1,--+kinsuchawaythat&;|J, = & |J,if,and onlyif, i = i’. Letn, = &;, | J,.
Then n,, * -, n, are distinct elements of H*(J,). By the induction hypothesis, there
is a sequence s, € S(J;) such that s, uses all the elements of J, and the quantities
Sy, My, i=1,-++k are all distinct. Let a; = (s;,n,> and A;; =¢&,(J,). Let
s=15:00". Then <s,&;>=Cs,ny A;=a;A; Since i#i =a;#ay while
J #Jj'=A;; # Ay, there is a large enough integer r such that (s, £;;> are all distinct.
This proves that the lemma holds for v = m+ 1. The lemma is thus established.

LemMMA 3.2. Let &, - -+, &, be distinct elements of H* (J). Then there are n sequences
Sy, 8, in S(J) such that each s; uses all the elements of J and the n x n matrix
||<si. €)|| is nonsingular. .

PRrOOF. Because of Lemma 3.1, there is an s € S(J) such that s uses all the elements
of J and the quantltles A; = <s, §; are all distinct. The A;’s are obviously positive.
Define s; = s'. Then {s;, é > = A;'. The Van der Monde matrlx H/l || is nonsingular.
The lemma follows.

LemMA 3.3. Let &,, - -+, &, be distinct elements of H(J). Then there are n sequences
S1s 0y 8, in S(J) such that the n x n matrix ||<s;, &,|| is nonsingular.

PROOF. Let G = {¢,, -+, £,}. Denote by « the class of all subsets 4 of J such
that there is a {€ G whose support is A. Forde o/, let G(A) = {feG|A is the
support of &}. Suppose that L is the number of sets in ./ and write &/ =
{Ay,*+, A,} in such a way that i <i’= the number of elements in 4; < the
number of elements in A4,. Let G(4;) be enumerated as {&;;, -, &,.}. Flnally, let
nij = é,.jIA,.. Observe that #,;,j =1, -, n; are distinct elements of H*(4;). By
Lemma 3.2 there are sequences s;;, j =1, -, n; in S(4;) such that each s;; uses
all the elements of 4; and the n; x n; matrix |[{s;;, n;;->|| is nonsingular.

Let i’ < i. Because of the order in which the sets of ¢ have been written down,
there is a d, € 4; such that §, ¢ 4;.. Now s;; uses all the elements of A;. In particular
ituses d,. But &;-;(,) = 0 because do ¢ A;. Thus (s;j, &> = 0.

Let V;; be the n; x n; matrix ||<s;;, &>|| and let V' be the partitioned matrix
|| Vi||. Then we have shown so far that each V', ;i 18 nonsmgular and that i > i’ =

Vi = 0. Therefore V' is nonsingular. The sequences s;;,j=1, -, n,i=1,--,L
thus satisfy the assertion of the lemma. This completes the proof of the lemma.

We are now ready to prove the following theorem.

THEOREM 3.1. An exchangeable process which is a function of a finite Markov chain
is a regular function of a finite Markov chain.

PROOF. As stated in the first paragraph of this section, let {Y,} be an exchange-
able process with state-space J. Let Q denote the subset of H(J) corresponding to
the probability distributions on J. The de Finetti theorem asserts that there is a
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unique probability measure p on the Borel subsets of Q such that for every se S(J),
we have

(16) p(s) = [o<s, 4> dp(q).

Suppose that { Y, } is a ffMc. Then as stated at the end of [2], u has finite support.
Let the support of u be {g,,u=1,---, N}. Let a, = u({g,}) > 0. Let J, be the
support of ¢, and suppose that N, is the number of elements in J,. Denote g, [ J, by
r,. We will denote by M, the N, x N, matrix all of whose rows equal r,. Let M be
the direct sum of the M,’s. The set {(u, 6) | oed,u=1, -, N} will be denoted by
I. We set m, = a,r, and m = (m,, - - -, m,). Finally, f is the function on I onto J
defined by f[(u, 8)] = 6. Then if {X,} is a Markov chain with state-space 7, initial
distribution m and transition matrix M, then {Y,} and {f(X,)} have the same
distribution. This Markov chain {X,} is the same as thdt constructed in the proof
of the theorem in [2], with the exceptions that the state-space is finite and states
(u, 6) with g,(6) = 0 have been eliminated.

We now proceed to show that the above representation of {Y,} as the function f
of the Markov chain {X,} is regular. In other words we will show that n(5) = N(5),
where N() is the number of elements in f ~*[{5}]. Because of the result of Gilbert
[5] quoted in Section 1 of this paper, we always have n(8) < N(5). If N(8) = 0, then
g.,(0) = 0 for all ¥ and hence p(6) = 0 and n(6) = 0. So let N(6) > 0. Without loss
of generality we may assume that (v, 6)e ] for 1 < u < N(6) and that (u, 8)¢ 1 for
N(@©) <u = N. Now g;, 1 £i= N(J), are distinct elements of H(J). By Lemma 3.3,
there are sequences s;,i=1, -, N(6), such that the N(J) x N(6) matrix
||<si, g;7|| is nonsingular. Now (16) shows that

p(si 5'Sj) = ggl) a, qu(6)<si’ qu><sj, qu>;

because ¢,(5) = 0 for u > N(3). Define the two N(3) x N(d) matrices ¥ and W as
follows.

V= ||<Si, ¢1j>|| and W = diag[a,q,(9)," ", aN(a)‘IN(a)(‘S)]-

Then ||p(si5s)|| = VWV’, which is nonsingular because both ¥ and W are non-
singular. It follows that n(6) = N(8). This completes the proof of the theorem.
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