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EFFICIENCY-ROBUST ESTIMATION OF LOCATION!

By CONSTANCE VAN EEDEN?

Université de Montréal

1. Introduction. Let Uy, -, U, and V,,---, ¥, be two independent samples
from distributions with distribution functions F and G, where F(x) = G(x—A). The
usual procedures for finding estimates of A which are “efficient” require knowledge
of the function F. For many F, estimates are known whose asymptotic variance
coincides with the Cramér-Rao lower bound; such estimates are sometimes called
asymptotically efficient for F. It is usually the case that, if the populations from
which the samples are taken are not in the translation family of F, the estimate
computed on the assumption that they are, is not asymptotically efficient in the
above sense.

Here, estimates are proposed which are asymptotically efficient, uniformly for
all Fin a large class; that is, each such estimate is a sequence of functions which
can be constructed without knowledge of F (functions of the observations only)
and whose asymptotic variance is the Cramér-Rao lower bound for F, no matter
which Fin a class & is the underlying population. That such estimates exist was
indicated by Stein [6]. Bhattacharya [1] proposed estimates of A that are “uni-
versally almost efficient” for all F in a class #'. By reducing one sample to a
frequency distribution over a fixed set of intervals, he obtains a sequence of
estimates (functions of the observations only) whose asymptotic variance equals
the Cramér-Rao lower bound for the distribution of the grouped data, no matter
which Fe #' is the underlying distribution. The classes # and &' are somewhat
different. #' contains the Cauchy distribution, which is not contained in &# and &
contains the double exponential distribution which is not contained in &',

The estimatcs proposed here are based on Hajek’s [2] uniformly asymptotically
efficient test of the hypothesis A = 0. A modification of this test, satisfying the
conditions of Hodges and Lehmann [4], will be shown to lead to a uniformly
asymptotically efficient estimate of A.

In Section 2 the definition of the estimates will be given, as well as their asymptotic
distribution. The proofs of the results of Section 2 will be given in Section 3;
Section 4 contains the analogous results for the one-sample problem.

2. The estimates and their asymptotic distribution. Let & be the set of all distribu-
tion functions F with the following properties

1. F has an absolutely continuous density £,
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(F~*(u) = inf{x| F(x) 2 u}) and f" is the derivative of f,
3. ¢(u,f) is nondecreasing in u(0 <u < 1).

Let, for v=1, 2,---, {m,, n,} be a sequence of pairs of integers with min (m,,
n,)— oo and let {(U,), (V)} = {(U, 1, ", Uym)s V15" Vyn,)} be a sequence
of pairs of independent samples from distributions with distribution functions F
and G, where F(x) = G(x—A) and Fe #. Let {K,} be a sequence of integers with

(2.2) K, — o0, K,/min(m,, n,) >0

andlet(W,) = (U157 Uv,KV)a(Zv) =V Vv,KV)9 (X)) = (Xv,l’ ) Xv,m‘,—l(v) =
(Uv,KV+ 17 Uv.mv)and(Yv) = (Yv.ls Y Yv.nv —K‘,) = (Vv,K‘,+ 157" Vv,nv)' Héjek [2]
proposed an estimate of ¢(u, f) based on the observations (W,, Z,) and used this
estimate and the observations (X,) and (Y,) to construct a sequence of tests of the
hypothesis A = 0 that is uniformly asymptotically efficient for a sequence of altern-
atives A, with A, — 0. In order to obtain a sequence of estimates of A that is uni-
formly asymptotically efficient for each fixed A, an estimate of ¢(u, f) will be used
that is an average of two estimates, one based on (W) and one based on (Z,). The
estimate of Héjek will be further modified by constructing it in such a way that it
is nondecreasing in u for each (W,, Z,). This estimate of ¢(u, f) and the observa-
tions (X,) and (Y,) will be used to construct a sequence of estimates of A that is
uniformly asymptotically efficient.
Let {p,} be a sequence of integers satisfying

(2.3) KA <p, KA +1

and let {0=h,o<h,, <" <h,, 4 <h,, =K} be a sequence of (g,+1)-
tuples of integers, satisfying

(2.4) lim, o, maXog;<g, By 741 =y j| /K,

. . 5 6
= lim,, , Ming < <g, By 41— hy | /K, = 1.

Let U <--- < U, be the order statistics of U, ;, -+, U, g, and let N, =
m,+n,. Then Héjek’s estimate @ (u, W,) of p(u, f) based on (W,), is given by

i
i R
¢"<NV’—2KV 1 )

1 1
_ -1/30
(2'5) - %KV {U (hv,j+pv) _ Uv(hv,j—p)v - Uv(hv,j+l+l7v)_ Uv(hv.jH—Pv)}
for —24 : <Ivin gy i=1,---,N,—2K
. Or?<N_2K+1= K J=1, s qdy-1, 1 =1, s 4Vy v

=0 otherwise
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and the definition is completed by taking @,(u, W,) constant on the intervals
[(I_' 1)/(Nv—2Kv), i/(Nv_sz)]’ i= la Tt Nv—‘?'Kv'

For the same sequences {p,}, {¢,} and {h, o, *, h, .}, let $,(u, Z,) be Hijek’s
estimate based on (Z,) and let

(2.6) ¢,(u) = ¢,u, W,, Z,) = H{,(u, W)+ $,(u, Z,)} O=su=1l

This estimate @,(u) is a function that is, for 0 £ u < 1, constant on each of a
finite number of intervals. Call these interval I, (i=1,---, 0,), in such a way
that, for each i=1,---,0,—1,u; <w;y, if w;el,; and u;y €1, ;4. Let, for
i=1,--, 0, @, be the value of @,(u) for uel, ; and let /, ; be the length of I, ;.
Then define

Q@7 ow) =o\u,W,,Z,)

lv,j(tav,j+ tee +lv,k¢v,k
lv.j+ e +lv,k

for uel,;

i= 1’”"Qv'

The estimate of ¢(u, f), used in the construction of the sequence of estimates of A,
is then given by

28) 0, = 6,*(w,Z,, W) = p,(w)—(N,—2K,)"*
x iy 2 @,((N, = 2K, + 1))
= @v(u)—jé (;bv(u) du.

=maX; ¢ ;<; MiNi<x<g,

Now define
(2.9) h*(X,, Y) = Y% ¢,5(R, (N, —2K,+1)71),

where, for i=1,--,m,—K,, R, ; is the rank of X, ; in (X, 1, **, X, m~k.» ¥s,15
, Y, .. —k,)- The statistic h,*(X,, Y,) satisfies the condition (see Section 3) that,
for each (U,, V,), h*(X,—b, Y,) is a nonincreasing function of b. Further (see
Section 3) h*(X,—b, Y,) satisfies, for each (U,, V,), one of the following two
conditions.
1. h,¥(X,—=b,Y)=0 forall b or
(2.10) 2. b,¥(X,=b,Y)>0 for b< X,V -ym K
<0 for b>XmKI)_y M),

Let S, be the set of points (U,, V,) where (2.10.2) is satisfied, then (see Section 3),
for every A and any FeZ, P, ,(U,,V,)€S,) = 1. For (U,, V,)eS, the estimate
AU, V,) of Ais defined as follows.

Let

(2.11) AX(U,, V,) = sup {b| h,*(X,—b, Y,) > 0}

A*(U,, V,) = inf {b| h,*(X,—b, Y,) < 0}



EFFICIENCY-ROBUST ESTIMATION OF LOCATION 175

and let a be a fixed number with0 < « < 1; then
(212)  A(U,.V,) = aA XU, V) +(1—0)A**(U,, V,) for (U,,V)€S,.

Because, for every A and any FeZ, P, A((U,, V,)¢S,) =0, the asymptotic distri-
bution of the estimate A (U,, V,) does not depend on the definition of AU, V,)
for (U,, V,)¢S,.

The following theorem will be proved in Section 3.

THEOREM 2.1. For every fixed A and any Fe ¥
(2 13) lirnv--*oc Pv,A((mvnv)%(Nv)_%(Av(Uv’ Vv)—A) é u)

' =67 '@m) [ s exp(—1o7 X7 dx,

where
(2.14) o? = [ [3p(u.f)du] ™" = [[22(S (X)) (x)dx]™"
3. Proofs of the results of Section 2.
LEMMA 3.1. For each (U,, V), h,*(X,—b, Y,) is a nonincreasing function of b.

PRrROOF. From the definition of ¢,*(u) it follows that ¢,*(u) is a nondecreasing
function of u. Further ¢,*(u) is independent of (X,) and (Y,) so that h,*(X,—b, Y,)
depends on b only through the ranks R, (b) of X, ;—b among (X, -b,- -,
Xym-k,=0 Yo1o Yo, k) and not through ¢ * itself. It is easily seen that
R, (b) is a nonincreasing function of b, so that h *(X,—b, Y,)is a sum of m,— K,
nonincreasing functions, ¢,*(R, (b) (N, —2K,+ 1)~ 1), of b.

LEMMA 3.2. For each (U,, V,), h,*(X,—b, Y,) satisfies one of the following two
conditions

1. h,¥(X,—b,Y,)=0 forall b or
(31) 2. Ev*(Xv—b, Yv) >0 for b < Xv(l)_' Yv("v-Kv)
<0 for b>Xxm Ky M,

PROOE. i *(X,—b, Y¥,) = 0 for all b if ¢,*(u) = O for all u. If h,*(X,—b, ¥,) # 0
for some b, then ¢ *(u) # 0 for some u. Because ¢,*(u) is nondecreasing and
constant on each of the intervals [(i—1)/(N,—2K,), i/{(N,—2K))] (i=1,"",
N,—2K,) and because Y127 2% ¢ *(i(N,— 2K, +1)™") = 0, there exists then a value
of i with ¢,*((N,—2K,+1)"") < ¢,*(i+1) (N —2K,+1)""). Thus
(3.2) LGN, —2K,+1)71) <0 < Y2 ¢ * (N, - 2K, +1)7 D)

forall k=1,---,N,—2K,—1
Further, if b > X 0™ ¥~ Y, R, (b) = ifori=1,---, m,—K,, thus (see (3.2))

(3.3) BA(X,— b, Y) = T ¢, (N, 2K, +1)71) < 03
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iftb<X,W—ym™ ) R (b)=n,~K,+ifori=1,---,m,—K, and (see (3.2))
ﬁv*(Xv_b’ Yv) = ?:vl—KV(i)v*((nv_Kv"'i)(Nv—2Kv+1)_1)
=1 0N, = 2K, +1)71) > 0.

LEMMA 3.3. For any FeF and every fixed A, ¢, *(u) is a consistent estimate of
o(u, [) in the sense that

(3.5) lim,_, , P, o { [6(0,"(w)— @(u.f))* du > &} = 0.
PrOOF. Let @ be the set of all functions ¢(u) (0 £ u < 1) satisfying
(3.6) 1. [§@*(u)du < oo

(3.4)

2. ¢(u) is nondecreasing in u,

then it will first be shown that ¢,(«) is the function ¢(x) which minimizes
{6 (o(u)— @,(u))* du for ¢(u) € ®. This can be seen as follows.

G- 5 (0 =3, du = T, fi, (000)=,,)* du
Further, foreachi=1.---, Q,
(38) Ilv,i((p(u)-(ﬁv‘i)z du g I'V’i(av,i_(ﬁv,i)z du, where

@, =1, {1, ,o()du. Thus a function ¢(x) which minimizes [§(¢(u)—@,(u))*du
for @(u)e® is a function which is constant on each of the intervals 7, ;. Thus the
problem of minimizing [§ (o(u)— @,(u))? du for p(u) e ® is reduced to the problem
of finding Q, numbers @, ,, ", @, o, satisfying @, ; <--- <@, o, such that
Y&, 1, ($,i—@,)* is a minimum. The problem of finding the ¢, ; such that
Y&, 1,(¢,;—,)* is a minimum, subject to the conditions ¢, ; < - < P, 0.,
is a special case of a problem solved by van Eeden ([7] and [8]). It is proved there
that this problem has a unique solution given by (2.7).

The consistency of @, (#) can now be proved as follows. Hajek [2] proved that,
for any F satisfying (2.1.1) and (2.1.2), @,(u, W,) and @, (u, Z,) are consistent
estimates of ¢(u, f). From the definition (2.6) it is then clear that for any such F
and every fixed A, ¢,(u) is a consistent estimate of ¢(u, /). Now suppose that
6 (@(u,f)—@,(u))* du < &, then, because ¢(u, f)e® and because @,(u) minimizes
J5 (@(u)— ¢ (u))?* du for p(u) e @, we have

(3.9) (@, )= @) du < & - [5((u)—Py(u)) du <&
and thus
(3.10) Jo (@, f)— ¢, u)? du < & [§(o(u,f)~ (1)) du < 4e

and the consistency of ¢,(u) then follows from the consistency of @,(u). Now let
@, = (6 ¢,(u) du, then

(3:11) §6(@Cu, 1)~ ¢, W) du = [5(o(u.f)— o) +3,)%, where
G123, = (50, du)?* = ([5(0u) = 9(w,)) du)? = [(w) = 0(u.1))? du
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so that
(3.13) Jo(@(u,f)~dy(u))* du < e = [5(p(u,f)— 6,*(u))* du < 4e
and the consistency of @ *(u) follows from that of ¢,(u).
LeMMA 3.4. For every fixed A and any Fe
(3.14) lim,, , P, o (h,*(X,~b,Y,) =0 forall b)=0.

PROOF. h,*(X,—b, ¥,) = 0 if and only if ¢,*(u) = O for all u. (See Lemma 3.2)
If ¢, *(u) is identically 0 then

(3.15) §o(0,*(w) = @(u.f))* du = [ 9>(u,f ) du > 0.
Thus .
P, {h*(X,~b,Y,)=0 forall b}
S Py a{o(@ W)= (u.f))? du = [5¢*(u,f) du}
and this last probability tends to zero as v — oo, because of the consistency of
B, ().

LemMmA 3.5. If, for v=1,2,- -, A, = B[N (m,n,) " ']* is a sequence of values of A,
then for any Fe &

(3.17)  limy,, Py 4, (0,7 (B*(X,, V) — ) Su) = Q2m) ¥ [« e™ ¥ dx,
(3.18) Hy = b[(m,— K, )(n,— K,)(N,—2K,) '] [§ 0*(u,f) du
0, = (m,—K,)(n,— K,)(N,—2K,)"* [ o*(u,f) du
PROOF. Let, fori = 1,++-, N,— 2K,
(3.19) a,(i,f) = Eo(T,", f)

where T,V < -+ < T,¥»72K) are the order statistics of a sample of size N,—2K,
from a uniform distribution between 0 and 1. Further let

(3.20) 9 X,, ¥) =3 ay(R, 4 f)

then it follows from Theorem VI.2.3 and Theorem V.1.4b of Hajek and Sidak [3]
and the fact that K, /min (m,, n,) — 0, that

(321) lim""’w PV,Av (O'V— I(QV(Xw Yv)_ﬂv) é u) = (27‘[)—%.[“_00 e—%xz dx,

(3.16)

where p, and o, are given by (3.15). That
av- l(gv(Xv, Yv) - ﬂv) and o'v— l(ﬁv*(Xv, Yv) - ﬂv)

have. for the sequence A, = b[N,(m,n,)” ']}, the same asymptotic distribution
follows {from Hajek and Sidék ([3] pages 264-265). This proof applies in our case,
since (R,,;,**, R, m - x,) and (W,, Z,) are independent, ¢,*(u) is a function of
(W,, Z,) only and since ¢, *(u) is a consistent estimate of ¢(u, f).
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PRrOOF OF THEOREM 2.1. The proof'is based on the results of Hodges and Lehmann
[4]. They consider two sample statistics h,(X,, Y,) satisfying the conditions

A. for each (X,, Y,), h(X,—b, Y,) is a nonincreasing function of » (and is not
identically zero) and
B. if A =0, the distribution of 4,(X,, Y,) is, for every continuous F, symmetric

around 0.

Their estimates derived from these statistics are estimates of the form (2.12) with
o = % and one of their results is the following inequality

(322) Pv.A (hv(Xv_b’ Yv) < 0) .-S- Pv,A(Av(Xw Yv) é b) é Pv,A(hv(Xv—b9 Yv) é 0)
for any continuous F.

From the proofs by Hodges and Lehmann it can be seen (see also Hoyland [5])
that condition B is not necessary for (3.22). Further it can easily be seen from their
proofs that the estimates satisfy (3.22) for any a€[0.1]. From Lemma 3.1 and
Lemma 3.2 it then follows that, for any Fe & and for every v and every A,

P, s(h*(X,~b,Y,) <0[(U,, ,)€S,)
(3.23) < P, A(A(U,,V,) S b|(U,,V,)ES,)
< Pou(h*(X,—b,Y,) S 0[(U,, V)€S,).
Thus, independent of the definition of A(U,, V,) for (U,, V) ¢5S,,
P, s(A*(X,~b,Y,) <0,(U,, V,)€S,) + P, AA(U,, ¥,) £ b,(U,, V,)¢S,)
(3.24) < P, (AU, V,) £ b)
S P A(h¥(X,=b,Y,) £0,(U,, V,)€S,)
+P, a(A(U,, V) £ b,(U,, V,)¢S,).
From Lemma 3.4 it follows that, for every Fe & and every fixed A,
(3.25) lim,.., P, A(A(U,,V,) £ b,(U,,V,)¢8S,) =0
and
(3.26) lim,_, [P, A(h,*(X,—b,Y,) <0,(U,,V,)€eS,)
~ P, A(h¥(X,—b,Y,)<0)]=0
lim,_, , [P, A(h,*(X,—b,Y,) <0,(U,,V,)€S,)
—P, A(h,*(X,—b,Y,) £0)] =0.
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From Lemma 3.5 it then follows that, for any Fe & and every A, (see also Hodges
and Lehmann [4])

lim,_, , P, A([N,™*(m,n)J¥(A(U,, V,)—A) < b)
= lim,.,, P, o([N,”'(m,n,)J*A(U,, V,) £ b)
=lim,.,, P, o(A(U,, ¥,) < B[N (m,n,)" ']}
(327 =lim,, P, o(h,*(X,~b[N,(m,n) ']}, Y,) £ 0)
=lim,., P, _5,(h,*(X,, Y,) £ 0)
=lim,., P, 200, (B,*(X,, ) —p,) £ — 0,7 ',)
= (2m)~* [Pio'e? . a2 o= 43 gy — 61 2m)"H [P exp(—40~ 2 x?)dx,
where o2 = ([} ¢*(u, f) du)~". ‘
4. The one-sample location problem. In this section the results for the one-sample
location problem will be given. The proofs are analogous to those for the two-

sample case and will not be given.
Let #, be defined by

4.1 F,={FeZ|F issymmetric around 0}.

Let, for v=1,2,---, {N,} be a sequence of integers with N, - o0 and let {U,} =
{U,.1, ", U, n,} be a sequence of samples from a distribution with distribution
function F(x—0), where Fe#,. An estimate 8, (U,) of 6 that is uniformly

asymptotically efficient for Fe & | can be obtained as follows.
For every Fe &, ¢(u, f) is nondecreasing in u and

4.2) ou,f)=—o(1—u,f)0<u<1.

An estimate ¢,*(u) of ¢(u, f) satisfying these two conditions is obtained as follows.
Let {K,} be a sequence of integers satisfying

(4.3) K,» o, K,/N,—0,

and let {p,}, {q,} and {h, o, ", h,,} be sequences satisfying (2.3) and (2.4).
Further let (Wv) = (Uv,lﬁ Y Uv,KV)9 (Xv) = (Xv,h T Xv,NV —KV) = (Uv,KV+1$ Y
U, n,) and let @,(u, W,) be Hajek’s estimate of ¢(u, ) based on (W,) (see (2.5)).
This function @,(u, W,) is a function that is constant on each of a finite number
ofintervals I, ;, -+, I, o,, where, foreach i =1, -, Q,— 1, u; <u;,, ifu;el, ;and
Ujp€l, ;. Let,fori=1,---, Q,, @, ; be the value of @, (u, W,) for uel, ; and let
1, ; be the length of I, ;. Then define

@44 o) =¢,u, W)

= max, ¢ ;<; MiN; < <o,

~

lv,j qov,j"' e +lv,k (Zjv,k

, uel,,,
lv,j+ e +lv,k "

and
(4.5) 0, () = ,%(u, W) = H(p(w) = p,(1—u)) O=u=s1
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Then ¢, *(u) is, for every W, nondecreasing in # and
(46) @v*(u) = _¢v*(1 _u) 0 é u é 1.
Let,fori=1,--, N,, R} be therank of | X, ;| among | X, ,|,"*,| X, », _x,| and let

(47) hv*(Xv) = ?——‘—,.I_KV év*(%[R::i(Nv_Kv'l'l)—l+1])Xv,iIXv,iI-1,

then h *(X,—b) is, for every U,, nonincreasing in b and satisfies one of the
following two conditions

1. h,*(X,—b)=0 forall b or
(4.8) 2. h*(X,—b)>0 for b<X, M
<0 for b>XMK»)
with, for each fixed 8 and any Fe &,
(4.9) lim, ., P, o(h,*(X,~b) =0 forall b)=0.

Let S, be the set of points (U,) such that (4.8.2) is satisfied, then the estimate
8,(U,) for (U,)e S, is defined as follows. Let

(4.10) 6,*(U,) = sup{b| h,*(X,~b) > 0}
0,**(U,) = inf{b| h,*(X,~b) < 0}

and let o be a fixed number with 0 < « < 1. Then

(4.11) 0,(U,) = af,*(U,)+(1—a)8,**(U,) for (U,)eS,.

Further, because of (4.9), the asymptotic distribution of the estimate 0,(U,) does
not depend on the definition of the estimate for (U,)¢S,. In the same way as for
the two-sample problem, the following theorem can be proved

THEOREM 4.1. For every fixed 0 and any Fe F ,
(4.12)  lim,., P, (N 0,U,)~-0) S u) = 07'2n)"*[* ,exp(—%672x?)dx,
where |
(4.13) o> =[[s’Gu+1).)du]™" = [[ZZ(f () f(x)dx]™".

Acknowledgment. The author wants to thank the referee for pointing out an
error in the proof that a previous construction of the estimates (see [9]) leads to
uniformly asymptotically efficient estimates.
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