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MULTIPLE TESTING VERSUS MULTIPLE ESTIMATION.
IMPROPER CONFIDENCE SETS.
ESTIMATION OF DIRECTIONS AND RATIOS!

By HENRY SCHEFFE
University of California, Berkeley

0. Summary. The “S-method” of multiple comparison ([5]; [6], Section 3.5) was
intended for multiple estimation, possibly combined with multiple testing. It is
shown that if only multiple testing is desired a certain “‘modified S-method” is more
powerful. While this result is of some theoretical interest, it is recommended after a
discussion of the relative advantages of the two methods, that the new one generally
not be used in applications. The multiple testing problems considered are related to
estimating the direction of a vector or its unoriented direction-estimation prob-
lems which also have an inherent interest. A confidence set for a parameter point is
called improper if the probability that it gives a trivially true statement is positive.
The problems of estimating the direction and unoriented direction of a vector are
reformulated to permit solution by proper confidence sets. In the case of the
unoriented direction of a g-dimensional vector the confidence sets yield solutions of
the problem of joint estimation of ¢—1 ratios and the problem of multiple estima-
tion of all ratios in a certain infinite set. Specializing to the case ¢ = 2 yields a proper
confidence set as a substitute for Fieller’s improper confidence set for a ratio.

1. Introduction. The reader interested only in Fieller’s problem of estimating a
ratio may proceed directly to the discussion following the Corollary near the end of
Section 5. The reader not interested in multiple testing but in the estimation of
directions and ratios may read through the sentence containing equation (3) and
then skip to Section 3. We use the term *‘testing” to include the trichotomous pro-
cedure where if a hypothesis 6 = 0 is rejected by a two-tailed test we decide on one
of the alternatives 6 > 0 or 0 < 0. “Estimation” refers to estimation by confidence
intervals or other confidence sets.

The problems will be treated under the underlying assumptions Q usually made
in the analysis of variance,

Q:iz;=YP_x;B;+e (i=1,"-,n), where {¢} are independently N(0,s?);

here {z,,"*,2,} is the sample, {#;} and ¢ are unknown parameters, and {x;;} are
known constants.

In the beginning, in Section 2, we consider multiple estimation and multiple
testing of all members 0 of a given g-dimensional space L of estimable functions,
to be defined in a moment; at the end, in Section 5, we treat multiple estimation of
the ratios of all pairs of 0s in L, also the joint estimation of g—1 ratios. These esti-
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2 HENRY SCHEFFE

mation results for ratios are based on those for directions of vectors in Section 4.
In the estimation problems of Sections 4 and 5, certain improper confidence sets
arise in a natural way; we anticipate this in Section 3 by a general discussion of
improper confidence sets.

By an estimable function we mean a linear function of the {8;}, 0 =Y7?_,a;p;,
where the {a;} are known constants, for which there exists an unbiased estimate
linear in the {z;}. A g-dimensional space L of estimable functions consists of all
linear combinations ) ¢_, h;6;, where {;} are g linearly independent estimable
functions, and {h;} are known constants. Many examples of Q and L may be found
in [6], chapters 3-6; there {z,}, 0, {a;}, 8 are written {y;}, ¥, {c;}, s, respectively,
while here the notation is that of [5] to which we make frequent references.

Since some confusion might arise from our using the same symbol 6 for an
estimable function and its value, we remark that the function 0 =Y ?_, a; ;= a’'B,
where a and B are p-dimensional vectors, is defined by its coefficient vector a; its
value 0 = a'B, depends on the true value f, of the vector f§ of parameters. By *“‘the
least-squares estimate 8 of an estimable function 8 = a’f we mean § = a'p,
where p is a least-squares estimate of §:  is unique although f is in general not. The
variance of 8 will be of the form 6, = b%a?, where b? is a known constant; &,> will
denote the estimate 5262, where 42 is the error mean square with v = n—r df (degrees
of freedom).

2. Multiple testing versus multiple estimation of all 6 in L. A method of multiple
estimation of the 6 in L, which we call the S-method, can be based on the following
theorem. We choose a confidence coefficient 1 —a, or a related positive constant S,
the relation being

(€)) a = Pr{F(q,v) 2 S%/q},

where F(gq, v) denotes an F-variable with ¢ and v df. It will be more natural now to
think of the S-method as defined by a given a, but later it will sometimes be more
convenient to think of it as defined by a given S.

THEOREM 1. Under the assumptions Q the probability is 1 —o that the values of all
estimable functions in L simultaneously satisfy the inequalities

9)) 0—S6,<0=<0+8S8,,

where o. and S are related by (1).

The application of the theorem to multiple estimation of the 0 in a given g-
dimensional space L of estimable functions consists in choosing a confidence level
1 —a, determining S from (1), and making the statements (2) for as many 0 in L as
we please. The probability that all the statements will be correct is then = 1—a.

Theorem 1 was proved in [5] for the special case where L is a certain space of
contrasts; the proof there is easily extended to the general case by using the results

“ of the next paragraph about £ and é2. (To apply results of [5] we note that f and 4
have the same joint distribution as in this paper if there we set C = 1, and regplace
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k—1 by g, and the word “contrast” by “estimable function in L”.) A more com-
plicated proof of the general case is given in ([6], Section 3.5).

Let L denote the set of least-squares estimates 8 of the 6 in L; L is easily seen to be
a g-dimensional space of linear functions of the {z;}: If {,,--+,0,} is a basis for L,
then {0,,---,8,} is a basis for L, since for any 6 in L there exist {#;} such that
0 =1 h,0,, hence § = Y9 h,8,, so the §; span L; furthermore they are linearly
independent, since by taking expectations we find Y4 h;6; = 0 implies Y4 4,6, = 0.
Choose an orthogonal basis {fj;,"*+,4,} for L, normalized so that the covariance
matrix of the vector = (f,"-*,#,)" is 61, where I is the p x p identity matrix.
(The construction is that used in deriving the canonical form of the linear hypo-
thesis.) Let n = E(f)) = (1y," - *,n,)’. Then the {n;} form a basis for L, and so for
any 0 in L there exist {d;} such that 6 = ) d;, =d’'n. Obviously, ) and 42 are
statistically independent, # is N(n, 62I), and 82 is 62x*(v)/v, where x*(v) denotes a
chi-square variable with v df. We introduce a g-dimensional y-space of points
(71>, »,) for graphing the parameter point or vector #, its estimate #, and other
quantities.

At various points in this paper we shall need to consider the hypothesis

©) H:0,=0,=-=0,=0,

where the {0;} constitute a basis for L; H is equivalent to the statement that all 8
in L have the value zero. Let us say for any 6 in L that its estimate 8 is “significantly
different from zero by the S-criterion” if the interval (2) fails to cover 6 = 0, that
is, if |6] > S&,. The relation (noted in [5] and [6], Section 3.5) of the S-method to the
F-test is that some 8 in L will be significantly different from zero by the S-criterion
if and only if the F-test rejects H at level a; here o and S are related by (1).

The following procedure considered in [5] implies a method of multiple testing:
for any estimable function 6 in L we may make one of the following three statements
about its estimate 8: (i) 8 is not (by the S-criterion) significantly different from zero,
(i) 8 is significantly positive, or (iii) 0 is significantly negative, according as
(i) |0] < S8y, (ii) 8 > S8, or (iii) § < — S8,

We may regard making one of the three statements (i), (ii), or (iii) for an estimable
function in L as a test of the value 8 of the function: If we make a statement (i) we
accept the hypothesis 8 = 0; if (ii), the alternative 6 > 0; if (iii), the alternative
0 < 0. It will also be convenient to say we make decisions (i) 8 = 0, (ii) 6 > 0, or
(iii) 6 < 0. Besides this trichotomous test or three-decision problem we shall wish
later to refer to a dichotomous test or two-decision problem corresponding to
(i) 6 = 0 or (i) 6 # 0. Decision (i), like accepting a null hypothesis, has a different
quality from (ii), (iii), or (), in that we generally do not really judge that 0 is exactly
zero, but rather that the evidence is not sufficiently discordant with the value 6§ = 0
to reject this value. Furthermore, if we considered applications of this theory to
real statistical problems we would find, leaving aside the question of how meaning-
ful anyhow is the statement that 6 is ‘“‘exactly zero”, that there usually would be
sdme small ill-defined interval about zero in which we would prefer to take the
action consequent on making decision (i) even though 6 # 0.
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The method of multiple testing consists in selecting as many 6 in L as we please
and making this test of each. Its operating characteristic is partially characterized
by certain probabilities P, and P,, analogous to the probabilities of avoiding the
two types of error in the Neyman-Pearson theory of testing hypotheses: P, is the
probability of the event &, that statement (i) would be made for all estimable
functions 0 in L whose true values are zero. We shall not define P, here; it is defined
and evaluated in [S]. Since the hypothesis H in (3) is equivalent to # = 0, the value
of P, is calculated in [5] to be

(C)) P, =Pr{F(q,v) £ S?q} if H istrue,
=Pr{F(g—1,v) £ S%*(q—1)} if H isfalse.

Heretofore the use of the S-method has been considered for multiple estimation
alone or for a combination of multiple estimation with multiple testing. Now we
shall consider its possible use for multiple testing alone.

It will simplify the typography in the rest of this paper, where values of ¢, v, and
o will be understood from the context, to write

(5) Sl = [qFa(q’ v)]%a S2 = [(q— I)Fa(q'— 1, V)]*a

where F,(q, v) denotes the upper a-point of F(g, v). It is easy to show S; > S,: First
we prove an inequality we need below anyway, on the two values of 1 —P, given by
(4). Let w,_,, w,, and w, denote independent chi-square variables with ¢— 1, v, and
1 df respectively. Then Pr {w,_, > S?w,/v} < Pr {w, +w,_, > S?w,/v}, or

©) Pr{F(q—1,v) > S?*/(g—1)} < Pr{F(q,v) > S?/q}
for any S. Now putting S = S, gives « < Pr {F(q,v) > S,?/q}, whence
S22/q < Fa(qa V) = Slzlqa or Sl > S2'

We may define significance level and size as follows for any method of multiple
testing which for éach 0 in L makes one of the three decisions (i), (ii), or (iii), or one
of the two decisions (i) or (i): Let L, be the set of those 6 in L whose true value is
zero, Ly, = Ly(n). The event &, for the method is that it makes decision (i) for all 6
in L,, and its probability is denoted by P;. The probability 1—P; of the comple-
mentary event is a function of # and ¢, and any upper bound for 1—P; will be
called a significance level, and the least upper bound, the size of the method. These
are then bounds on the probability that one of the undesired decisions (ii) or (iii),
or else the undesired decision (i), would be made for one or more 6 in L,

For the S-method of multiple testing with S = S, of (5), we see from (4) and (6)
that « is a significance level, and indeed « is the size (unless the assumption 5 # 0 is
added to Q). A more powerful method of multiple testing of the 0 in L at the same
significance level « is suggested by considering the probability 1— P, for the S-
method with S = S,. This is « for all # except n = 0 (H true), where it is > a by (6).
Can we somehow rule out the possibility that # = 0? If not, can we modify the S-
method with S = S, to lower 1 — P, when = 0 so that its value is then < o without
raising it elsewhere, in a desirable way so as to give a more powerful method of
multiple testing than the unmodified S-method of size a (i.e., with § = S;)?
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Concerning the first possibility, we would not wish to rest on the argument that
in general n cannot be “exactly zero”, for the reason indicated above, namely, that
in most applications there is some small neighborhood of # = 0 where we prefer to
act as though n were zero. However, in some situations it may be acceptable to
assume that there is some neighborhood of 77 = 0 in which 5 cannot lie. In applica-
tions where we are willing to assume 7 is bounded away from zero we may thus use
the S-method of multiple testing with S = S, < S, and its size will then be a. Its
operating characteristic is partially characterized by the probability 1—P; which is
exactly o no matter what the values of the parameters, and the probability P, given
in [5].

Concerning the second possibility, an affirmative answer is implied by the
following “modified S-method”: First test the hypothesis H in (3) by the standard
o-level F-test, in which H is rejected if the F-statistic is > F,(q, v). If H is accepted
we make decision (i) for all 6 in L. If H is rejected we make decision (i), (ii), or (iii)
for all 0 in L according as 0 satisfies |0] < 5,8, 0 > S,8,, or § < — 5,8, where S,
is given by (5). (For the dichotomous method we make decisions (i) or (1) according
as [9| is < or > S,8,.) Itis easy to see that this modified S-method has the same size
a as the (unmodified) S-method with S = S, and to show that it is more powerful
by comparing the behavior of the two methods for any single chosen 8 in L. To
compare the behavior of the two methods globally for all 6 in L we turn to the
geometric picture in the g-dimensional y-space. The estimable functions 6 in L may
be represented by their coefficient vectors d, where 6 = d'n, and d is any vector in the
y-space. Let &, denote the (1 —a)-confidence sphere for 7,

v y—h| < 5y6.

Each of the two methods makes decision (i) for all d if and only if &, covers the
origin 0. If &, does not cover 0 then the set 2 of d for which each method makes
decision (ii) forms a cone of revolution of one nappe with vertex at 0 (not included
in 9), axis along ), and semivertex angle arccos (Sé/|fi|), where =S, for
the S-method and S = S, for the modified S-method: This may be seen by inter-
preting as the signed length of the projection of ) on d the left side of the inequality
f'd||d| > Sé, obtained by substituting § = d'f) and &, = 6|d| in § > S&;. The cone
9 of coefficient vectors d for which the modified S-method makes decision (ii) is
thus greater than that of the unmodified S-method by an amount corresponding to
its greater semivertex angle. A similar statement applies to the cone —9 of coeffi-
cient vectors for which the statement (iii) is made, — 2 being the reflection of & in
0. If the dichotomous methods were to be compared, the corresponding cone would
be that of two nappes, 2’ = 2U(— 2), which consists of the d for which decision (1)
is made.

The probabilities P, and P, for the modified S-method were calculated as triple
integrals. To arrive at some numerical measure of the relative efficiency of the two
methods, we may imagine replicating N times the experiment with n observations

*and using the S-method of multiple testing, or N’ times and using the modified
S-method, both of size a, and calculating the relative efficiency of the S- relative to
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the modified S-method to be e = N’/N, where N and N’ give the same power P, in
some sense. The ratio N’/N required to make P, equal to a given 1 — § was found to
depend on the unknown ratio in[ o in a rather complicated way, so the greatest
lower bound of P, was used, and this was set equal to 1 — 8. This gave

N _ [xp(q— 1)+Jcaz(q—1)]2
N | u@-D+x@ |1’

where y,(q) denotes the upper a-point of y with ¢ df. The referees suggested that these
lengthy calculations be deleted since the results led the author to recommend that
the modified S-method not be generally used in practice. Nevertheless the existence
of a method of multiple testing more powerful than the S-method is of some
theoretical interest, and its publication may save another worker from spending a
long time on it. A table of the relative efficiency e = N’/N showed that it does not
depend very much on the values of « and § chosen, but it increases markedly with g
(this table could be reconstituted from Table 1). However, with increasing g the

®

TABLE 1
Values of q(1 —e), where e = N’|N is the relative efficiency of the S-
relative to the modified S-method of multiple testing

o .10 .05 .01
q
BT 3 d .5 3 1 5 3 1
2 65 58 49 | 58 .52 45 46 .43 37
3 S5 50 4 | S0 46 41 42 39 .35
4 52 48 42 | 48 44 40 41 39 .35
5 S0 47 42 | 4T 44 4 41 39 35
6 49 46 42 | 46 43 40 41 39 .36
8 48 45 42 | 46 43 40 41 39 .37
10 48 45 42 | 46 43 40 42 40 .37
14 47 45 43 | 46 4 4 43 41 38
20 47 46 43 | 46 44 42 43 42 40

number n of observations taken in actual experiments would in general increase,
and the number n(1—e) of observations saved, by using the modified S-method
instead of the S-method, would then of course not decrease as rapidly as the pro-
portion 1 —e of observations saved. Indeed, if the number # were proportional to g,
say n equals cq (approximately), then the number of observations saved would be
¢q(1—e), and in each column of Table 1 we see this is practically constant for ¢ > 2
or 3. We remark that in most of Table 1, g(1—e) < .5, and ¢(1 —e) < .65 everywhere
in the table: Thus, if # were of the magnitude of about 5S¢, the number of observa-
tions saved would, according to this criterion, be about two for most «, f-combina-
tions listed in the table, and at most three, and for n less than 5¢ the saving would be
‘smaller. We remark that the number 7 of observations taken in a multiple inference
problem will usually be large compared with 2.
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When we balance the small saving in the number of observations with the modi-
fied S-method as compared with the S-method of multiple testing, indicated by the
preceding calculations, against the advantage of a certain follow-up procedure
possible with the latter but not the former, we may decide the latter is preferable in
most applications. Use of the S-method of multiple testing permits the following
estimation procedure, generalizing that possible with an ordinary two-tailed a-level
test of a hypothesis p = p, in the case where the test is related to a (1 —a)-confidence
interval for u (the test rejects the hypothesis if and only if the confidence interval
fails to cover ug): For any 0 in L for which we have made decisions (ii), (iii), or (1)
by the S-method we may give an interval (2), which will be consistent with the
decision, namely, completely to the right of 8 = 0 in case (ii), to the left in case (iii),
and not including 6 = 0 in case (f). The interval statement (2) following decisions
(i), (iii), or (i), is stronger than the corresponding decision, which it implies. For
some of the 6 for which we have made decision (i) we may also wish to give the
intervals (2); these will also be consistent, in including 8 = 0. Here the interval
statement, being implied by the decision, is formally weaker, but is really stronger
in its interpretation, since, as remarked above, decision (i) is interpreted to mean
that the evidence is insufficient to reject 6 = 0, whereas the interval (2) may be
interpreted to mean that while the evidence is insufficient to reject 8 = 0 it is suffi-
cient to reject all values further from zero than the ends of the interval. The
probability that all these interval statements are correct is = 1—oa. Such consistent
subsequent interval estimation with overall confidence level 1—a is not possible
with the modified S-method at significance level a. (The writer remarks here that in
the case of the ordinary two-tailed test he prefers this way of indicating ‘“how
strongly the hypothesis is rejected by the evidence” to calculation of the *“P-value”—
the minimum significance level at which the test would reject the hypothesis, for the
observed sample—because he cannot find a satisfactory rationale for the *““P-value”
procedure in its operating characteristic.)

3. Improper confidence sets. In treating the estimation problems raised in Sections
4 and 5 we shall encounter confidence sets which have the property that with positive
probability the confidence set gives a trivially true statement about the parameter
point. The writer proposes to call such confidence sets improper. He will at this
point make their definition precise, and then advance certain objections to their use,
in order not to have to digress from the main developments in Sections 4 and 5.

Suppose the distribution of a sample point x depends on a certain set of para-
meters; we shall think of these as the coordinates of a point ¢, the ““original para-
meter point,” and denote its domain of possible values by @, the “original parameter
space.” We consider confidence sets &/ = &/(x) for a parameter point T which is
a specified function of ¢, 7 =g(¢). An example of the notation is the following from
Section 4: x is the point (z,"* -, 2,) and ¢ = (B, * **, B,, ) under the Q-assumptions
of Section 1, 7 is the unoriented direction of the vector », which is the function of
(B1," ", B,) defined in Section 2. Let T be the “space” (i.e., the range) of the para-
meter point 7, T = g(®), so for all x, &(x) is a subset of T. The confidence set &/
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will be said to give a trivially true statement about 7 for some x = x, if 7€ #(x,) is
implied by x = x,. In the examples in Sections 4 and 5 the trivially true statements
will all be of the form t€ T, that is, &/(x,) = T. In other situations a trivially true
statement might be of the form that 2/(x,) is a proper subset of T, depending
on x,, for example: Suppose x = (x,**,x,) is a random sample of n from the
uniform distribution on (¢ —4, ¢ +4%), @ is the real line, 7 = ¢, and for some x = x,,
o (xo) is the interval (V—4, U+4%), where U and ¥V are the smallest and largest
coordinates of x,. A confidence set & is defined to be improper if for some ¢
the probability is positive that o gives a trivially true statement about 7.

Before considering the objections to the use of improper confidence sets let us
clarify the following terminology: We shall say « is a (1 —«)-confidence set for 7 if
Pr{res/(x)} = 1—a for all ¢ in ®. (We may say 1—a is a confidence level and
reserve the name confidence coefficient for the greatest lower bound of Pr {re &/(x)},
so that a confidence level corresponds to a significance level in testing, and the
confidence coefficient to the size.) The reader not convinced by the writer’s objec-
tions may still be willing to call these confidence sets improper and feel as free to
use them as he does improper fractions or improper integrals.

Let us imagine a statistician using an improper confidence set &/ when he is
acting as a statistical consultant, and suppose &/ turns out to give a trivially true
statement. Should he give the client the trivially true statement with some explana-
tion like the following ? “The method I’'m using requires my making a trivially true
statement like this some of the time in order to ensure that my long-run proportion
of true statements in using (1 — «)-confidence sets will be at least equal to my claimed
value of 1—a. The probability of my making such trivial statements depends on the
unknown true values of the parameters in the problems.” Then what can the un-
fortunate client do about the confidence statement giving him no information,
except ignore it? And perhaps wonder what the more fortusate clients are really
getting ? Or should the statistician conceal from the client that the method gave a
trivially true statement (thus invalidating the frequency interpretation of the con-
fidence set), and tell him instead that more data are needed ? Perhaps even more
puzzled than the client receiving such an explanation would be the more fortunate
one receiving a non-trivial statement resulting from the use of an improper con-
fidence set, if the statistician felt obligated to give him a similar explanation about
its operating characteristic.

4. Estimating the direction of a vector. We may relate the multiple testing problem
we considered in Section 2 to the problem? of estimating the direction of a vector. If

2 The problem of estimating the direction of a vector was encountered by Box [2] when trying
to estimate the direction of the gradient of the response function in an experiment with ¢ quanti-
tative factors. His solution in the form of the improper confidence set # described below is really
a confidence set for the unoriented direction, whereas it is the oriented direction which is of interest
in this example. Problems of estimation of the unoriented direction are equivalent to problems of
estimating ratios (Section 5), and these arise in the biological and social sciences. Actually the

author was led to these problems along the following path: the confidence sphere &; may be
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we knew the direction of the vector #, or if we knew the direction was undefined
(because n = 0), then we would know for all 6 in L which of the three decisions (i)
(i), (iii) is correct, and conversely, since 8 = d'y. A similar statement applies to the
unoriented direction of # and the two decisions (i) and (i). We will represent the
direction of a vector geometrically by a ray from the origin 0 (with the same direc-
tion), and the unoriented direction by a line through 0, in both cases with the point
0 deleted.

In this section we consider the problem of finding confidence sets for the direction
and unoriented direction of a vector, first for the above vector #, and then more
generally for a vector £. In the first case we are given estimates # and 82 such that
they are independent, ] is N(, 6°1), and 62 is 6%¢*(v)/v. In the more general case we
are given estimates & and 4 satisfying the assumptions Q, below.

Since a confidence set for the direction of a vector is a union of rays from 0, it
will be a cone, while a confidence set for the unoriented direction will be a cone
symmetrical about 0; it will be understood henceforth that the confidence cones
always have vertex at 0 but 0 is excluded. When we consider the symmetry of the
spherical normal distribution of the estimate #, we are led to seek a confidence set
for the direction of # in the form of a cone of revolution of one nappe with axis
along ], and for the unoriented direction of #, a similar cone of two nappes. (Ques-
tions arise if /) or 1 should be zero, but we shall avoid these in reformulating the
problem later.) Such confidence cones for the direction or unoriented direction of
the vector 7 are also confidence cones for the point n = (#,, " - *,7,), and conversely
for such confidence cones for the point #.

Assuming for the moment that # # 0, the following cone, which we shall denote
by #, may be shown to be a (1 —a)-confidence set for the unoriented direction of #.
Let &, denote the sphere | y—ﬁ| =< 8,8, where S, is defined by (5). If &, does not
contain 0, # is the cone of two nappes circumscribed about &, ; if &, contains 0,
4 is the whole g-dimensional space with O deleted. This result can be deduced from
[5], for it may be shown that Pr {ne %} is the P, of (4) above; it will also follow
directly from our later calculations. The confidence cone # was given by Box [2].
The special case for ¢ =2 is equivalent to Fieller’s solution of the problem of
estimating a ratio which will be described in Section 5. The writer would be loathe
to use # because it is an improper confidence set. Since he does not recommend #
he will not disentangle the hair-splitting question of the probability that & gives a
true statement about the unoriented direction of # when # = 0. The problem of
finding a confidence cone for the (oriented) direction seems not to have been treated
before under our assumptions.?

said to generate the S-method of multiple testing (in the sense of the discussion in the paragraph
below (25)). What are the maximal confidence sets which generate the S- and modified .S-methods
of multiple testing ?

3 G. S. Watson ([7] which see for further references) has treated it under different assumptions;
he assumes one has observations not on the vector but only on its direction, and the distribution
assumed for the observed direction is not that determined by a multivariate normal distribution
of the corresponding vector.
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In order to avoid improper confidence sets we propose to reformulate the problem
by seeking a confidence set for the point #, instead of directly for the direction of n,
of the following nature: It will be either a cone (not the whole space with 0 deleted),
thus giving confidence bounds for the direction of #, or it will be a sphere containing
0. In the latter case the interpretation is that there is insufficient information to
determine any bounds on the direction of # because at the desired confidence level
we can only conclude that the point # is in the sphere containing 0. This is not a
trivial statement, and may, like a proper confidence interval, or a proper confidence
cone, that turns out too wide to be useful, suggest what further data must be
gathered for a good chance of a usefully narrow determination.

Let us designate by £ the confidence set we are seeking for # in the case of the
(oriented) direction. We begin with the (1—oa)-confidence sphere &, for #,
|y—1| £ 8,6, and if &, covers 0, we will take # to be &,. If &, does not cover 0,
then for £ we might consider using the cone circumscribed about &, since it is
fairly obvious that the resulting # would cover 5 with probability = 1—«, and = «
if n = 0. However, it became intuitively evident to the writer while struggling with
this problem that it should be possible as |f7| /6 increases to shrink the radius of the
sphere centered at the point fj, about which the cone is circumscribed, toward a
limiting value S,6: This is suggested by the geometry and probability distribution,
and the related Figure 1, underlying the calculations below for Pr {ne £}. It is also
suggested by the above improper (1—a)-confidence set # for the unoriented
direction of #.

We shall denote by fé the radius of the inscribed sphere &, where f'is a function
of |A|/8, to be further specified, which decreases from S, to S, as |f)|/é increases
from S; to oo. The function f is conveniently considered as a function of the F-
statistic for testing H in (3), F = |fi|*/(q6?), which under H is distributed as F(g, ),
$0

© S =1 (F),

and f(F) is monotone non-increasing from the value S, to the value S, as Fincreases
from F,(g,v) to co. A useful form of the function (9) might be f'= S, +cF™*, in
which case

(10) F(F) = S, +[Fuq,v)/F1"(S; —S2) (1> 0).
When £ is the cone circumscribed about & it consists of the points y satisfying
11) A'ylly| 2 (|7]* =f26%)3, y#0.

This may be obtained from a figure showing the following in the two dimensional
section containing the vectors # and y: the sphere &, the cone £, the sphere with
diameter #, radii to the intersection of the two spheres from the center of &, and
the projection of  on y, whose signed length is #'y/|y|.

We consider Pr {#ne 2} first in the case when n = 0. Then ne £ if and only if
% = &, which happens if and only if F £ F,(q,v), and the probability of this is
1 —a, since H is true. Later, for the problem of estimating the unoriented direction
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we will use a confidence set %’ for n which also turns out to be &, if &, covers 0,
but a certain cone symmetric in 0 if &; does not cover 0. It follows that also
Pr{ne#'} = 1—awhenn=0.

The calculation of Pr {n e £}, and later, of Pr {n e #'}, in the case when# # 0 will
be made in the space (actually, quarter-space) of three independent random variables
u,v,8, defined as follows: For # # 0 we resolve # into two components, the first
along 7, and the second orthogonal to #; u is the signed length of the first component
(the sign is that of #j'n), and v is the length of the second component (v = 0). Then
u,v, and & are independent, u is N(|n],6), v is ox(¢—1), and & is v~ ¥x(v). The
calculation will be pictured in Figure 1, which is a cross-section of the (u, v, §)-space

v (orv’)
v =06f(F)
S, (or S¢)  (orv'=a'f(F))

—
P ey —
TS s ceon M

\\\\ £ = )

m /-
)2

0 |n| (or d) u (or u")

Fic. 1. Cross-section for & = constant of events I, II, III in the u, v, é-space (or for
6’ = constant in the &, v’, 6’-space).

for ¢ = constant. We shall also have to refer to the y-space of n and .
2 will the sphere & if and only if |f|* < 5,287, or

(12) u?+v? £ 5,%°

This is the inside of a cone with vertex at the origin of the (1, v, §)-space, axis along
the é-axis, and cross-section the inside of the semi-circle with center at 0 in Figure 1.
In this case where # = &,, # will cover 7 if and only if |[ff—»|* £ §,%4%, which
we may write

(13) (u=|n)? +0* < 5,262

by considering the projections of /—# on and normal to 7. The event (13) is the
inside of a cone in the (u, v, 8)-space, which is the same as the cone (12) translated a
distance || in the positive u-direction. Its cross-section is the semi-circle with center
at u = In in Figure 1. 2 will be a sphere and cover # if and only if (12) and (13)
hold: We shall call this the event I; its cross-section is shown horizontally shaded in
_Figure 1; the cross-section will be empty if and only if & < |n]/(2S5).

2 will be a cone if and only if (12) is violated. The cone £ is circumscribed about

the sphere &, ] y-—ﬁ] < f8, and will cover 7 if and only if
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(14) u>0

and

(15) v < 6f (F),
where

(16) F = (u*+v%)/(q6%).

Thus £ will be a cone and cover 5 if and only if (14) and (15) hold and (12) does not:
We shall call this the event IT; its cross-section is shown vertically shaded in Figure
1. If we write the equation of its upper boundary v = 8f(F) in the form

an v =f(q" (™)’ +q7 (87",

we see that 11 is a cone with vertex at the origin of the (u,‘v, &)-space. Equation (17)
may be solved for u,

(18) u=06[qf '(ws™H - "M%

(If the function f(F) had intervals of F where f is constant, the indeterminacy of
/! would cause no real difficulty in the definition of the integrals where (18) is later
used.) For the cross-section curve, where & = constant, of the boundary surface
(17) it may be verified that as u varies from 0 to oo, v is non-increasing, the curve
starting from (0, S, ), remaining above the semicircle centered at 0 in Figure 1, and
becoming asymptotic to the line v = S,86.

For the case of the unoriented direction we will modify the confidence set £ to
the set %', which when £ is a sphere is the same as #, and when £ is a cone is the
two-napped cone consisting of % and its reflection in the origin of the y-space ; from
(11) we see that £’ is then the cone

(19) 7'y|z y|(a]* =123, y #0.

(One would hope to use a smaller function f(F) in this case, but it is indicated in the
Appendix that, at least for f(F) of the type (10), and v = o0, no decrease of f(F) of
any practical importance is possible because the contribution of Pr{IIl} to
Pr{ne#'} = Pr {neR}+Pr {111} is negligible when Pr {# € Z} is minimum  all these
probabilities being functions of & defined by (22)). Then £’ will be a sphere and
cover 7 if and only if event 7 happens. £’ will be a cone and cover # if and only if
(15) holds and (12) does not. This event is the union of I7 and its reflection 1] in the
plane u =0. The cross-section of III is shown slant-shaded in Figure 1.

For 1 # 0 we may express in terms of the probabilities of the disjoint events 7, /I,
111, the probability that 5 is covered by Z or %',

(20) Pr{ne#} =Pr{I}+Pr{ll},

@1) Pr{ne®'} = Pr{I}+Pr {II} +Pr {III}.

We remark first that Pr {ne 2} and Pr {ne %'} are functions only of
(22) 5= nlfo
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(they depend of course also on a, g, v, and the function f(F), which are being held
fixed); this may be seen by considering the events I, II, III in the space of the trans-
formed variables ¥’ = u/o, v’ = v/g, ' = é/a, whose joint distribution depends only
on 6. Figure 1 will serve as a picture of the cross-section 4’ = constant in the
(u',v',8")-space if we replace the labels u,v, S,8, S,8, ||, v = 8f(F) respectively by
u',v',8,6',8,8',0,v" = 8'f(F), where Fis the same function of u’,v", 6" as of u,v,é in
(16). Hence the probabilities of the events 1, I1, III depend only on 6. We remark for
later use that since the distribution of u is symmetrical about u = ||, the distribu-
tion of (u,v,8) is symmetrical about the plane u = |11|, and the distribution of
(', v, 8") is symmetrical about the plane u’ = 6.

We note next that A(d) = Pr {#e %} has a saltus at § = 0, where it jumps from
1 —a to greater values. Contemplating Figure 1 (with the alternate labelling), we see
that in the limit as § — 0, the cross-section of the event I is the semi-circle centered
at 0, and hence the limit of the event [ is the cone (12) whose probability is 1—oa.
Thus as 6 -0, limPr {ne #} exceeds 1—o by lim Pr {II}. Similarly the saltus of
Pr{ne%'} is lim Pr {IIVIII}.

Next we shall argue that 4(6) - 1 —a as § — oo : Consider the conditional proba-
bility in the cross-section 6’ = constant = ¢. For § > 25,6’ the cross-section of [ is
empty. Since u’' is N(, 1), the conditional probability in I7 or in IIUIII approaches
that in the strip v' < 5,68’ as § — 0. The convergence is not uniform in ¢, but this
causes no difficulty when we integrate against the probability density of &”,
which drops off exponentially as ¢ — oo. Thus lim A(5) equals the probability
in the cone v’ < S5,6', which is 1—«. The argument shows that as 6 — oo, |
limPr {II} = limPr {ne R} =limPr {ne#'} = 1—o.

We shall conclude these easy calculations by establishing the following crude
bound:

(23) Pr{ne#} > i[1—a+Pr{F(q,v) £ ¢~ (g—1)F,(a—1,v)}].

From Figure 1 we see that the cross-section of the event IUII contains (a) the semi-
infinite strip satisfying v < S,6,u > lnl, and (b) the quarter circle satisfying

(24) (u—[n))*+0* < 5,76

and u < [7|. From the symmetry of the distribution in the plane u =[], the
probability in the cone whose cross-section is (a) is half that in the cone v < 5,86,
namely 1—a, and the probability in the cone whose cross-section is (b) is half that
in the cone (24), namely, Pr {F(q,v) < ¢~ *(¢g—1)F,(g—1,v)}. This gives the bound
(23); it is crude because we have ignored all the probability in JUIT outside the cone
whose cross-section is (a)u(b). Numerical tabulation of the bound (23) showed that
Pr{ne#} > 1—2afora = .05.

If at this point in our developments we consider the improper confidence set %,
described near the beginning of this section, for the unoriented direction of #, it is
obvious that if # # 0, the probability of covering the unoriented direction is 1—«,
since n e 4 if and only if (4, v, &) falls in the cone v £ S,6. The following remarks
pertain to comparing the operating characteristics of 4 and 2’: The part of the



14 HENRY SCHEFFE

probability 1—o of coverage of n by # that comes from making the trivially true
statement about the direction of # is the part in the cone

(25) u?+v* £ 5,267
it is
(26) Pr{F < 5,%/q},

where F is the F-statistic for testing the hypothesis (3), and is distributed as non-
central F with g and v df and non-centrality parameter given by the usual rule. If
instead of the trivial statement about 5 our non-trivial statement that ne &, were
made, the probability of coverage would be reduced by the probability inside the
cone (25) and outside the cone (13): the cross-section of this solid could be obtained
as the unshaded part of a semi-circle added in Figure 1 with center 0 and radius
S,48. This reduction of the probability of coverage may be regarded as the cost of
replacing the trivially true statement by the non-trivial one.

All the probability calculations for # and £’ made above, including the bound
(23), are easily seen to be valid for the case where f(F) is defined and monotone non-
increasing for F,(q,v) < F < o0, f(F) — S, as F— o0, and f(F) — f, as F— F(q,v),
where S; = f, = S,; the integral expressions below for the probabilities are also
easily modified for this case. The cross-section of the boundary (17) then starts in
Figure 1 from (6[S;2—f,2]%, f 06) instead of (0, S;6). A particular case of this more
general f(F) is f(F) = S,; this gives a confidence set which generates the modified
S-method of multiple testing of size a. For this f(F), when & is a cone it is that
complementary to the cone 2, introduced below (7), with S = S,, in the sense that
Z and 2 have the same axis and vertex but their semi-vertex angles are com-
plementary. # generates* the modified S-method in the following sense: For any
0 in L, say 0 = d'n with d any fixed vector, the modified S-method makes decision
(i) if and only if 8 = 0 for some n € £, decision (ii) if and only if 6 > 0 for all ne %,
and decision (iii) if and only if 8 < 0 for all e £. The confidence set #’ for this
S(F) generates the dichotomous modified S-method, in which decision (i) is made if
and only if 6 = 0 for some ne #’, decision (i) if and only if 8 # O for all ye #'. For
this confidence set £’, and hence also for the £ with the same f(F), it can be seen
that the hoped-for condition that the confidence coefficient is = 1—a is violated, at
least for large v, by considering the limiting case v = oco: Then ¢ is known, é = g,
and all the probability is in the two-dimensional space of Figure 1. If [y| > 28,0
then Zis empty and IIUIII consists of the strip v < S,o with the part inside the semi-
circle centered at 0 deleted, while the probability of the whole strip is 1 —a. This
shows Pr {ne#') < 1—aford > 25,.

We shall now express Pr {#e %} and Pr {ne %'} in terms of triple integrals. These
formulas are easily obtained by expressing the probabilities with the help of Figure

4 The dichotomous (unmodified) S-method of multiple testing with .S = S, is generated by the
improper confidence set Z discussed above. We remark that if a method of multiple testing is
generated by a confidence set, the generating confidence set is in general not unique, but one might
define a unique one as the maximal such set (which will in general be improper).
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1 as triple integrals in the independent variables u’,v’, 8’ defined below (22), and
then dropping the primes. We shall use the following notation: The densities of
u',v',8" will be denoted by p,(u"), p,(v'), p3(8”), so

- H(u-0)? o~ 0212 e 10%v—1
27 = = 6) =
( ) pl(“) (27[)—% > p2(v) 25(4-3)F[%(q_1)] > p3(0) 2%("_2)1“(-%\’) >

the upper boundary (18) of IT by u’ = U(v', 8'), so

(28) U(v,6) = 6[qf ~ (w6~ ) — (026 I,

the left boundary of I by u’ = L(v', "), so

(29) L(v,6) = (S;26*—v?)?},

and hence the left boundary of I (when not empty) by ¥’ = 6 — L(v’, 8"). Thus we find
(30) Pr{I} = (%5, [63% P (398 5 p(u,v,6) du dvdé,

31 Pr{Il} = {[§ [o** [Fw, 0+ [S:8 JEG &) } Pu,v,8) du dv dé,

() Pr{lll} = {J§ 3259 4 32 (2500} p(u,v,8) du dvds,

where p(u, v, 8) = p;(6)p,(v)p,(u), the densities p; are given by (27), U(v, 8) by (28),
L(v, 8) by (29), and S, and S, by (5). Pr {ne £} and Pr {n e #'} are'then found from
(20) and (21).

Computer calculation of tables of Pr {I}, Pr {II'}, and Pr {III} is discussed in the
Appendix for the limiting case v = oo, with f(F) of the form (10). These tables give
a partial determination of the operating characteristics of the confidence sets # and
Z', and permit numerical evaluation of the confidence coefficients. It is found there
that for «=.10 and .05 the confidence coefficient of Z is 1 —a if 4 = 1 when g = 2,
1 =3/2 when g =3, and u =2 when ¢q = 4, and that if we are willing to accept
confidence coefficients of .898 and .949 instead of .900 and .950 we may use u = 3/2
when g = 2, and 4 = 2 when g = 3. It is also indicated that the values u = 1.35 for
q =2 and u = 1.75 for u = 3 give confidence coefficients of .900 and .950. These
numerically determined confidence coefficients are expected to be correct within
.001. It is also found that the confidence coefficients of £’ are to three decimals the
same as for # with the same u. It is recommended that these values of u be used also
with finite u, pending computer calculations of (30)—(32).

We turn now to the more general case of estimating the direction or unoriented
direction of a vector & = (¢;,* -+, &,) under the following assumptions, which we
shall denote by Q,. (These might be regarded as a special case of Q and L, but we
use the &-notation for greater clarity in this problem.)

Q, : We have estimates {E ;} which are jointly normal. The g-variate distribution
ofé=(&,, -, ¢& ) has mean ¢ and covariance matrix o’B, where B = (b; i)
is a known non-singular matrix. We have also an independent estimate
42 of 62 such that 62 is distributed as a2y2(v)/v.

The problem of finding a confidence set for the direction or unoriented direction
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of ¢ we shall reformulate as we did that for #. Indeed we shall solve it by transform-
ing to ¢ our previous solution for #.

There exists a non-singular matrix M such that MBM' = I, the identity matrix.
Let ) = ME, n = ME, so that # is N(y,8I). Then the resulting 4 together with &2
have the same joint distribution as before, and we need only transform our con-
fidence sets Z and %’ from the y-space of i to the x-space of £, where

33) x=M1y.

The sphere &, (y—#)'(y—#) < S,6? transforms into the ellipsoid 2.
(34) (x—&B '(x—& < 5,28%,

and similarly the sphere &, |y —fj| < fé, transforms into the ellipsoid 2,
(35) (x—&'B'(x={) <%

Here /' = f(F), where F is the F-statistic for testing the hypothesis H : ¢ =0, which
may be written F = &'B~1 &/(¢6?). If the ellipsoid &, covers the origin of the x-space,
i.e., if F £ F,(q,v), the confidence set Z for ¢ is the ellipsoid (34). Otherwise # is the
cone (with vertex at the origin) circumscribed about the ellipsoid (35); this consists
of the points x satisfying

(36) B 1x 2 (x’ B~ 'x)¥(&B1E—f26%), x#0,
which is found by transforming (11).

To estimate the unoriented direction of ¢ we use the transform %' of #': If
F < F(q,v), #'is the ellipsoid (34). Otherwise 4 is the cone of two nappes obtained
by reflecting Z in the origin; it satisfies the inequality
(37) @B~ x| 2 (VBT LHEBTE~f 2D, x #0.
Obviously Pr {ée &} = Pr {ne %}, and similarly for %’ and Z'.

Finally, let us note the following easy result about the operating characteristic
of the method: For the confidence sets #, %', &, #' the probability that they will
not be ellipsoids is the well-known power of the a-level F-test for testing the hypo-
thesis n = 0 or ¢ = 0; the non-centrality parameter is precisely the § of (22) pre-
viously introduced in the case of % and #’, while for & and ' it may be written
8 =(&'B7 1Ok o.

5. Estimation of ratios. Estimation of ratios is related to the estimation of the
unoriented direction of a vector, since the ratios of all pairs of {&;,* ", éq} (except
those with zero denominators) are determined by the unoriented direction of the
vector & = (4,77, ¢, and conversely, provided ¢ # 0. We begin with the estima-
tion of a single ratio, and introduce a third notation which will be useful later for
multiple estimation of ratios. Suppose then we consider the estimation of a ratio
0/¢ subject to the following assumptions

Q,: The estimates @ and ¢ have a non-singular bivariate normal distribution
with means 6 and ¢, variances 65%> = by;0° and o, = b,,0?, and co-
variance ¢, = b;,0%, where the {b;;} are known constants. The estimate
42 is independent of @ and ¢ and is distributed as a%*(v)/v.
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We shall denote the estimates of 6,2, 6,2, 645 by
(38) 6g2= b1132, 6¢2 = b2262, 69¢= b12&2.

Fieller’s [3, 4] confidence set® for the estimation of the ratio A =6/¢ can be
derived by considering the normal variable w = §—1¢, and building the ratio
t = [0, '(w—E(w))]/[606™'], which for ¢ # 0 has the r-distribution with v df.
From Pr {#* < §%} = | —a, with §? = F,(1, ), we then find that if® ¢ 5 0 the values
of A satisfying

(39) (P2 —5%6,1) =240 — S28,,) + (0> —S%6,%) < 0

form a (1 —a)-confidence set for A. Later we shall also be interested in the set of A
satisfying (39) for other values of S?; let us call the set § = F(S?), so that Fieller’s
confidence set is F(F,(1, v)). Write

(40) a=¢*—5%% b=00—S%,, c=0"-5%" A=>b>-ac.

If A>0 and a > 0 then § is the interval r_ < A <r,, where r, = (b+A¥)/a. If
A > 0 and a < 0 then § is the outside of the interval (r_,r,). We shall ignore the
cases a =0 and A = 0 since these will occur with probability zero. If A <0 and
a < 0 then & is the whole line — o0 < A < + 0. If A <0 and a > Othen § would be
the empty set, but we shall show this is impossible: write A in the form

41) A = S%6*(—2b,,00+5%b%,6*+b,; $>+b,,02—S?b,, b,,8>).

The impossibility of A < 0 and a > 0 does not depend on the assumptions Q, but is
true for an arbitrary set of real numbers S, 8,8, ¢, by, b,,,b,, in (41) subject to the
conditions b;; > 0,b,, > 0,b,,b,,—b?, > 0: This may be seen by writing (41)
in the form

A = 5262550~ b1 637 9)* + b33 (b11 byy —b12) (% — b2y S%67)]

and noting ¢*—b,,5%6? = a.

Under the assumptions Q, the confidence set & is the whole A-space (—o0 < 1 <
+ o0) with positive probability, and so & is improper. However, that § may be the
outside of an interval should not disturb us, since if /0 lies in an interval containing

5 Fieller ([4] 176) says his solution is implied by a result of Bliss ([1] 325). However, Bliss does
not seem to note that the confidence set may fail to be a finite interval.

6 The question as to what happens when the denominator of a ratio we are estimating is actually
zero arises here and later. The statement that the ratio is in any non-empty set of real values is
then, strictly speaking, false. We might still ask to learn more about the operating characteristic
of a confidence set for the ratio in this case beyond the triviality that the probability that it gives
a false statement is one. The writer believes that for all the confidence sets considered, with at
least the claimed probability, “they behave as though they were trying to give an informative state-
ment,” for example, in the case of estimating a single ratio 1 = 6/¢, the statement in quotes
means they give a set for A which includes all A with |A| > M for some M, or a set for (6, ¢) con-
taining (0, 0). However, he finds the analysis of this problem too nit-picking for his taste because

?(i) our assertions are mathematically correct for any non-zero denominator, however small, and
7 (ii) there is the usual question of how operationally meaningful is the statement that ¢ is “exactly
zero” in a real application.
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zero, then /¢ lies in a set which is the outside of an intervalif ¢ # 0. Later we shall
see geometrically that the three possibilities for & (a finite interval, the outside of a
finite interval, or the whole line) arise because & is the section ¢ = 1 of an improper
confidence set in the 0, ¢-plane either in the form of two opposite sectors bounded
by two lines through the origin, or else the whole plane. From the later geometrical
picture it will also be clear that under Q, the probability that F(F,(1,v)) is the whole
A-space is Pr {F < 3F,(1,v)}, where F is the F-statistic for testing H : 6 = ¢ =0, and
has a non-central F-distribution with 2 and v df, and non-centrality parameter
calculated in the usual way. A proper confidence set for the reformulation of this
problem will be given by the Corollary near the end.

We consider now joint estimation of a set of ratios. Under the assumptions and
notation of Q1 suppose first that we wish to estimate jointly the g—1 ratios

EiJEi=1,-++,q—1). The solution will be a confidence set in the x-space of &, which
is either an elhps01d containing ¢ = 0, or else a set of contours along which the
q—1 functions &;/¢, remain constant. Indeed, the 4’ found in Section 4 is such a
confidence set, the contours being lines through 0 (with O deleted) when #'is a
cone; however, when #' is a cone we should delete from it its intersection with the
plane x, = 0 since there the ¢;/¢, are not defined. To get a (¢— 1)-dimensional
picture when ' is a cone, and to help solve a later multiple estimation problem,
we note that if £, #0, éeﬁ' is equivalent to the (g—I)-tuple (&,/&,,  &-1/8p)
being in the set of (1, ", x,_ ) for which (xy, -+, x,_,1) is in the cross-section of
the cone #' by the plane x = 1. Thisis a spec1al case of the following method of
joint estimation of the g ratlos {&/p}, where ¢ = Y| g;&;, and {g,} is a given set of
constants not all zero: If &, covers the origin (i.e., if H: & =0 is accepted by the
a-level F-test) we say Ee P,; else we say the value of the g-tuple (&,/0, -, ¢ /@) is
in the set of (x," ", x,) which is the cross-section of &' by Y {g:x;,=1,0r of (37)
by g’x = 1. To see that the resulting statement is equivalent to ée &', if g’¢ # 0,
note that if #" is a cone, and g’¢ # 0, then e 4’ if and only if the g-tuple (¢, /o, -,
&,/o) takes on the value that (x, /9'x," -, x,/g'x) has along some line (with Odeleted)
in #', and this is the same as the value of (x,, " -, x,) where the line intersects the
plane g'x = 1.

That these confidence sets for the joint estimation of a set of ratios can turn out
to be any kind of conic section seems something of a mathematical curiosity to the
writer, but he feels that, for g >2, they will be of less direct practical use than the
following method of multiple estimation derived from them, which gives the inside
or outside of easily calculated intervals for all ratios in a certain set. The set will be
that of all /¢ with 6 and ¢ in a g-dimensional space L of estimable functions, and
for which the value of ¢ is not zero. In the above context of estimating ratios, L
would be the space of all linear combinations of £, +, &, under the assumptions
Q,. In the analysis-of-variance context the space L would be that definedin Section 1
under the assumptions Q; in that case we would take as the {&;} any basis {0;} for L.
We shall denote the resulting assumptions by Q'.

» To state the theorem embodying the method of multiple estimation of ratios, we
shall employ the following further notation: For any 6 and ¢ in L we denote by 0
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and ¢ their least-squares estimates; these satisfy Q,, and we shall denote their
estimated variances and covariance by the 642,68, 6,, defined by (38). The F-
statistic for testing the hypothesis H : £ = 0 will be denoted by F, so that H will be
accepted by the a-level F-test if and only if F < F,(q, v), or, ifand only if the ellipsoid
&, of (34) covers 0. If the confidence set %' for # in Section 4 is constructed for a
nominal confidence coefficient 1 —a and for a chosen function f(F) satisfying the
conditions below (9), 1—a, will denote a lower bound for /'(5) = Pr {ne#'}. Then
1—0y < 1—a since h'(0)=1—a, or if =0 is excluded, since A'() > 1—«a as
6 — 0.

For applying Theorem 2 and its Corollary a very conservative value of 1—q,
would be the bound (23); this is valid for any f(F) satisfying the conditions below
(9). It is suggested that f(F) of the form (9) be used with u = 3/2forg =2and u =2
for g > 2. This is expected to give a good approximation of 1—a, to the nominal
1—a as explained in the Appendix, where it is shown that in the case v = oo, this
choice of y numerically justifies 1 —a, = .898 if 1 —a =.900, and 1—a, = .949 if
1—o =.950. See also the first paragraph beginning after (32), where other choices
of u are mentioned.

THEOREM 2. If the hypothesis H : £ = 0 is accepted by the a-level F-test, state that
& is in the ellipsoid P, of (34), which covers & = 0. If H is rejected, then for as many
0/ as desired, with 0 and ¢ in L, state that the value of = 0/¢ satisfies the quadratic
inequality (39) with S = f(F) if the value of ¢ is not zero. Under the assumptions Q'
the probability is = 1 — oy, that all the statements will be true.

We shall be able to discuss some of the implications of this theorem better after
we have proved it. Since Pr{¢e #'} = 1—ua,, it will suffice to prove that if ¢ € £’ and
A' # P, then the values of all 8/, for which 6 and ¢ are in L and for which the
value of ¢ is not zero, satisfy (39) with S = f(F). Actually it will suffice to prove this
for all 8 and ¢ in L with ¢,?> = 62, or b,, = 1, since under the transformation
0=clO,p=0¢',A=cl (c+#0), the inequality (39) remains invariant. We transform
from the x-space of £ to the y-space of # by (33). Choose any 0 and ¢ in L with
6y’ =a%, say 0 =d'n and ¢ = g'n, and hold d and g fixed. Since 6,2 = d’ do?,
d'd=1.1f g'n = ¢ # 0 and we write 1 = d'(5/p), we see that A is the (signed length
of the) projection of the vector n/¢ on the unit vector d. We assume in the remainder
of this proof that ne #’, the cone (19), and g'n # 0. Then the point /¢ lies in the
section of #’ by the plane g’y = 1, by the reasoning that led to the conic-section
outcome of our confidence sets above. The problem has now been reduced to
showing that for all points y, in the section of £’ by the plane g’y = 1, the pro-
jection A of y, on d satisfies (39) with S = f(F).

To solve this problem we introduce the cone £* (including 0) which consists of
all lines through O normal to some direction in £#’. An inequality for Z* may be
obtained as follows: 2’ consists of all y satisfying |cos @, y)| = cos k, where k is the
semi-vertex angle of #',sink = f8/|i|. Hence %#* consists of all y satisfying
|cas (4, )| < cos (3n—x) or y = 0, which is equivalent to (#'y)* < |y|*(f8)?, or

“42) y'(af' —f?6*Dy < 0.
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Now suppose that y, is in the section of #' by g’y = 1, that A = d’y,, and consider
the vector Ag—d: Since (Ag—d)'y, = 49'yo—d'yy =0, Ag—d is orthogonal to y,
and hence lies in 2%, so by (42),

(43) (Ag —dy (i —f*6°I)(Ag —d) < 0.
We may write this
44)  ’[(g')?—f26%g'g]—24[(d'M)(g'D)~f*6>d'g]+[(d')* —f*6*d'd] £ 0.

From 0 =d'y, ¢ = g'n, we may identify the coefficients in (44) by calculating
g'fi= ¢, 6%g'g = 6,%, 6*d'g = 8, etc., and so we find (44) may be written in the
form (39) with S = f.

Concerning Theorem 2 we point out that if ¢ > 2 the sets given by the theorem
for estimating 4 =60/¢ when &, does not cover 0 will be the whole line,
— o0 < A< + 00, for some 0 and ¢ in L, but never for all 8 and ¢ in L. This is
because they are derived from the proper confidence set £’ for # when £’ # %, by
projecting the section of the cone £’ by the plane g’y =1 on the vector d, where
0 =d'n and ¢ = g'n (we may assume d # 0 and g # 0), and then “multiplying”
the projection by |d|: It may be seen clearly in the case ¢ = 3 from the three-
dimensional picture, in which £, when not the ellipsoid &, is a cone of revolution
of two nappes with vertex at 0 and semi-vertex angle x < in, and k¥ > 0 with
probability one. The section of the cone £’ by g’y = 1 will be bounded by an ellipse,
parabola, or hyperbola, depending on £’ and g. We can ignore the parabolic case,
since for random £’ and fixed g it happens with probability zero. Given &', if g is
such that the section is elliptical, then its projection on d for any d is a finite interval.
If g is such that the section is hyperbolic, then for some d the projection is the out-
side of an interval, and for some d it is the whole line, the only other possibility
being the case where d has the same direction as g, say d = cg, when 0/¢p = ¢, and
the projection is a single point giving A = ¢. However, in the case ¢ = 2 the corre-
sponding two-dimensional picture shows that for no 6 and ¢ in L can the set for
A = 0/¢ given by the theorem be the whole line: £’ when not the circle &, consists
of two opposite sectors of vertex angle 2x < w (and x > 0 with probability one)
bounded by two lines through the origin. The elliptical sections degenerate into
intervals of finite positive length, the hyperbolic sections into the outsides of such
intervals, and their projections (excluding again the case d = cg) will have respec-
tively the same character.

In the case ¢ = 2, which we now consider in more detail, there is no real multiple
estimation problem for /¢, for 6 and ¢ in L: We may assume 0 and ¢ are linearly
independent members of L, else ¢ is the zero element of L or 6/¢ is a known
constant. It is easy to verify that for any linearly independent § and ¢ in L and any
linearly independent § and @ in L, 1= /¢ is a 1: 1 function of A = 0/¢. For the
case g = 2 then we may as well take the assumptions in the form Q,, and Theorem
2 has the following



MULTIPLE TESTING VERSUS MULTIPLE ESTIMATION 21

COROLLARY. Under the assumptions Q, calculate the value of
45) F=,0)B™'(0,0)/(26%) or
=[b,,0%—2b, 00+ by ¢*1/[2(by; by, —bT2)8%],

the F-statistic for testing the hypothesis 6 = ¢ = 0. If F < F,(2,v) state that (0, @) is
in the ellipse

(46) (0-0,0—p)B~'(0—0,0— ) < 2F,(2,v)8°, or
by, (60— 9)2 —2by,(0— 9)(4’ —®)+by(p— @)2 S 2F,(2,v)(by1 byr— b%z)az,

which covers the origin of the 0, @-plane. If F > F/2,v) solve for A the equation
al?—2bi+c =0, where

a=0*—f?by,8%, b=00—f2b,,6%,  c¢=0—fb,,8%

and f = f(F). There will be two real unequal roots (with probability one); denote them
byr_<ry,. Ifa>0state thatr_ <0/o<r, if o #0;if a<O state O/p < r_ or
=r, if @ # 0. Then the probability of a true statement is = 1—a,.

At this point we insert a discussion giving direct access in this lengthy paper to the
reader interested only in Fieller’s problem of estimating the ratio A = 0/¢ of two
means. (The author is grateful to the referee who suggested the multiple entry.)
The problem is treated under the assumptions Q,, near the beginning of Section 5,
on the estimates 8, ¢, and an estimate 62 of an unknown variance 2. Fieller’s
(1—a)-confidence set for A is given by the quadratic inequality (39) with the é’s
defined by (38) and the constant S? = F,(1,v), the upper « point of F(1,v). The
nature of the confidence set is explained below (40) through the first two sentences
of the next paragraph.

The difficulties in this estimation problem may be seen intuitively as follows: If
the estimate (, ¢) is too close to (0,0), as measured by the F-statistic (45), the ratio
0/¢ is poorly determined; thus for small F the confidence ellipse (46) for (6, @)
includes (0,0), in the neighborhood of which 6/¢ takes on all possible values
— 00 < 0/¢p < + 00. Indeed, for values of F < 3F,(1,v), Fieller’s confidence set gives
the trivial statement —oo < /g < +00. (The objections to such ‘“improper”
confidence sets are discussed in Section 3.) The above Corollary reformulates
Fieller’s problem of finding a confidence set for 6/¢ as that of finding one for (6, @)
of the following nature: The confidence set for (6, ¢) implies non-trivial bounds for
the value of 8¢ or else is an ellipse containing (0, 0). Specifically, if F < F (2, v) the
statement is made that (0, ¢) is in the ellipse (46) containing (0, 0); otherwise (6, ¢)
is stated to be in a set for which 6/¢ is inside, or else outside, the finite interval
(r_,ry) defined in the Corollary. While Fieller’s confidence set is based on the
quadratic inequality (39) with S? = S,? = F,(1,v), the interval (r_,r,) of the
Corollary corresponds to the inequality (39) with a different value of S2: It would be
easy to justify S? = S,2 = 2F,(2,v) from the (1 —a)-confidence ellipse for (6,¢).
- Actually it corresponds to (39) with S? = f2(F), where f2(F)is a monotone function
of F which decreases from S,? for F = F,(2,v) toward a limiting value of S, as
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F— o0. A suitable function f2(F) is given by the square of (10) with g = 2. If the
constant p in (10) is taken as 3/2, the true confidence level 1 —a,, (a lower bound for
the probability that the confidence set covers (6, ¢)) will be close to the nominal
l—a. (Thus if v= co, then within .001, 1—o,=.949 for 1—oa =.95, and
1—ay =.898 for 1 —a = .90, and these approximations are expected to hold up
well for finite v. Other possible choices of u are mentioned in the first paragraph
beginning after (32), where the confidence coefficient of £’ equals that of the confi-
dence set of the Corollary.)

We conclude by remarking on the results that would follow from applying our
methods to the improper confidence set # of Section 4 for estimating the un-
oriented direction of the vector #, instead of to our proper £’. Suppose we begin
with the problem of estimating the unoriented direction of the vector & under the
assumptions Q,, transform to the y-space of # by (33), use # for the unoriented
direction of #, transform back to the x-space, and let # be the transform of 4.
Then we find that 4 is an improper confidence set for the unoriented direction of &
whose probability of covering & is exactly 1—a if £ # 0, which we assume hence-
forth. We may describe # as follows: If the ellipsoid #,, obtained by replacing S,
by S, in (34) covers the origin 0, then # is the whole £-space with 0 deleted; the
probability of this outcome, which leads to a trivially true statement, is given by
(26). If &, does not cover 0, & is the cone with vertex at 0 circumscribed about Z, ;
it is determined by the inequality (36) with freplaced by S,. A confidence set for the
joint estimation of (¢,/@, " -+, ,/@), where ¢ = g’ with g given and non-zero, is the
set of points (xy," "+, x,) which is the section of # by g’x = 1; if g'¢ # 0 the proba-
bility of covering is exactly 1 —a. For the multiple estimation of all A = 6/¢, with
0 and ¢ in L, we proceed as in the proof of Theorem 2 and let 0 = d'n, ¢ = g,
assume |d| =1and g # 0, and if ne %, interpret A as the projection on d of a point
Yo in the section of # by g’y = 1. If &,, |[y— | < S,6, does not cover 0, we define
#* by (42) with f replaced by S,, argue as before that 1lg —de #* and hence (44) is
satisfied with /' = S, and (39) with S = S,. If &, covers 0, |fi| < S,6, hence for any
vector y, ['y| < |A]:|y| £ S26|y|, or (#'¥)* < S,26%y"p, which may be written

(47 y'(f' = S,°6* Dy < 0.

If we now substitute y =1g —d in (47) and proceed as we did from (43) to (39) but
with f = S, we get (39) with S = S ,. This shows that the probability that all 1 = 0/¢,
for which the value of ¢ is not zero, simultaneously satisfy (39) is = 1 —o; it may be
shown the probability is = 1 —a. The probability of getting the trivially true state-
ment for all 4 is (26). In the special case ¢ = 2 the multiple estimation of all 0/¢ is,
as we remarked above, equivalent to the estimation of a single 6/¢ under Q,, and
the result of using & instead of £’ would be the confidence set of Fieller derived at
the beginning of this section.

Acknowledgments. I am indebted to Mr. Jerome A. Smith for programming and
supervising the computer calculations of Tables 2-6.
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APPENDIX ON COMPUTER CALCULATION OF CONFIDENCE
COEFFICIENTS AND PARTIAL OPERATING CHARACTERISTICS OF # AND %’
We consider here the problem of the choice of the exponent u which determines

the function f(F) in (10). Numerical determination of the confidence coefficients for
the resulting £ and 2’ involves the calculation for different 6 of the three proba-
bilities Pr {I}, Pr {II}, and Pr {III}, and each of these gives information about the
operating characteristic. These results apply.to & and &' as well as to # and #'.
Thus, all for the case v = oo, Table 2 of Pr {I} gives the probability that & (also #")
will be an ellipsoid covering &; Table 3 of Pr {II}, that & will be a cone covering ¢;
Table 6 of Pr{lII}, that #’ will be a cone with £ not in the nappe containing its
estimate &; Table 4 gives Pr{¢{e 4}, and this plus Pr {IIl} gives Pr{ed'}. I
mention here that the programmer estimated the probabilities listed in Tables 2-6
to be correct within .001; also that the rows for g = 6, 8, 13,16 were deleted from
Table 4 and Table 6 because they could be reconstituted by linear interpolation
between the remaining rows.

TABLE 2
Pr {I} forv=
]
q
ot 2 5 1 2 3 4 5 6 8
a=.10
2 900 .884 .848 752 427 121 006 .000 .000 .000
3 900 .887 .859 .780 .492 173 .024 .000 .000 .000
4 900 .889 .865 .797 .536 .215 .040 .002 .000 .000
5 900 .890 .869 .808 .569 .250 .055 .004 .000 .000
6 900 .891 .871 817 .595 281 .069 .007 .000 .000
8 900 .892 .875 829 .634 332 .097 .013 .001 .000
10 .900 .893 .878 .837 .662 373 .124 .020 .001 .000
13 900 .894 .881 .845 .692 424 161 .032 .003 .000
16 900 .894 .883 .851 714 463 .196 .046 .005 .000
20 900 .895 .885 .857 .736 .505 .237 .065 .009 .000
o =.05

2 950 .940 918 .851 .568 .216 .033 .000 .000 .000
3 950 942 925 .871 .628 278 .059 .003 .000 .000
4 950 .943 929 .883 .669 .328 .083 .008 .000 .000
5 950 944 931 .891 .698 .369 .105 .013 .000 .000
6 950 .945 933 897 .721 404 .127 .018 .001  .000
8 950 945 935 905 .754 461 .167 .030 .002 .000
10 950 .946 .937 910 .778 .505 .205 .043 .004 .000
13 950 946 939 916 .803 .558 255 .064 .008 .000
P 16 950 .947 940 920 .820 .598 .299 .087 .013  .000
20 950 947 941 923 .837 .639 350 .117 .021  .000




24 HENRY SCHEFFE

TABLE 3
Pr {II} forv= o

ot 2 5 1 2 3 4 5 6 8 16 32 64

oa=.10

.031 .047 .080 .173 .489 .789 .903 .916 .912 .907 .902 .900 .900
.026 .038 .065 .141 .424 .739 .887 .913 .912 .907 .902 .900 .900
.023 .033 .057 .123 .380 .698 .873 .911 .911 .907 .902 .900 .900

LN

.030 .044 .077 .167 .478 .774 .887 .902 .902 .900 .900
0.25 .036 .062 .137 .415 .726 .874 .902 .902 901 .900
0.22 .032 .054 .119 .372 .688 .861 .900 .902 .901 .900
.020 .029 .049 .106 .340 .654 .848 .899 .903 .901 .900
.019 .027 .045 .097 .314 .625 .835 .896 .903 .901 .900
.017 .024 .040 .084 .276 .575 .808 .891 .903 .901 .900
.015 .022 .036 .076 .248 .534 .782 .885 .902 .902 .900
13 .014 .019 .032 .066 .218 .485 .746 .873 .901 .902 .900
16 .013 .018 .029 .060 .196 .446 .712 .861 .900 .902 .900
20 .011 .016 .026 .054 .174 .404 .672 .842 .896 .903 .900

—
SOV P WN

o =.05

017 .026 .047 .113 .392 .741 .922 .958 .958 .955 .951 .950
.014 .021 .038 .091 .331 .679 .898 .954 .957 .955 .951 .950
.013 .019 .033 .078 .291 .630 .875 .949 .957 .955 .951 .950

Lo S

.016 .025 .046 .110 .386 .733 .913 .949 .951 .950 .950
.013 .021 .037 .089 .327 .673 .890 .947 .952 .951 .950
012 .018 .032 .076 .287 .624 .868 .943 .951 .951 .950
.011 .016 .029 .068 .257 .584 .847 .938 .951 .951 .950
.010 .015 .027 .061 .235 .550 .826 .934 .951 .951 .950
.009 .014 .023 .053 .201 .494 .786 .922 .950 .951 .950
10 .009 .012 .021 .047 .178 .449 .749 .910 .948 .951 .950
13 .008 .011 .019 .041 .153 .398 .700 .889 .945 .951 .950
16 .007 .010 .017 .037 .135 .358 .656 .867 .940 .952 .950
20 .007 .009 .015 .033 .119 .317 .605 .838 .933 .952 .950

(o WV I SN

=<}

We restrict our considerations to # until the end of this Appendix, where we
include #'. Ideally we might like to choose sup u for which inf;» o Pr {ne#} = 1—«
(we know this cannot be > 1—a since Pr{ne#} - 1—o as § - ), and ask for a
table of this u for use in applications—a triple-entry table according to «,q,v.
However, the calculation of Pr {ne %} for a single value of J is formidable because
of the triple integrations. A more feasible procedure is to choose a few values of y
to be considered, perhaps exponents easy for the potential user to calculate with,
and to try these sequentially until a satisfactory one is found. I did this for the case
v = o0, because I do not have the resources for the calculation of the triple integrals,
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and they degenerate to double integrals in this case. I suggest that the values of u
thus found be used also in the case of finite v, to approximate the desired confidence
coefficient 1 — and the partial operating characteristics, until such time if any when
the triple integral calculations are made for finite v. If these calculations for finite v
sheuld ever be made, then the values of u adopted here for v = co should be tried
- first, and one might then be satisfied simply to adopt these also for finite v if the
confidence coefficient did not drop below 1—a; if it did drop below, smaller u
would have to be tried, at least if the amount of the drop were considered of practi-
cal importance. (I conjecture it would not drop below 1—«, on the basis of specula-
tions too tenuous to be recounted here.) For finite v one could safely use the crude
bound (23) for the confidence coefficient, but how crude this is for the values of u
recommended here (the bound depends on v but not on u) is shown for the case
v = o0 in the following tabulation: .

¢ 2 3 6 11 21

bound (23) when « = .10: .821 .848 .870 .879 .886
bound (23) when « = .05: .902 .919 .932 .938 .942

TABLE 4
Pr {ne®&} = Pr {I}+Pr {II} forv= 0

0

o+ 2 5 1 2 3 4 5 6 8§ 16 32 64

a=.10

931 .930 .929 .925 917 .910 .909 .916 .912 .907 .902 .900 .900
926 .925 .924 .921 916 .912 911 .913 .912 .907 .902 .900 .900
923 .922 921 .919 916 .913 .913 .913 .911 .907 .902 .900 .900

930 .928 .925 .919 .905 .894 .893 .902 .902 .900 .900
925 .923 921 .917 .907 .900 .898 .902 .902 .901 .900
922 921 .919 .916 .908 .903 .901 .902 .902 .901 .900
918 .918 .917 .914 .909 .906 .904 .903 .903 .901 .900
915 915 .914 .912 .910 .908 .906 .905 .904 .902 .900
911 911 911 .910 .910 .910 .909 .907 .905 .903 .900

N
—
SO WN AW

[
(=]

967 .966 .966 .964 .960 .957 .955 .958 .958 .955 .951 .950
964 .964 963 .962 960 .958 .957 .957 .957 .955 .951 .950
963 .962 .962 .961 .959 .958 .957 .957 .957 .955 .951 .950

966 .965 .964 .961 .955 .949 .946 .949 .951 .950 .950
.963 963 .962 .960 .955 .951 .949 .950 .952 .951 .950
962 .962 .961 .959 .955 .952 .951 .951 .951 .951 .950
960 .960 .959 .958 .956 .954 .952 .952 .952 .951 .950
958 .958 .958 .957 .956 .955 .954 .953 .952 .951 .950
956 .956 .956 .956 .956 .956 9.55 .954 .953 .952 .950

SO P WN A WN

[
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TABLE 5
Supplementary values of Pr {n € %} for determining confidence coefficient
of R for v = ©
°
q 14
2.8 3.0 3.2 34 3.6 3.8 4.0
a=.10
2 1 910 909 908 .908  .909

3 .902 901 900 .899 .898 .898  .899
2 .896 .894 .893 .893 .892 .893  .893

3 3 904 904 903 " .903 .903
2 900 .899 .898 .898 .898  .898

4 2 903 902 .901 .901 .901 .901

o= ,05

2 1 957 956 955 955 955
3 952 951 950 .950 .949
2 .949 947 946 946 946

3 3 952 952
2 .951 950 950 .949  .949

4 2 952 952 951 951 951 .951

The values of u recommended below give .900 (or .898) for the confidence coefficient
in the second row of the table, and .950 (or .949) in the last row. In judging the
crudeness one should of course regard the complements of all these probabilities.

For v = o0, as we remarked in Section 4, all the probability in the u, v, 6-space
lies in the plane ¢ = ¢. If accordingly in the triple integrals (30)~(32) we suppress the
integration with respect to p;(6)dé, let é = 1, transform u = w+ 6, and use formula
(10) for f(F), we find

Pr{I} = [ G20 b (o) 23 SO0 2n) et dwd
for 6 < 25,, while Pr {I} =0foré = 2S,,and
Pr{IlI} = [3 po(v) [Z54 (s,2-02y1220) " e ¥ dw v
$1 D2 () 25T ST SRS ORI (9~ o= 42 gy gy,

where S| = 1,(9), S, = x.(g—1), and p,(z is given by (27). Pr {III} is programmed
for the computer like Pr(I7), but with ~ & entered in place of é.

I began with u =1, intending to continue with u =2 or 1, depending on the
outcome for u = 1. Table 2 of Pr {I}, which does not depend on u, was calculated,
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TABLE 5—continued

rel.

) min.
q u near conf.
4.2 4.4 4.6 4.8 5.0 54 o6=4 coef.

o=.10
2 1 910 913 915 916 908  .900
3 .900 .904 898  .898
2 .895 .898  .901 .902 892  .892
3 3 .903 904 . 903 900
2 899 .899 .900 .902 898  .898

4 2 .91 901 901 902 902 .902 .901 .900

o =.05
2 1 955 955 955 956  .958 955  .950
3 949 949 950 952 949 949
2 946 946 947 .949 946 946
3 3 952 952 952 952 950
2 9499 949 949 950 .950 949 949

4 2 951 951 951 951 951 951 951 .950

then Pr {II} for the « and § shown in Table 3, and g = 2-6, 8,10, 13,16, 20. (The
rows for g > 4 were later deleted from Table 3 because we shall see there is no
future need for them.) For these a, J, ¢, a table of Pr {ne #} = Pr {I}+Pr {II} was
then constructed. (Rows for g < 4 are shown in Table 4.) The resulting table showed
for these «, 8, g that Pr {ne 2} = 1—« for all §; possible doubt for the case g = 2
was dispelled by the use of supplementary values of 6 in Table 5.

I therefore continued with u = 2. Pr {II} is given in Table 3, and the resulting
Pr{ne®} in Table 4. Table 4 (including rows for ¢ = 5,8,13,16) showed that
Pr{ne#} = 1—o except in the cases g =2 or 3; possible doubt about the case
q = 4 was again dispelled by the supplementary Table 5. For ¢ = 2 or 3, the relative
minimum of Pr{ne#} near § =4 is explored in Table 5. The next-to-the-last
column in Table 5 is based on the preceding ones, and the last column is also based
on those together with Table 4 and the known limPr {ne 2} = 1 —a as 6 — .

I decided to try no larger values of u, but to suggest the use of 4 = 2 in practice
when ¢ = 4 because of the following considerations: Recall that x denotes the
semivertex angle of the confidence set # when it is a cone. I analyzed the effect on
« of increasing u beyond 2 for « < .10 and ¢ = 4, and made the somewhat arbitrary
assumption that ¥ < 30° in most applications where the direction of 1 is determined
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closely enough to be useful. I calculated that for x < 30°, when u is increased from 2
to oo, k decreases by at most 1.3 9, and this did not seem worth trying for. (Actually
it is not possible to increase pu all the way to oo without lowering the confidence
coefficient below 1 —a, as we found at the end of the last paragraph above (27). On
the other hand, I found that the corresponding bound for increasing u from 1 to 2
is 2.8 %, and that this is nearly attained.)

Since for ¢ =2 or 3 the confidence coefficient fell below 1—oa with =2, I
decided to try also u = 3/2 for these ¢q. In order to determine the confidence
coefficient for u = 3/2 it is necessary to calculate Pr {ne %} only for & in the set
where Pr {ne #} < 1—a for u = 2, since Pr {ne &} is a strictly decreasing function
of u, because 2 is a decreasing set for increasing p.

Table 5 shows that the largest of the three values 1, 3/2, 2 for u that gives con-
fidence coefficient 1 —a is 4 = 1 for ¢ =2, and p = 3/2 for g = 3. If one is willing to
settle for a confidence coefficient of .898 instead of .900, and of .949 instead of .950,

TABLE 6
Pr {lII} for v= o0
(Linear interpolation between tabled values of q is satisfuctory)

J
u q
(0 2 5 1 2
a=.,10
1 2 .031 .021 .010 .003 .000
3 .026 017 .009 .003 .000
4 .023 .015 .008 .003 .000
2 2 .030 .019 .010 .003 .000
3 .025 .016 .008 .002 .000
4 .022 .015 .008 .002 .000
6 .019 .013 .007 .002 .000
10 015 .010 .006 .002 .000
20 .011 .008 .005 .002 .000
a=.05
1 2 .017 011 .005 .001 .000
3 014 .009 .005 .001 .000
4 .013 .008 .004 .001 .000
2 2 .016 .010 .005 .001 .000
3 .013 .009 .004 .001 .000
4 012 .008 .004 .001 .000
6 .010 .007 .004 .001 .000
10 .009 .006 .003 .001 .000
20 .007 .005 .003 001 .000
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Table 5 shows he may adopt u = 3/2 for ¢ = 2, and u = 2 for g = 3. If the use of
values of u other than 1, 3/2, 2 is entertained, I mention that interpolation on the
relative minimum of Pr {ne %} for these three values of u indicates that u = 1.35
for g =2, and u =175 for g = 3, are safe values. In any case, I recommend
adopting u = 2for g = 4.

If the partial operating characteristics of # or %’ are desired for u = 3/2 (or for
1 < p < 2)and g =2 or 3, they may be obtained as follows: Table 2 for Pr {I} does
not depend on y; in Table 6 for Pr {III} the difference between u =1 and p = 2 is
negligible; in Table 3 for Pr {II} and Table 4 for Pr {n e #} the difference between
p=1and p=2is £.016, and it is suggested that linear interpolation in 2/u be
used (this predicts fairly well the values for u = 3/2 in Table 5, where the maximum
difference of .016 is attained).

That the confidence coefficient of #’ is the same to three decimals as that of %,
for 1 < p <2 and a = .10 or .05, may be seen from Table 6 of Pr {I/I} and Table 4
and Table 5 of Pr {ne %}, since Pr{neR'} = Pr{ne R} +Pr{lll}, and the tables
indicate that Pr {#e #} < 1—a implies § > 2, while Pr {III} = .000 for § = 2.
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