APPROXIMATION OF AGE DEPENDENT, MULTITYPE BRANCHING PROCESSES¹

By Thomas G. Kurtz

University of Wisconsin

1. Introduction. Let $X_n(t)$ be a sequence of k-type branching processes. Let $G_n^i(t)$ and $h_n^i(z)$ denote, respectively, the distribution function for the lifetime and the generating function for the distribution of the offspring, of a particle of type i. We shall assume $G_n^i(t)$ is right continuous, $G_n^i(0) = 0$ and $h_n^i(1) = 1$. The following notation will be useful:

$$Z_0^k = \{l = (l_1, l_2, \dots l_n): l_i \text{ nonnegative integers}\};$$

$$S^k = \{z = (z_1, z_2, \dots, z_n) : z_i \text{ complex, } |z_i| \leq 1\};$$

for $l \in \mathbb{Z}_0^k$ and $z \in \mathbb{S}^k$

$$z^l = \prod_{i=1}^k z_i^{l_i};$$

e(i) = vector with *i*th component 1 and other components 0; **0**, **1** denote the vectors with all components 0 and all components 1;

If A and B are either vectors or matrices, $A \leq B$ means the inequality holds for the corresponding elements; for $z \in S^k$

$$|z| = (|z_1|, |z_2|, \dots, |z_n|)$$
 and $||z|| = \sum_{i=1}^k |z_i|.$

The generating function

$$F_n^i(z,t) = \sum_{l \in Z_0^k} P\{X_n(t) = l \mid X_n(0) = e(i)\}z^l$$

satisfies

$$F_n^i(z,t) = z_i(1 - G_n^i(t)) + \int_0^t h_n^i(F_n(z,t-s)) dG_n^i(s)$$

where

$$F_n(z,t) = (F_n^{1}(z,t)\cdots F_n^{k}(z,t)).$$

To simplify notation further, let

$$h_n(z) = (h_n^{1}(z) \cdots h_n^{k}(z))$$

and let $G_n(t)$ denote the diagonal matrix with diagonal elements $G_n^{\ 1}(t) \cdots G_n^{\ k}(t)$. Then

$$F_n(z,t) = z(I - G_n(t)) + \int_0^t h_n(F_n(z,t-s)) dG_n(s),$$

where the meaning of the integration is obvious.

Received April 23, 1969.

¹ Research supported in part by the NIH at the University of Wisconsin, Madison, Wisconsin.

We are interested in the behavior of F_n under the assumption that there exist right continuous distribution functions $G^i(t)$ with $G^i(0) = 0$ and generating functions $h^i(z)$ with $h^i(1) = 1$ such that

$$\lim_{n\to\infty} G_n^i(t) = G^i(t)$$
 at all points of continuity and $\lim_{n\to\infty} h_n^i(z) = h^i(z)$ for all $z \in S^k$.

We observe that these conditions imply

(1.1)
$$\lim_{n\to\infty} G_n(t) = G(t) \quad \text{almost everywhere} \quad \text{and} \quad$$

(1.2)
$$\lim_{n\to\infty} \sup_{|z|\leq 1} ||h_n(z) - h(z)|| = 0.$$

F(z, t) will denote the vector of generating functions for the branching process corresponding to G(t) and h(z). To avoid unnecessary complications in the proof we shall assume F(0, t) < 1 for all $t < \infty$. In particular, we shall prove the following:

THEOREM 1.3. For every $t \ge 0$ and $\rho < 1$

$$\lim_{n\to\infty}\int_0^t \sup_{|z|\leq\rho} \left| \left| F(z,s) - F_n(z,s) \right| \right| ds = 0.$$

THEOREM 1.4. Suppose G(t) is continuous. Then for every $t \ge 0$ and $\rho < 1$

$$\lim_{n\to\infty}\sup_{s\le t}\sup_{|z|\le\rho}\left|\left|F(z,s)-F_n(z,s)\right|\right|=0.$$

THEOREM 1.5. Suppose

$$G_n(t) = G(l/n)$$
 for $l/n \le t < (l+1)/n$.

Then for every $t \ge 0$ and $\rho < 1$

$$\lim_{n\to\infty}\sup_{|z|\leq\rho}\left|\left|F(z,t)-F_n(z,t+n^{-\frac{1}{2}})\right|\right|=0.$$

2. Proofs of the theorems. Let

$$P = \{H(z,t) = \sum_{l \in Z_0^k} b_l(t)z^l : b_l(t) \in S^k, b_l(t) \ge 0,$$

 $H(1, t) \le 1$, and H(z, t) is a right continuous function of $t \ge 0$. Define $K_n: P \to P$ by

$$K_n H(z,t) = z(I - G_n(t)) + \int_0^t h_n(H(z,t-s)) dG_n(s).$$

Similarly define $K: P \to P$ with G_n and h_n replaced by G and h.

LEMMA 2.1. Let H_n , $H \in P$. For every $t \ge 0$ and $\rho < 1$

(2.2)
$$\lim_{n\to\infty} \int_0^t \sup_{|z| \le \rho} ||H(z,s) - H_n(z,s)|| \, ds = 0$$

implies

$$\lim_{n\to\infty}\int_0^t\sup_{|z|\leq\rho}\left|\left|KH(z,s)-K_nH_n(z,s)\right|\right|ds=0.$$

PROOF. We observe that

$$\begin{split} \int_{0}^{t} \sup_{|z| \leq \rho} \left| \left| KH(z,s) - K_{n} H_{n}(z,s) \right| \right| ds \\ &\leq \int_{0}^{t} \sup_{|z| \leq \rho} \left| \left| z(G_{n}(s) - G(s)) \right| \right| ds \\ &+ \int_{0}^{t} \sup_{|z| \leq \rho} \left| \left| \int_{0}^{s} \left[h_{n}(H_{n}(z,s-u)) - h(H_{n}(z,s-u)) \right] dG_{n}(u) \right| \right| ds \\ &+ \int_{0}^{t} \sup_{|z| \leq \rho} \left| \left| \int_{0}^{s} \left[h(H_{n}(z,s-u)) - h(H(z,s-u)) \right] dG_{n}(u) \right| \right| ds \\ &+ \int_{0}^{t} \sup_{|z| \leq \rho} \left| \left| \int_{0}^{s} h(H(z,s-u)) d(G_{n}(u) - G(u)) \right| \right| ds. \end{split}$$

The first term on the right-hand side converges to zero by condition (1.1), the second by condition (1.2) and the third by (2.2). Letting

$$H(z,t) = \sum_{l \in Z_0^k} b_l(t) z^l,$$

to show that the fourth term converges to zero it is sufficient to show that

$$\lim_{n\to\infty} \int_0^t \left| \int_0^s b_l(s-u) \, d(G_n(u) - G(u)) \right| ds = 0.$$

This can be done by approximating $b_l(t)$ by continuous functions $\gamma_l(t)$ in L^1 and observing that

$$\lim_{n\to\infty} \int_0^s \gamma_l(s-u) \, d(G_n(u) - G(u)) = 0 \qquad \text{for all } s.$$

Using a similar argument we have

LEMMA 2.3. Let H_n , $H \in P$ and suppose H(z, t) is a continuous function of t. If G(t) is continuous, then KH(z, t) is continuous and for every $t \ge 0$ and $\rho < 1$

$$\lim_{n\to\infty} \sup_{s\le t} \sup_{|z|\le \rho} \left| \left| H(z,s) - H_n(z,s) \right| \right| = 0$$

implies

$$\lim_{n\to\infty}\sup_{s\le t}\sup_{|z|\le\rho}\left|\left|KH(z,s)-K_nH_n(z,s)\right|\right|=0.$$

The analogous lemma to be used in the proof of Theorem 1.5 is somewhat more complicated.

LEMMA 2.4. Let H_n , $H \in P$. Suppose there exists a constant C such that for every $t \ge 0$, $\rho < 1$ and every sequence $\{t_n\}$ satisfying $t_n > t + C/n$ and $\lim_{n \to \infty} t_n = t$

(2.5)
$$\lim_{n\to\infty} \sup_{|z|\leq\rho} \left| \left| H_n(z,t_n) - H(z,t) \right| \right| = 0.$$

If $G_n(t)$ satisfies the conditions of Theorem 1.5, then $K_n H_n$ and KH satisfy the above conditions with C replaced by C+1.

PROOF. Suppose $t_n > t + (C+1)/n$, and $\lim_{n\to\infty} t_n = t$. Let $k_n(s)$ be the smallest integer greater than or equal to ns. Then

$$t_n - k_n(s)/n > t - s + C/n$$
.

Consequently, by (2.5)

(2.6)
$$\lim_{n\to\infty} \sup_{|z| \le \rho} ||H_n(z, t_n - k_n(s)/n) - H(z, t - s)|| = 0.$$

We note that

$$K_n H_n(z, t_n) = z(I - G(\lceil nt_n \rceil/n)) + \int_0^{\lceil nt_n \rceil/n} h_n(H_n(z, t_n - k_n(s)/n)) dG(s),$$

and the lemma follows by (2.6) and the right continuity of G.

For each n, we consider the following approximation of $X_n(t)$: Let $X_n^{(m)}(t)$ be the vector giving the number of particles of each type from the generations $0, 1, 2, \dots, m-1$ that are alive at time t. Define

$$F_n^i(z,t,m) = \sum_{l \in Z_0^k} P\{X_n^{(m)}(t) = l \mid X(0) = e(i)\}z^l.$$

Then

$$F_n(z,t,m)=K_n^{\ m}\mathbf{1}.$$

where $K_n^{m}\mathbf{1}$ is the *m*th power of the operator K_n operating on $H(z, t) \equiv \mathbf{1}$. (See Harris [1], page 132.)

It is clear that

$$\lim_{m\to\infty} X_n^{(m)}(t) = X_n(t),$$

and hence

$$\lim_{m\to\infty} F_n(z,t,m) = F_n(z,t).$$

However, the following lemma will be useful in establishing the rate of this convergence.

LEMMA 2.7. Let $\Gamma_n(z)$ be the matrix with elements

$$\gamma_{ij}^n(z) = \frac{\partial}{\partial z} h_n^j(z);$$

let

$$r_n(\rho, t, m) = F_n(0, t, m) + (1 - F_n(0, t, m)) \sup_{i \le k} \rho_i;$$

and let $\overline{G}_n(t)$ be the diagonal matrix with all diagonal elements equal to

$$G_n^0(t) = k^{-1} \sum_{i=1}^k G_n^i(t).$$

These quantities, without the subscript n, are defined similarly for the limiting process. Then for every $t \ge 0$ and $\rho \le 1$,

(2.8)
$$\Delta_{n}(\rho, t, m+1) \equiv \sup_{s \leq t} \sup_{|z| \leq \rho} \left| K_{n}^{m+1} \mathbf{1}(z, s) - F_{n}(z, s) \right|$$

$$\leq \int_{0}^{t} \Delta_{n}(\rho, t-s, m) \Gamma_{n}(r_{n}(\rho, t-s, m)) dG_{n}(s)$$

$$\leq k \int_{0}^{t} \Delta_{n}(\rho, t-s, m) d\overline{G}_{n}(s) \Gamma_{n}(r_{n}(\rho, t, m)),$$

and

$$(2.9) \quad \sup_{s \le t} \sup_{|z| \le \rho} \left| K_n^{m+1} \mathbf{1}(z, s) - F_n(z, s) \right| \le 2k^l P \{ S_{n, l} \le t \} \mathbf{1} \Gamma_n^{l} (r_n(\rho, t, m)),$$

where $S_{n,l}$ is the sum of l independent random variables with distribution $G_n^0(t)$ and Γ_n^l is the lth power of the matrix Γ_n .

PROOF. We first observe that $|z| \le \rho$ and $s \le t$ imply

$$|F_n(z,s)| \le F_n(\rho,s) \le F_n(\rho,s,m)$$
 and
$$|F_n(z,s,m)| \le F_n(\rho,s,m) \le F_n(\rho,t,m),$$

and hence

$$\left|\Gamma_n(F_n(z,s))\right| \le \Gamma_n(r_n(\rho,t,m))$$
 and
$$\left|\Gamma_n(F_n(z,s,m))\right| \le \Gamma_n(r_n(\rho,t,m)).$$

Therefore

$$\begin{split} & \Delta_{n}(\rho, t, m+1) = \sup_{s \leq t} \sup_{|z| \leq \rho} \left| \int_{0}^{s} \left[h_{n}(F_{n}(z, s-u, m)) - h_{n}(F_{n}(z, s-u)) \right] dG_{n}(u) \right| \\ & \leq \sup_{s \leq t} \sup_{|z| \leq \rho} \int_{0}^{s} \left| F_{n}(z, s-u, m) - F_{n}(z, s-u) \right| \Gamma_{n}(F_{n}(|z|, s-u, m)) dG_{n}(u) \\ & \leq \int_{0}^{t} \Delta_{n}(\rho, t-u, m) \Gamma_{n}(r_{n}(\rho, t, m)) dG_{n}(u). \end{split}$$

The last inequality in (2.8) follows from

$$dG_n^{i}(s)/dG_n^{0}(s) \le k$$

and the fact that $\overline{G}_n(s)$ commutes with $\Gamma_n(z)$.

The inequality in (2.9) follows by iterating (2.8) l times and observing $\Delta_n \le 2 \cdot 1$ and $r_n(\rho, t, m') \le r_n(\rho, t, m)$ for m' > m.

Let $t \ge 0$, $\eta > 0$ and $\rho < 1$. Since

$$\lim_{m\to\infty} F(0, t+\eta, m) = F(0, t+\eta) < 1,$$

there exists m such that $F(0, t+\eta, m) < 1$.

Lemma 2.1 implies

(2.10)
$$\lim_{n\to\infty} \int_0^t \sup_{|z| \le \rho} \left| \left| K^m \mathbf{1}(z,s) - K_n^m \mathbf{1}(z,s) \right| \right| ds = 0,$$

and since $r_n(\rho, t, m)$ is an increasing function of t

$$\limsup_{n\to\infty} r_n(\rho,t,m) \le r(\rho,t+\eta,m) < 1.$$

Letting S_l denote a sum of l independent random variables with distribution $G^0(t)$

$$\limsup_{n\to\infty} P\{S_{n,l} \le t\} \le P\{S_l \le t + \eta\}$$

and since

$$\lim_{n\to\infty} \gamma_{ij}^n(z) = \gamma_{ij}(z)$$
 for $|z| < 1$,

(2.9) implies

(2.11)
$$\limsup_{n \to \infty} \sup_{s \le t} \sup_{|z| \le \rho} \left| K_n^{m+1} \mathbf{1}(z, s) - F_n(z, s) \right|$$

$$\le 2k^l P\{S_l \le t + \eta\} \mathbf{1} \Gamma^l(r(\rho, t + \eta, m)).$$

Note that the right-hand side of (2.11) goes to zero as l goes to infinity faster than ε^l for any $0 < \varepsilon < 1$, since

$$\exp\left\{-\theta(t+\eta)\right\}P\left\{S_t \le t+\eta\right\} \le E(\exp\left\{-\theta S_t\right\}) \le \left[\int_0^\infty \exp\left\{-\theta t\right\} dG^0(t)\right]^t$$

and for θ sufficiently large

$$\int_0^\infty \exp\left\{-\theta t\right\} dG^0(t) < \varepsilon.$$

Finally we prove the theorems.

From (2.10) and (2.11) it follows that

$$\begin{aligned} &\lim_{n\to\infty} \int_{0}^{t} \sup_{|z| \le \rho} \left| \left| F(z,s) - F_{n}(z,s) \right| \right| ds \\ & \le \lim_{n\to\infty} \int_{0}^{t} \sup_{|z| \le \rho} \left| \left| K_{n}^{m+l} \mathbf{1}(z,s) - K^{m+l} \mathbf{1}(z,s) \right| \right| ds \\ & + \lim \sup_{n\to\infty} \sup_{s \le t} \sup_{|z| \le \rho} t \left| \left| K_{n}^{m+l} \mathbf{1}(z,s) - F_{n}(z,s) \right| \right| \\ & + \sup_{s \le t} \sup_{|z| \le \rho} t \left| \left| K^{m+l} \mathbf{1}(z,s) - F(z,s) \right| \right| \\ & \le 2t \left| \left| 2k^{l} P\{S_{t} \le t + \eta\} \mathbf{1} \Gamma^{l}(r(\rho,t+\eta,m)) \right| \right|, \end{aligned}$$

and Theorem 1.3 follows.

Under the conditions of Theorem 1.4, Lemma 2.3 implies

$$\lim_{n\to\infty} \sup_{s\le t} \sup_{|z|\le 0} ||K_n^{m+l} \mathbf{1}(z,s) - K^{m+l} \mathbf{1}(z,s)|| = 0,$$

and Theorem 1.4 follows similarly to Theorem 1.3.

Under the conditions of Theorem 1.5, Lemma 2.4 implies

(2.12)
$$\lim_{n\to\infty} \sup_{|z|\leq \rho} ||K_n^{m+l} \mathbf{1}(z,t_n) - K^{m+l} \mathbf{1}(z,t)|| = 0$$

for every sequence $t_n \to t$ with $t_n > t + (m+l)/n$.

Since $t+n^{-\frac{1}{2}} > t+(m+l)/n$ for *n* sufficiently large, (2.12) holds for all $l \ge 0$ and $t_n = t+n^{-\frac{1}{2}}$, and Theorem 1.5 follows.

3. Example. Let F(z, t) be the generating function for a continuous parameter Markov branching process with offspring generating function f(z) and lifetime distribution $G(t) = 1 - e^{-\alpha t}$.

Let $F_n(z, 1/n) = (1 - \alpha/n)z + (\alpha/n)f(z)$ and let $F_n(z, m/n)$ denote the *m*th iterate of $F_n(z, 1/n)$. Then $F_n(z, m/n)$ is the *m*th generation generating function of a discrete parameter Markov branching process. We observe, however, that defining

$$F_n(z,t) = F_n(z,k/n), \qquad k/n \le t < (k+1)/n$$

we may interpret $F_n(z, t)$ as the generating function of an age dependent branching process with offspring generating function f(z) and lifetime distribution

$$G_n(t) = \sum_{l=0}^m \alpha/n(1-\alpha/n)^l = 1 - (1-\alpha/n)^{m+1}$$
 for $m/n \le t < (m+1)/n$.

Since $\lim_{n\to\infty} G_n(t) = 1 - e^{-\alpha t}$, Theorem 1.4 implies for every $t \ge 1$, $\rho < 1$

$$\lim_{n\to\infty}\sup_{s\leq t}\sup_{|z|\leq\rho}\left|\left|F_n(z,t)-F(z,t)\right|\right|=0.$$

Consequently, we have a natural way of approximating a continuous parameter Markov branching process by discrete parameter Markov branching processes.

REFERENCE

[1] HARRIS, T. E. (1963). *The Theory of Branching Processes*. Prentice-Hall, Inc., Englewood Cliffs, N.J.