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APPROXIMATION OF AGE DEPENDENT,
MULTITYPE BRANCHING PROCESSES

By THOMAS G. KURTZ
University of Wisconsin

1. Introduction. Let X,(t) be a sequence of k-type branching processes. Let
G,(t) and h,'(z) denote, respectively, the distribution function for the lifetime and
the generating function for the distribution of the offspring, of a particle of type i.
We shall assume G, (¢) is right continuous, G,(0) = 0 and 4,’(1) = 1. The following
notation will be useful:

Zy* = {l=(l;,1,,---1,): ]; nonnegative integers};
S*={z =(2y,2;," ", 2,): z; complex, |z;| < 1};

for le Z,* and ze S*
= H?:l zil‘;
e(i) = vector with ith component 1 and other components 0; 0,1 denote the
vectors with all components 0 and all components 1;
If 4 and B are either vectors or matrices, 4 < B means the inequality holds for
the corresponding elements; for ze S*

[zl = (|2, |z2]s -+ |24 and
ll2ll = Xt-1 |z
The generating function
Fj(z,1) = Yie 20 P{X,(1) = 1] X,(0) = (i)}’
satisfies
Fl(z,0) = z{1- G, (1)) +[o h,(F\(z, 1 —5)) 4G, (s)
where
Fy(z,1) = (F,'(z,0) -+ F,(z,1)).
To simplify notation further, let
h(z) = (h,'(2) - h,"(2))

and let G,(¢) denote the diagonal matrix with diagonal elements G,(¢)- - - G,X(¢).
Then
F(z,1) = 2(I= G,()) + [o hy(F\(z, t—5)) dG,(s),

where the meaning of the integration is obvious.
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We are interested in the behavior of F, under the assumption that there exist
right continuous distribution functions G¥(t) with G'(0) =0 and generating
functions A’(z) with (1) = 1 such that

lim,_, ,, G,'(f) = G'(t) atall points of continuity and
lim,_, h,'(z) = h'(z)  forall zeSk
We observe that these conditions imply
(1.1) lim,_, , G,(*) = G(¢) almost everywhere and
(1.2) lim, ., ,, Sup|; <1 || 1n(2) — B(2)|| =0.

F(z, t) will denote the vector of generating functions for the branching process
corresponding to G(¢) and A(z). To avoid unnecessary complications in the proof
we shall assume F(0, t) < 1forall ¢ < oo. In particular, we shall prove the following:

THEOREM 1.3. For everyt 20 and p <1
lim,, ,, [6sup <, ||F(z, )= Fy(z,5)||ds = 0.
THEOREM 1.4. Suppose G(t) is continuous. Then for every t 20 and p < 1
lim, ., ,, SUP, <, SUP|. <, | |F(z,5) — Fo(z,5)|| = 0.
THEOREM 1.5. Suppose
G, () =G([n) for Iln=t<(+1)/n.
Then for every t 20 and p <1
lim, -, ,, SUp,, <, | |[F(z, ) = Fo(z, t+n")|| = 0.
2. Proofs of the theorems. Let
P={H(z,0) = Y,z bi(DZ' : b(1) e S*, b(¥) 2 0,
H(1,t) = 1,and H(z, t)is a right continuous function of t 2 0}. Define K,,: P - P by
K, H(z,1) = z(I - G,(1)) + [, hy(H(z,t—5)) dG,(s).
Similarly define K: P - P with G, and 4, replaced by G and 4.
LemMA 2.1. Let H,, He P. For everyt 20 and p <1
(2.2) lim, .o, [osup), <, ||[H(z,5)— H,(z,)||ds = 0
implies
lim, ., fosup;z <, ||KH(z, s)—K,H,(z, s)| | ds =0.
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PrOOF. We observe that
Jo5upyz <, || KH(z, 8)— K, H,(z,5)|| ds
< [t supp || 2(Go$)— G(5))]| s
o+ Jb 5upyay 5, 115 [AaHL(2 5 — ) — h(H, (2, 5= )] 4G, (w)] | ds
+ Jb 5upyay 5, || 13 [HCH, (2,5 — ) — h(H(z, 5~ 1))] dG, ()] | ds
+ [ty supy <, | |5 B(H(z, s — 1)) d(G,(w) — Gw)))|| ds.

The first term on the right-hand side converges to zero by condition (1.1), the
second by condition (1.2) and the third by (2.2). Letting

H(z,0) = Y e 20 b(D)7,
to show that the fourth term converges to zero it is sufficient to show that
lim,,-, o, f5 |[5 bi(s —u) d(G,(u) — G(u))| ds = 0.

This can be done by approximating b,(¢) by continuous functions y,(¢) in L! and
observing that

lim, ., , [§ 7/(s —u) d(G,(u)—G(u)) = 0 for all s.
Using a similar argument we have

LEMMA 2.3. Let H,, He P and suppose H(z, t) is a continuous function of t. If
G(t) is continuous, then KH(z, t) is continuous and for every t 2 0 and p <1

lim,,., o, SUP,< SUP. <, || H(z, )= H,(2,5)|| = 0
implies
lim,, , sup, <, SUP|. <, ||[KH(z,5)— K, H,(z, s)|| = 0.

The analogous lemma to be used in the proof of Theorem 1.5 is somewhat more
complicated.

LEMMA 2.4. Let H,, He P. Suppose there exists a constant C such that for every
t =0, p <1 and every sequence {t,} satisfying t, > t+Cln and lim,_, ., t, =t

2.5) lim,, ,, supy; <, ||H(z, t,) — H(z, || =0.

If G,(¢) satisfies the conditions of Theorem 1.5, then K, H, and KH satisfy the
above conditions with C replaced by C+1.

PROOF. Suppose t, > t+(C+1)/n, and lim,_, 1, = t. Let k,(s) be the smallest
integer greater than or equal to ns. Then

t,—k,(s)/n>t—s+C/n.
Consequently, by (2.5)
(2.6) lim, ., o SUP|; <, || Hulz, tn—kn(s)/M) — H(z, 1 —5)|| = 0.
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We note that
K, H,(z,1,) = 2(I1—-G([nt,]/n)) + [§"V" h,(H (2, t,— k,(s)/n) ) dG(s),

and the lemma follows by (2.6) and the right continuity of G.

For each n, we consider the following approximation of X,(¢): Let X,™)(¢) be
the vector giving the number of particles of each type from the generations
0,1,2, -, m—1 that are alive at time ¢z. Define

Fni(z: t9 m) = Zlelo" P{Xn(m)(t) = I|X(O) = e(l)}zl
Then
F(z,t,m) = K,"1.

where K,"1 is the mth power of the operator K, operating on H(z, t) = 1. (See
Harris [1], page 132.)
It is clear that

lim,_, , X,™(f) = X,(1),
and hence
lim,,_, , F,(z,t,m) = F,(z,1).

However, the following lemma will be useful in establishing the rate of this con-
vergence.

LeMMA 2.7. Let T',(z) be the matrix with elements
1fe) = o hi
let
ro(pt,m) = F,(0,1,m)+(1—F,(0, 2, m) ) sup; <, pi;
and let G,(t) be the diagonal matrix with all diagonal elements equal to
G, () = k™' ¥i-1 G,(2).

These quantities, without the subscript n, are defined similarly for the limiting
process. Then for everyt 20 and p <1,

AJp,t,m+1) = sup,<,supy, <, |K," " 1z, ) — F(z, )|
(2.8) < [6Aulp, t—s, m)T(r,(p, t—s,m)) dG,(s)
< ko Alp, t—s,m)dG,(s)T(r,(p, 1, m)),
and
(2.9) sup,<,supy <, |Ka" U(z, 5)— Fy(2, 5)| < 2K'P{S,, < t}1T,/(r,(p, 1, m)),

where S, , is the sum of / independent random variables with distribution G,°(r)
and T, is the /th power of the matrix T, .
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PrOOF. We first observe that |z| < p and s < ¢ imply
|Fu(z,5)| £ Fu(p,5) < F(p,s,m) and

|F(z,5,m)| < F,(p,s,m) < r,(p,t,m),

and hence
ITW(Fu(z,5)| < T(ru(p, t,m)) and

ITW(F.(z, 5,m))| < T,(r,(p, 1, m)).
Therefore
Ap,t,m+1) = sup,<, supy,) <, | [& [h(Fo(z, s— 1, m)) = hy(F (2, s — u))] dG,(u)|
< SUP, <, SUPy, <, [§ |Fulz, s—u,m)—F,(z, s —u)| T(F(|z|,s—u, m)) dG,(u)
< o Aulp, t—u, m)T,(ry(p, 1, m) ) dG,(u).
The last inequality in (2.8) follows from
dG,/(s)/dG,’(s) < k

and the fact that G,(s) commutes with T,(z).

The inequality in (2.9) follows by iterating (2.8) / times and observing A, < 2-1
and r,(p, t, m") L r,(p, t, m) for m’ > m.

Lett =0, >0and p < 1. Since

lim,,,, F(0,t+#n,m) = F(0,t+n) <1,

there exists m such that F(0, t+#, m) < 1.
Lemma 2.1 implies

(2.10) lim,, o, o supy,) <, || K™1(z,5)— K,"1(z,5)|| ds = O,
and since r,(p, ¢, m) is an increasing function of ¢
limsup,_, ,, r,(p,t,m) < r(p,t+n,m) < 1.

Letting S, denote a sum of / independent random variables with distribution
G°(1)
lim sup,., P{S,, < 1} < P{S, < t-+1)

and since
lim,, , 7i}(2) = yi(z) for |z| <1,
(2.9) implies
(21D lim sup,,_.w‘supsé, SUp, <, [Ka"1(z, 5) = F (2, 3)|

< 2K'P{S, £ t+n}1T (r(p, t+1,m)).

Note that the right-hand side of (2.11) goes to zero as [/ goes to infinity faster
than &' for any 0 < & < 1, since

exp {—0(t+n)} P{S, < t+n} < E(exp {—05,}) < [[§ exp {—01} dG°()]'
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and for 6 sufficiently large
[ exp{—0t}dG°(r) <.

Finally we prove the theorems.
From (2.10) and (2.11) it follows that
lim, o [68Up|; <, ||[F(z,8)— Fo(z,5)|| ds
S lim, o, [osupy, <, ||Ka" 1z, 5) — K" '1(z, 5)|| ds
+1im Sup,_, o, SUP, <, SUPy; <, ¢ | |[K," " U(z, 5) — F (2, 5)||
+8UP<, SUPy, <, ¢ || K™ 1U(z, 5)— F(z, )|
< 2t||2k'P{S, < t+n} 1T (r(p, t+1,m))||,

and Theorem 1.3 follows. .
Under the conditions of Theorem 1.4, Lemma 2.3 implies

lim,_, o, SUP, <, SUP|. <, || K" H'1(z,5)— K™ '1(z, 5)|| = 0,
and Theorem 1.4 follows similarly to Theorem 1.3.
Under the conditions of Theorem 1.5, Lemma 2.4 implies
(2.12) lim, ., supy,; <, || K," 1z, 1,) — K™ *1(z, 1)|| = 0

for every sequence ¢, — ¢ with ¢, > t+(m+1)/n.
Since t+n"* > t+(m+1)/n for n sufficiently large, (2.12) holds for all />0
and t, = t+n~*, and Theorem 1.5 follows.

3. Example. Let F(z, t) be the generating function for a continuous parameter
Markov branching process with offspring generating function f(z) and lifetime
distribution G(t) = 1—e™*.

Let F,(z, 1/n) = (1 —a/n)z+(o/n) f(z) and let F,(z, m/n) denote the mth iterate of
F,(z, 1/n). Then F,(z, m/n) is the mth generation generating function of a discrete
parameter Markov branching process. We observe, however, that defining

F(z,0) = F(z,k[n),  kin<t<(k+1)/n
we may interpret F,(z, t) as the generating function of an age dependent branching
process with offspring generating function f(z) and lifetime distribution
G,(t) =Y oa/n(l—afn) = 1—(1—a/n)"*! for m/n <t <(m+1)/n.
Since lim,,_, , G,(t) = 1—e~*, Theorem 1.4 implies for every t = 1, p <1
lim,_, ., SUP,<, SUp|; <, || Fulz, )= F(z,1)|| = 0.

Consequently, we have a natural way of approximating a continuous parameter
Markov branching process by discrete parameter Markov branching processes.
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